The accurate monitoring and understanding of glacier dynamics are of high relevance for climate science and water-resources management. The glacier parameters are typically estimated by data assimilation methods which inject field measurements into the numerical simulations with the aim of improving the physical model estimates. However, these methods often are not able to capture and model the complexity of the estimation problem. To solve this problem, this paper proposes a method that integrates remote sensing (RS) data, in-situ observations and a physical-based model to accurately estimate the Glacier Mass Balance (GMB). The RS data are used to represent the physical properties of the glaciers by characterizing their topography and spectral properties. Instead of assimilating the observations into the model, the in-situ measurements are used to perform a data-driven correction of the GMB estimates derived from the physically-based simulations in the informative RS feature space. Th...
Integration of hydro-climatological model and remote sensing for glacier mass balance estimation / Podsiadło, Iwona Katarzyna; Paris, Claudia; Bovolo, Francesca; Callegari, Mattia; De Gregorio, Ludovica; Günther, Daniel; Marin, Carlo; Marke, Thomas; Niroumand-Jadidi, Milad; Notarnicola, Claudia; Strasser, Ulrich; Zebisch, Marc; Bruzzone, Lorenzo. - 11155:(2019), p. 37. ( Image and Signal Processing for Remote Sensing XXV 2019 Strasbourg 9 - 12 September 2019) [10.1117/12.2533232].
Integration of hydro-climatological model and remote sensing for glacier mass balance estimation
Podsiadło, Iwona Katarzyna;Paris, Claudia;Bovolo, Francesca;Callegari, Mattia;De Gregorio, Ludovica;Marin, Carlo;Niroumand-Jadidi, Milad;Bruzzone, Lorenzo
2019-01-01
Abstract
The accurate monitoring and understanding of glacier dynamics are of high relevance for climate science and water-resources management. The glacier parameters are typically estimated by data assimilation methods which inject field measurements into the numerical simulations with the aim of improving the physical model estimates. However, these methods often are not able to capture and model the complexity of the estimation problem. To solve this problem, this paper proposes a method that integrates remote sensing (RS) data, in-situ observations and a physical-based model to accurately estimate the Glacier Mass Balance (GMB). The RS data are used to represent the physical properties of the glaciers by characterizing their topography and spectral properties. Instead of assimilating the observations into the model, the in-situ measurements are used to perform a data-driven correction of the GMB estimates derived from the physically-based simulations in the informative RS feature space. Th...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



