The increasingly availability of Light Detection and Ranging (LiDAR) data acquired at different times can be used to analyze the forest dynamics at individual tree level. This often requires to deal with LiDAR point clouds having significantly different point densities. To address this issue, this paper presents a method for the fusion of multitemporal Li-DAR data which aims at using the information provided by high density LiDAR data (higher than 10 pts/m 2 ) to improve the single tree parameter estimation of low density data (up to 5 pts/m 2 ) acquired over the same forest at different times. The method first accurately characterizes the crown shapes on the high density data. Then, it uses the obtained estimates to drive the tree parameter estimation on the low density LiDAR data. The method has been tested on a multitemporal dataset acquired in coniferous forests located in the Italian Alps. Experimental results confirmed the effectiveness of the method.

Fusion of Multitemporal LiDAR Data for Individual Tree Crown Parameter Estimation on Low Density Point Clouds / Marinelli, Daniele; Paris, Claudia; Bruzzone, Lorenzo. - 2018-:(2018), pp. 3999-4002. ( 38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 Valencia 23-27 Giugno 2018) [10.1109/IGARSS.2018.8518441].

Fusion of Multitemporal LiDAR Data for Individual Tree Crown Parameter Estimation on Low Density Point Clouds

Daniele Marinelli;Claudia Paris;Lorenzo Bruzzone
2018-01-01

Abstract

The increasingly availability of Light Detection and Ranging (LiDAR) data acquired at different times can be used to analyze the forest dynamics at individual tree level. This often requires to deal with LiDAR point clouds having significantly different point densities. To address this issue, this paper presents a method for the fusion of multitemporal Li-DAR data which aims at using the information provided by high density LiDAR data (higher than 10 pts/m 2 ) to improve the single tree parameter estimation of low density data (up to 5 pts/m 2 ) acquired over the same forest at different times. The method first accurately characterizes the crown shapes on the high density data. Then, it uses the obtained estimates to drive the tree parameter estimation on the low density LiDAR data. The method has been tested on a multitemporal dataset acquired in coniferous forests located in the Italian Alps. Experimental results confirmed the effectiveness of the method.
2018
IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
Piscataway, USA
Institute of Electrical and Electronics Engineers Inc.
9781538671504
Marinelli, Daniele; Paris, Claudia; Bruzzone, Lorenzo
Fusion of Multitemporal LiDAR Data for Individual Tree Crown Parameter Estimation on Low Density Point Clouds / Marinelli, Daniele; Paris, Claudia; Bruzzone, Lorenzo. - 2018-:(2018), pp. 3999-4002. ( 38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 Valencia 23-27 Giugno 2018) [10.1109/IGARSS.2018.8518441].
File in questo prodotto:
File Dimensione Formato  
Fusion_of_Multitemporal_LiDAR_Data_for_Individual_Tree_Crown_Parameter_Estimation_on_Low_Density_Point_Clouds.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 790.95 kB
Formato Adobe PDF
790.95 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/224041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact