Direct speech translation (ST) has shown to be a complex task requiring knowledge transfer from its sub-tasks: automatic speech recognition (ASR) and machine translation (MT). For MT, one of the most promising techniques to transfer knowledge is knowledge distillation. In this paper, we compare the different solutions to distill knowledge in a sequence-to-sequence task like ST. Moreover, we analyze eventual drawbacks of this approach and how to alleviate them maintaining the benefits in terms of translation quality.

On knowledge distillation for direct speech translation / Gaido, M.; Di Gangi, M. A.; Negri, M.; Turchi, M.. - 2769:(2020). (Intervento presentato al convegno 7th Italian Conference on Computational Linguistics, CLiC-it 2020 tenutosi a Bologna, Italy nel 1-3 March, 2021).

On knowledge distillation for direct speech translation

Gaido M.;Di Gangi M. A.;
2020-01-01

Abstract

Direct speech translation (ST) has shown to be a complex task requiring knowledge transfer from its sub-tasks: automatic speech recognition (ASR) and machine translation (MT). For MT, one of the most promising techniques to transfer knowledge is knowledge distillation. In this paper, we compare the different solutions to distill knowledge in a sequence-to-sequence task like ST. Moreover, we analyze eventual drawbacks of this approach and how to alleviate them maintaining the benefits in terms of translation quality.
2020
Italian Conference on Computational Linguistics 2020 Proceedings of the Seventh Italian Conference on Computational Linguistics
Aachen, Germany
CEUR-WS
Gaido, M.; Di Gangi, M. A.; Negri, M.; Turchi, M.
On knowledge distillation for direct speech translation / Gaido, M.; Di Gangi, M. A.; Negri, M.; Turchi, M.. - 2769:(2020). (Intervento presentato al convegno 7th Italian Conference on Computational Linguistics, CLiC-it 2020 tenutosi a Bologna, Italy nel 1-3 March, 2021).
File in questo prodotto:
File Dimensione Formato  
paper_28.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 301.27 kB
Formato Adobe PDF
301.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/333952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact