This paper aims at uncovering the structure of clinical documents, in particular, identifying paragraphs describing “diagnosis” or “procedures”. We present transformer-based architectures for approaching this task in a monolingual setting (English), exploring a weak supervision scheme. We further extend our contribution to a cross-lingual scenario, mitigating the need for expensive manual data annotation and taxonomy engineering for Italian.

Language transfer for identifying diagnostic paragraphs in clinical notes / Di Liello, Luca; Uryupina, Olga; Moschitti, Alessandro. - STAMPA. - 3033:(2021). (Intervento presentato al convegno Clic-IT tenutosi a Milano, Italy nel June 29 - July 1, 2022).

Language transfer for identifying diagnostic paragraphs in clinical notes

Luca Di Liello;Olga Uryupina;Alessandro Moschitti.
2021-01-01

Abstract

This paper aims at uncovering the structure of clinical documents, in particular, identifying paragraphs describing “diagnosis” or “procedures”. We present transformer-based architectures for approaching this task in a monolingual setting (English), exploring a weak supervision scheme. We further extend our contribution to a cross-lingual scenario, mitigating the need for expensive manual data annotation and taxonomy engineering for Italian.
2021
Proceedings of the Eighth Italian Conference onComputational Linguistics Clic-IT 2021
Aachen, Germany
CEUR-WS
Di Liello, Luca; Uryupina, Olga; Moschitti, Alessandro
Language transfer for identifying diagnostic paragraphs in clinical notes / Di Liello, Luca; Uryupina, Olga; Moschitti, Alessandro. - STAMPA. - 3033:(2021). (Intervento presentato al convegno Clic-IT tenutosi a Milano, Italy nel June 29 - July 1, 2022).
File in questo prodotto:
File Dimensione Formato  
10_uryupina_clicit2021.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 164.47 kB
Formato Adobe PDF
164.47 kB Adobe PDF Visualizza/Apri
paper56.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 312.24 kB
Formato Adobe PDF
312.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/336787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact