The aim of this work is to improve the virtual dissection of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent insight on white matter anatomy from ex-vivo dissection and a data driven approach with a deep learning model. Current methods of tract dissection are not robust with respect to false positives and are neglecting the neuroanatomical waypoints of a given tract, like the stem. In this work we design a deep learning model to segment the stem of IFOF and we show how the dissection of the tract can be improved. The proposed method is validated on the Human Connectome Project dataset, where expert neuroanatomists segmented the IFOF on multiple subjects. In addition we compare the results to the most recent method in the literature for automatic tract dissection.

A Stem-Based Dissection of Inferior Fronto-Occipital Fasciculus with A Deep Learning Model / Astolfi, P.; De Benedictis, A.; Sarubbo, S.; Bertò, G.; Olivetti, E.; Sona, D.; Avesani, P.. - ELETTRONICO. - (2020), pp. 267-270. ((Intervento presentato al convegno 17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 tenutosi a Iowa City, USA nel April 2020 [10.1109/ISBI45749.2020.9098483].

A Stem-Based Dissection of Inferior Fronto-Occipital Fasciculus with A Deep Learning Model

Astolfi P.;Sarubbo S.;Bertò G.;Olivetti E.;
2020

Abstract

The aim of this work is to improve the virtual dissection of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent insight on white matter anatomy from ex-vivo dissection and a data driven approach with a deep learning model. Current methods of tract dissection are not robust with respect to false positives and are neglecting the neuroanatomical waypoints of a given tract, like the stem. In this work we design a deep learning model to segment the stem of IFOF and we show how the dissection of the tract can be improved. The proposed method is validated on the Human Connectome Project dataset, where expert neuroanatomists segmented the IFOF on multiple subjects. In addition we compare the results to the most recent method in the literature for automatic tract dissection.
Proceedings - International Symposium on Biomedical Imaging
Iowa City, USA
IEEE Computer Society
978-1-5386-9330-8
Astolfi, P.; De Benedictis, A.; Sarubbo, S.; Bertò, G.; Olivetti, E.; Sona, D.; Avesani, P.
A Stem-Based Dissection of Inferior Fronto-Occipital Fasciculus with A Deep Learning Model / Astolfi, P.; De Benedictis, A.; Sarubbo, S.; Bertò, G.; Olivetti, E.; Sona, D.; Avesani, P.. - ELETTRONICO. - (2020), pp. 267-270. ((Intervento presentato al convegno 17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 tenutosi a Iowa City, USA nel April 2020 [10.1109/ISBI45749.2020.9098483].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/295109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact