To respond to the need for efficient training and inference of deep neural networks, a plethora of domain-specific architectures have been introduced, such as Google Tensor Processing Units and NVIDIA Tensor Cores. A common feature of these architectures is the design for efficiently computing a dense matrix product of a given small size. In order to broaden the class of algorithms that exploit these systems, we propose a computational model, named the TCU model, that captures the ability to natively multiply small matrices. We then use the TCU model for designing fast algorithms for several problems, including dense and sparse matrix multiplication and the Discrete Fourier Transform. We finally highlight a relation between the TCU model and the external memory model.

A Computational Model for Tensor Core Units / Chowdhury, Rezaul; Silvestri, Francesco; Vella, Flavio. - ELETTRONICO. - (2020), pp. 519-521. ( 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2020 usa 2020) [10.1145/3350755.3400252].

A Computational Model for Tensor Core Units

Flavio Vella
2020-01-01

Abstract

To respond to the need for efficient training and inference of deep neural networks, a plethora of domain-specific architectures have been introduced, such as Google Tensor Processing Units and NVIDIA Tensor Cores. A common feature of these architectures is the design for efficiently computing a dense matrix product of a given small size. In order to broaden the class of algorithms that exploit these systems, we propose a computational model, named the TCU model, that captures the ability to natively multiply small matrices. We then use the TCU model for designing fast algorithms for several problems, including dense and sparse matrix multiplication and the Discrete Fourier Transform. We finally highlight a relation between the TCU model and the external memory model.
2020
SPAA '20: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
Virtual Event - Originally Philadelphia, USA
Association for Computing Machinery
9781450369350
Chowdhury, Rezaul; Silvestri, Francesco; Vella, Flavio
A Computational Model for Tensor Core Units / Chowdhury, Rezaul; Silvestri, Francesco; Vella, Flavio. - ELETTRONICO. - (2020), pp. 519-521. ( 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2020 usa 2020) [10.1145/3350755.3400252].
File in questo prodotto:
File Dimensione Formato  
3350755.3400252.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/332698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact