A crucial skill for survival among animals is distinguishing between living and non-living entities, be those predators, social companions, or prey. Animacy is the perceived property of an object to be animate. Therefore, animals should possess fast unlearnt mechanisms for the detection of animacy. If, for instance, primates would rely on learning to avoid venomous snakes, they would probably die at the first encounter. If chicks would imprint on the first object seen immediately after hatching, they would frequently end up imprinting on an eggshell. It is thus likely that selective pressures shaped an adaptive set of unlearnt rudimental knowledge, shared among species. This knowledge helps them to tell apart, in an otherwise undifferentiated sensory world, animate from inanimate objects. Further learning would capitalize on this rudimental, original knowledge and shape more sophisticated cognitive abilities and behaviors (Vallortigara, 2009, 2012b, 2012a; Versace, Martinho-Truswell, Kacelnik, & Vallortigara, 2018). Some configurations of features and movements help animals to disentangle between animate and inanimate objects. The present chapter will thus discuss behavioural evidence and suggested neural mechanisms underlying the detection of static and dynamic cues to animacy in the various species with particular emphasis on their ontogenetic development.

Evolutionary and Neural Bases of the Sense of Animacy / Lorenzi, Elena; Vallortigara, Giorgio. - STAMPA. - (2021), pp. 295-321. [10.1017/9781108564113.017]

Evolutionary and Neural Bases of the Sense of Animacy

Lorenzi, Elena;Vallortigara, Giorgio
2021-01-01

Abstract

A crucial skill for survival among animals is distinguishing between living and non-living entities, be those predators, social companions, or prey. Animacy is the perceived property of an object to be animate. Therefore, animals should possess fast unlearnt mechanisms for the detection of animacy. If, for instance, primates would rely on learning to avoid venomous snakes, they would probably die at the first encounter. If chicks would imprint on the first object seen immediately after hatching, they would frequently end up imprinting on an eggshell. It is thus likely that selective pressures shaped an adaptive set of unlearnt rudimental knowledge, shared among species. This knowledge helps them to tell apart, in an otherwise undifferentiated sensory world, animate from inanimate objects. Further learning would capitalize on this rudimental, original knowledge and shape more sophisticated cognitive abilities and behaviors (Vallortigara, 2009, 2012b, 2012a; Versace, Martinho-Truswell, Kacelnik, & Vallortigara, 2018). Some configurations of features and movements help animals to disentangle between animate and inanimate objects. The present chapter will thus discuss behavioural evidence and suggested neural mechanisms underlying the detection of static and dynamic cues to animacy in the various species with particular emphasis on their ontogenetic development.
2021
The Cambridge Handbook of Animal Cognition
Cambridge
Cambridge University Press
9781108564113
9781108426749
9781108445481
Lorenzi, Elena; Vallortigara, Giorgio
Evolutionary and Neural Bases of the Sense of Animacy / Lorenzi, Elena; Vallortigara, Giorgio. - STAMPA. - (2021), pp. 295-321. [10.1017/9781108564113.017]
File in questo prodotto:
File Dimensione Formato  
Lorenzi and Vallortigara (2021) evolutionary-and-neural-bases-of-the-sense-of-animacy.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 410.57 kB
Formato Adobe PDF
410.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/322081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact