The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ operators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths $S$, large volume $N$, and vanishing lattice spacing $a$. By analytically solving Gauss' law for arbitrary $S$, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle $Theta=pi$. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models.

Achieving the continuum limit of quantum link lattice gauge theories on quantum devices / Zache, Torsten V.; Van Damme, Maarten; Halimeh, Jad C.; Hauke, Philipp Hans Juergen; Banerjee, Debasish. - ELETTRONICO. - (2021).

Achieving the continuum limit of quantum link lattice gauge theories on quantum devices

Philipp Hauke;
2021-01-01

Abstract

The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ operators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths $S$, large volume $N$, and vanishing lattice spacing $a$. By analytically solving Gauss' law for arbitrary $S$, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle $Theta=pi$. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models.
2021
online
arXiv
Achieving the continuum limit of quantum link lattice gauge theories on quantum devices / Zache, Torsten V.; Van Damme, Maarten; Halimeh, Jad C.; Hauke, Philipp Hans Juergen; Banerjee, Debasish. - ELETTRONICO. - (2021).
Zache, Torsten V.; Van Damme, Maarten; Halimeh, Jad C.; Hauke, Philipp Hans Juergen; Banerjee, Debasish
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/304373
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact