Traffic load monitoring and structural health monitoring (SHM) have been gaining increasing attention over the last decade. However, most of the current installations treat the two monitoring types as separated problems, thereby using dedicated installed sensors, such as smart cameras for traffic load or accelerometers for Structural Health Monitoring (SHM). This paper presents a new framework aimed at leveraging the data collected by a SHM system for a second use, namely, monitoring vehicles passing on the structure being monitored (a viaduct). Our framework first processes the raw three-axial acceleration signals through a series of transformations and extracts its energy. Then, an anomaly detection algorithm is used to detect peaks from 90 installed sensors, and a linear regression together with a simple threshold filters out false detection by estimating the speed of the vehicles. Initial results in conditions of moderate traffic load are promising, demonstrating the detection of vehicles and realistic characterization of their speed. Moreover, a k-means clustering analysis distinguishes two groups of peaks with statistically different features such as amplitude and damping duration that could be likely associated with heavy vehicles and cars, respectively.
Enhancing structural health monitoring with vehicle identification and tracking / Burrello, Alessio; Brunelli, Davide; Malavisi, Marzia; Benini, Luca. - ELETTRONICO. - (2020), pp. 1-6. (Intervento presentato al convegno I2MTC 2020 tenutosi a Dubrovnik, Croatia nel 25th-29th May 2020) [10.1109/I2MTC43012.2020.9128641].
Enhancing structural health monitoring with vehicle identification and tracking
Brunelli, Davide;
2020-01-01
Abstract
Traffic load monitoring and structural health monitoring (SHM) have been gaining increasing attention over the last decade. However, most of the current installations treat the two monitoring types as separated problems, thereby using dedicated installed sensors, such as smart cameras for traffic load or accelerometers for Structural Health Monitoring (SHM). This paper presents a new framework aimed at leveraging the data collected by a SHM system for a second use, namely, monitoring vehicles passing on the structure being monitored (a viaduct). Our framework first processes the raw three-axial acceleration signals through a series of transformations and extracts its energy. Then, an anomaly detection algorithm is used to detect peaks from 90 installed sensors, and a linear regression together with a simple threshold filters out false detection by estimating the speed of the vehicles. Initial results in conditions of moderate traffic load are promising, demonstrating the detection of vehicles and realistic characterization of their speed. Moreover, a k-means clustering analysis distinguishes two groups of peaks with statistically different features such as amplitude and damping duration that could be likely associated with heavy vehicles and cars, respectively.File | Dimensione | Formato | |
---|---|---|---|
I2MTC2020_CarDetection.post-referred.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
Enhancing_Structural_Health_Monitoring_with_Vehicle_Identification_and_Tracking.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione