Consistent query answering (CQA) aims to deliver meaningful answers when queries are evaluated over inconsistent databases. Such answers must be certainly true in all repairs, which are consistent databases whose difference from the inconsistent one is somehow minimal. An interesting task in this context is to count the number of repairs that entail the query. This problem has been already studied for conjunctive queries and primary keys; we know that it is #P-complete in data complexity under polynomial-time Turing reductions (a.k.a. Cook reductions). However, as it has been already observed in the literature of counting complexity, there are problems that are ''hard-to-count-easy-to-decide'', which cannot be complete (under reasonable assumptions) for #P under weaker reductions, and, in particular, under standard many-one logspace reductions (a.k.a. parsimonious reductions). For such ''hard-to-count-easy-to-decide'' problems, a crucial question is whether we can determine their exact complexity by looking for subclasses of #P to which they belong. Ideally, we would like to show that such a problem is complete for a subclass of #P under many-one logspace reductions. The main goal of this work is to perform such a refined analysis for the problem of counting the number of repairs under primary keys that entail the query.
Counting Database Repairs under Primary Keys Revisited / Calautti, Marco; Console, Marco; Pieris, Andreas. - (2019), pp. 104-118. (Intervento presentato al convegno PODS tenutosi a Amsterdam nel 30th June-5th July 2019) [10.1145/3294052.3319703].
Counting Database Repairs under Primary Keys Revisited
Marco Calautti;
2019-01-01
Abstract
Consistent query answering (CQA) aims to deliver meaningful answers when queries are evaluated over inconsistent databases. Such answers must be certainly true in all repairs, which are consistent databases whose difference from the inconsistent one is somehow minimal. An interesting task in this context is to count the number of repairs that entail the query. This problem has been already studied for conjunctive queries and primary keys; we know that it is #P-complete in data complexity under polynomial-time Turing reductions (a.k.a. Cook reductions). However, as it has been already observed in the literature of counting complexity, there are problems that are ''hard-to-count-easy-to-decide'', which cannot be complete (under reasonable assumptions) for #P under weaker reductions, and, in particular, under standard many-one logspace reductions (a.k.a. parsimonious reductions). For such ''hard-to-count-easy-to-decide'' problems, a crucial question is whether we can determine their exact complexity by looking for subclasses of #P to which they belong. Ideally, we would like to show that such a problem is complete for a subclass of #P under many-one logspace reductions. The main goal of this work is to perform such a refined analysis for the problem of counting the number of repairs under primary keys that entail the query.File | Dimensione | Formato | |
---|---|---|---|
c13.pdf
Solo gestori archivio
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
834.88 kB
Formato
Adobe PDF
|
834.88 kB | Adobe PDF | Visualizza/Apri |
3294052.3319703.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione