Millimeter wave (mmWave) communications are an essential component of 5G-and-beyond ultra-dense Gbit/s wireless networks, but also pose significant challenges related to the communication environment. Especially beam-training and tracking, device association, and fast handovers for highly directional mmWave links may potentially incur a high overhead. At the same time, such mechanisms would benefit greatly from accurate knowledge about the environment and device locations that can be provided through simultaneous localization and mapping (SLAM) algorithms. In this paper we tackle the above issues by proposing CLAM, a distributed mmWave SLAM algorithm that works with no initial information about the network deployment or the environment, and achieves low computational complexity thanks to a fundamental reformulation of the angle-differences-of-arrival mm Wave anchor location estimation problem. All information required by CLAM is collected by a mmWave device thanks to beam training and tracking mechanisms inherent to mm Wave networks, at no additional overhead. Our results show that CLAM achieves submeter accuracy in the great majority of cases. These results are validated via an extensive experimental measurement campaign carried out with 60-GHz mmWave hardware.
Communication-Driven Localization and Mapping for Millimeter Wave Networks / Palacios, J.; Bielsa, G.; Casari, P.; Widmer, J.. - 2018:(2018), pp. 2402-2410. (Intervento presentato al convegno IEEE INFOCOM 2018 tenutosi a Honolulu, HI nel 15th-19th April 2018) [10.1109/INFOCOM.2018.8485819].
Communication-Driven Localization and Mapping for Millimeter Wave Networks
Casari P.;
2018-01-01
Abstract
Millimeter wave (mmWave) communications are an essential component of 5G-and-beyond ultra-dense Gbit/s wireless networks, but also pose significant challenges related to the communication environment. Especially beam-training and tracking, device association, and fast handovers for highly directional mmWave links may potentially incur a high overhead. At the same time, such mechanisms would benefit greatly from accurate knowledge about the environment and device locations that can be provided through simultaneous localization and mapping (SLAM) algorithms. In this paper we tackle the above issues by proposing CLAM, a distributed mmWave SLAM algorithm that works with no initial information about the network deployment or the environment, and achieves low computational complexity thanks to a fundamental reformulation of the angle-differences-of-arrival mm Wave anchor location estimation problem. All information required by CLAM is collected by a mmWave device thanks to beam training and tracking mechanisms inherent to mm Wave networks, at no additional overhead. Our results show that CLAM achieves submeter accuracy in the great majority of cases. These results are validated via an extensive experimental measurement campaign carried out with 60-GHz mmWave hardware.File | Dimensione | Formato | |
---|---|---|---|
Communication-Driven Localization and Mapping for Millimeter Wave Networks.pdf
Open Access dal 01/01/2021
Descrizione: Articolo principale
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
6.03 MB
Formato
Adobe PDF
|
6.03 MB | Adobe PDF | Visualizza/Apri |
08485819.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
6.12 MB
Formato
Adobe PDF
|
6.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione