If I×(S) _ denotes the set of (multiplicative) idempotent elements of a commutative semiring S, then a matrix over S is idempotent with respect to the Hadamard product iff all its coefficients are in I×(S). Since the collection of idempotent matrices can be seen as an embedded structure of binary relations inside the category of matrices over S, we are interested in the relationship between the two structures. In particular, we are interested under which properties the idempotent matrices form a (distributive) allegory.

Relations among matrices over a semiring / Killingbeck, D.; Santos Teixeira, Milene; Winter, M.. - 9348:(2015), pp. 101-118. (Intervento presentato al convegno 15th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2015 tenutosi a Porto nel 2015) [10.1007/978-3-319-24704-5_7].

Relations among matrices over a semiring

Teixeira Santos Milene;
2015-01-01

Abstract

If I×(S) _ denotes the set of (multiplicative) idempotent elements of a commutative semiring S, then a matrix over S is idempotent with respect to the Hadamard product iff all its coefficients are in I×(S). Since the collection of idempotent matrices can be seen as an embedded structure of binary relations inside the category of matrices over S, we are interested in the relationship between the two structures. In particular, we are interested under which properties the idempotent matrices form a (distributive) allegory.
2015
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
Springer Verlag
978-3-319-24703-8
978-3-319-24704-5
Killingbeck, D.; Santos Teixeira, Milene; Winter, M.
Relations among matrices over a semiring / Killingbeck, D.; Santos Teixeira, Milene; Winter, M.. - 9348:(2015), pp. 101-118. (Intervento presentato al convegno 15th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2015 tenutosi a Porto nel 2015) [10.1007/978-3-319-24704-5_7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/275373
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact