Wireless wearable sensors have developed rapidly in recent years, primarily driven by e-health, fitness and wellness applications. The technological evolution of low power microprocessors is enabling to process data locally, saving energy and bandwidth and increasing the overall throughput of the wireless network. This paper presents a new general-purpose Inertial Measure Unit that exploits a dual-core architecture. A core offers processing capability, and the other one is a radio interface IEEE 802.15.4. We propose the whole system and a protocol to maximize the throughput, reduce the packet loss and improve the robustness of wireless sensor nodes communication. Experimental results show that our solution offers better data throughput for configurations below 10 nodes compared to widely used commercial wireless sensor nodes. The paper also presents an experimental evaluation of scalability (up to 10 nodes) and power consumption of the proposed solution.
NETWIS: A Scalable and Robust Body Sensor Network for Biomedical Application / Ballerini, M.; Magno, M.; Brunelli, D.; Cornai, G.; Benini, L.. - ELETTRONICO. - (2019), pp. 118-123. (Intervento presentato al convegno 8th International Workshop on Advances in Sensors and Interfaces, IWASI 2019 tenutosi a Otranto (IT) nel 13-14 giugno 2019) [10.1109/IWASI.2019.8791326].
NETWIS: A Scalable and Robust Body Sensor Network for Biomedical Application
Brunelli D.;
2019-01-01
Abstract
Wireless wearable sensors have developed rapidly in recent years, primarily driven by e-health, fitness and wellness applications. The technological evolution of low power microprocessors is enabling to process data locally, saving energy and bandwidth and increasing the overall throughput of the wireless network. This paper presents a new general-purpose Inertial Measure Unit that exploits a dual-core architecture. A core offers processing capability, and the other one is a radio interface IEEE 802.15.4. We propose the whole system and a protocol to maximize the throughput, reduce the packet loss and improve the robustness of wireless sensor nodes communication. Experimental results show that our solution offers better data throughput for configurations below 10 nodes compared to widely used commercial wireless sensor nodes. The paper also presents an experimental evaluation of scalability (up to 10 nodes) and power consumption of the proposed solution.File | Dimensione | Formato | |
---|---|---|---|
08791326.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.09 MB
Formato
Adobe PDF
|
3.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione