Betweenness Centrality (BC) is steadily growing in popularity as a metrics of the influence of a vertex in a graph. The BC score of a vertex is proportional to the number of all-pairs-shortest-paths passing through it. However, complete and exact BC computation for a large-scale graph is an extraordinary challenge that requires high performance computing techniques to provide results in a reasonable amount of time. Our approach combines bi-dimensional (2-D) decomposition of the graph and multi-level parallelism together with a suitable data-Thread mapping that overcomes most of the difficulties caused by the irregularity of the computation on GPUs. In order to reduce time and space requirements of BC computation, a heuristics based on 1-degree reduction technique is developed as well. Experimental results on synthetic and real-world graphs show that the proposed techniques are well suited to compute BC scores in graphs which are too large to fit in the memory of a single computational node.
Scalable betweenness centrality on multi-GPU systems / Bernaschi, M.; Carbone, G.; Vella, F.. - ELETTRONICO. - (2016), pp. 29-36. (Intervento presentato al convegno ACM International Conference on Computing Frontiers, CF 2016 tenutosi a Como, Italy nel May 16 - 18 2016) [10.1145/2903150.2903153].
Scalable betweenness centrality on multi-GPU systems
Vella F.
2016-01-01
Abstract
Betweenness Centrality (BC) is steadily growing in popularity as a metrics of the influence of a vertex in a graph. The BC score of a vertex is proportional to the number of all-pairs-shortest-paths passing through it. However, complete and exact BC computation for a large-scale graph is an extraordinary challenge that requires high performance computing techniques to provide results in a reasonable amount of time. Our approach combines bi-dimensional (2-D) decomposition of the graph and multi-level parallelism together with a suitable data-Thread mapping that overcomes most of the difficulties caused by the irregularity of the computation on GPUs. In order to reduce time and space requirements of BC computation, a heuristics based on 1-degree reduction technique is developed as well. Experimental results on synthetic and real-world graphs show that the proposed techniques are well suited to compute BC scores in graphs which are too large to fit in the memory of a single computational node.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione