Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Cen-trality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs withn vertices and average degreek = n/p2/3. Weformulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensibl...
Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Cen-trality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs withn vertices and average degreek = n/p2/3. Weformulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.
Scaling betweenness centrality using communication-efficient sparse matrix multiplication / Solomonik, Edgar; Besta, Maciej; Vella, Flavio; Hoefler, Torsten. - ELETTRONICO. - 47:(2017), pp. 1-14. ( International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017 Denver, CO, USA 12 - 17 November 2017) [10.1145/3126908.3126971].
Scaling betweenness centrality using communication-efficient sparse matrix multiplication
Flavio Vella;
2017-01-01
Abstract
Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Cen-trality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs withn vertices and average degreek = n/p2/3. Weformulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensibl...| File | Dimensione | Formato | |
|---|---|---|---|
|
sc3126908.3126971.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



