Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.
Incremental Linearization: A practical approach to Satisfiability Modulo Nonlinear Arithmetic and Transcendental Functions / Cimatti, Alessandro; Griggio, Alberto; Irfan, Ahmed; Roveri, Marco; Sebastiani, Roberto. - (2018), pp. 19-26. (Intervento presentato al convegno 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) tenutosi a Timisoara, Romania nel 20-23 Sept. 2018) [10.1109/SYNASC.2018.00016].
Incremental Linearization: A practical approach to Satisfiability Modulo Nonlinear Arithmetic and Transcendental Functions
Alessandro Cimatti;Alberto Griggio;Ahmed Irfan;Marco Roveri;Roberto Sebastiani
2018-01-01
Abstract
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
462.66 kB
Formato
Adobe PDF
|
462.66 kB | Adobe PDF | Visualizza/Apri |
08750708.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
489.29 kB
Formato
Adobe PDF
|
489.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione