The Ophidia project is a research effort addressing big data analytics requirements, issues, and challenges for eScience. We present here the Ophidia analytics framework, which is responsible for atomically processing, transforming and manipulating array-based data. This framework provides a common way to run on large clusters analytics tasks applied to big datasets. The paper highlights the design principles, algorithm, and most relevant implementation aspects of the Ophidia analytics framework. Some experimental results, related to a couple of data analytics operators in a real cluster environment, are also presented. © 2013 IEEE.

A big data analytics framework for scientific data management / Fiore, S.; Palazzo, C.; D'Anca, A.; Foster, I.; Williams, D. N.; Aloisio, G.. - (2013), pp. 1-8. (Intervento presentato al convegno 2013 IEEE International Conference on Big Data, Big Data 2013 tenutosi a Santa Clara, CA, usa nel 2013) [10.1109/BigData.2013.6691720].

A big data analytics framework for scientific data management

Fiore S.;
2013-01-01

Abstract

The Ophidia project is a research effort addressing big data analytics requirements, issues, and challenges for eScience. We present here the Ophidia analytics framework, which is responsible for atomically processing, transforming and manipulating array-based data. This framework provides a common way to run on large clusters analytics tasks applied to big datasets. The paper highlights the design principles, algorithm, and most relevant implementation aspects of the Ophidia analytics framework. Some experimental results, related to a couple of data analytics operators in a real cluster environment, are also presented. © 2013 IEEE.
2013
Proceedings - 2013 IEEE International Conference on Big Data, Big Data 2013
Washington, Stati Uniti
IEEE Computer Society
978-1-4799-1293-3
Fiore, S.; Palazzo, C.; D'Anca, A.; Foster, I.; Williams, D. N.; Aloisio, G.
A big data analytics framework for scientific data management / Fiore, S.; Palazzo, C.; D'Anca, A.; Foster, I.; Williams, D. N.; Aloisio, G.. - (2013), pp. 1-8. (Intervento presentato al convegno 2013 IEEE International Conference on Big Data, Big Data 2013 tenutosi a Santa Clara, CA, usa nel 2013) [10.1109/BigData.2013.6691720].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/331712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact