A classifier trained on a dataset seldom works on other datasets obtained under different conditions due to domain shift. This problem is commonly addressed by domain adaptation methods. In this work we introduce a novel deep learning framework which unifies different paradigms in unsupervised domain adaptation. Specifically, we propose domain alignment layers which implement feature whitening for the purpose of matching source and target feature distributions. Additionally, we leverage the unlabeled target data by proposing the Min-Entropy Consensus loss, which regularizes training while avoiding the adoption of many user-defined hyper-parameters. We report results on publicly available datasets, considering both digit classification and object recognition tasks. We show that, in most of our experiments, our approach improves upon previous methods, setting new state-of-the-art performances.

Unsupervised Domain Adaptation Using Feature-Whitening and Consensus Loss / Roy, Subhankar; Siarohin, Aliaksandr; Sangineto, Enver; Bulo, Samuel Rota; Sebe, Nicu; Ricci, Elisa. - (2019), pp. 9463-9472. (Intervento presentato al convegno IEEE Comference on Computer Vision and Pattern Recognition (CVPR'19) tenutosi a Long Beach nel June 16-20, 2019) [10.1109/CVPR.2019.00970].

Unsupervised Domain Adaptation Using Feature-Whitening and Consensus Loss

Roy, Subhankar;Siarohin, Aliaksandr;Sangineto, Enver;Sebe, Nicu;Ricci, Elisa
2019-01-01

Abstract

A classifier trained on a dataset seldom works on other datasets obtained under different conditions due to domain shift. This problem is commonly addressed by domain adaptation methods. In this work we introduce a novel deep learning framework which unifies different paradigms in unsupervised domain adaptation. Specifically, we propose domain alignment layers which implement feature whitening for the purpose of matching source and target feature distributions. Additionally, we leverage the unlabeled target data by proposing the Min-Entropy Consensus loss, which regularizes training while avoiding the adoption of many user-defined hyper-parameters. We report results on publicly available datasets, considering both digit classification and object recognition tasks. We show that, in most of our experiments, our approach improves upon previous methods, setting new state-of-the-art performances.
2019
IEEE Comference on Computer Vision and Pattern Recognition (CVPR'19)
New York
IEEE
978-1-7281-3293-8
Roy, Subhankar; Siarohin, Aliaksandr; Sangineto, Enver; Bulo, Samuel Rota; Sebe, Nicu; Ricci, Elisa
Unsupervised Domain Adaptation Using Feature-Whitening and Consensus Loss / Roy, Subhankar; Siarohin, Aliaksandr; Sangineto, Enver; Bulo, Samuel Rota; Sebe, Nicu; Ricci, Elisa. - (2019), pp. 9463-9472. (Intervento presentato al convegno IEEE Comference on Computer Vision and Pattern Recognition (CVPR'19) tenutosi a Long Beach nel June 16-20, 2019) [10.1109/CVPR.2019.00970].
File in questo prodotto:
File Dimensione Formato  
Roy_Unsupervised_Domain_Adaptation_Using_Feature-Whitening_and_Consensus_Loss_CVPR_2019_paper.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri
08953769.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 367.25 kB
Formato Adobe PDF
367.25 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/250771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 131
  • ???jsp.display-item.citation.isi??? 101
  • OpenAlex ND
social impact