In this paper, a contrast source compressive sensing method for three-dimensional imaging is presented. A fast Relevance Vector Machine (RVM) is used to find the best hyperparameter vector maximizing the cost function of the problem formulated in a multi-task Bayesian Compressive Sensing (MT-BCS) from which the corresponding equivalent currents and the contrast function of the imaged domain are derived. A comparative assessment is reported in order to show the effectiveness of the proposed methodology.

Three Dimensional Imaging with the Contrast Source Compressive Sampling / Anselmi, N.; Poli, L.; Oliveri, G.; Massa, A.. - STAMPA. - (2018), pp. 1-2. ((Intervento presentato al convegno ACES-China 2018 tenutosi a Beijing, China nel 29th July-1st August 2018 [10.23919/ACESS.2018.8669353].

Three Dimensional Imaging with the Contrast Source Compressive Sampling

Anselmi N.;Poli L.;Oliveri G.;Massa A.
2018

Abstract

In this paper, a contrast source compressive sensing method for three-dimensional imaging is presented. A fast Relevance Vector Machine (RVM) is used to find the best hyperparameter vector maximizing the cost function of the problem formulated in a multi-task Bayesian Compressive Sensing (MT-BCS) from which the corresponding equivalent currents and the contrast function of the imaged domain are derived. A comparative assessment is reported in order to show the effectiveness of the proposed methodology.
2018 International Applied Computational Electromagnetics Society Symposium in China, ACES-China 2018
Piscataway, NJ
Institute of Electrical and Electronics Engineers Inc.
978-0-9960078-4-9
Anselmi, N.; Poli, L.; Oliveri, G.; Massa, A.
Three Dimensional Imaging with the Contrast Source Compressive Sampling / Anselmi, N.; Poli, L.; Oliveri, G.; Massa, A.. - STAMPA. - (2018), pp. 1-2. ((Intervento presentato al convegno ACES-China 2018 tenutosi a Beijing, China nel 29th July-1st August 2018 [10.23919/ACESS.2018.8669353].
File in questo prodotto:
File Dimensione Formato  
Three-dimensional imaging with the contrast source compressive sensing.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 108.82 kB
Formato Adobe PDF
108.82 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/262125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact