Spatial heterogeneities of substrate type, water-surface roughness and also inherent optical properties (IOPs) of the water column can pose substantial challenges to optical remote sensing of fluvial bathymetry. Development of robust techniques with respect to the optical complexities of riverine environments is then central to produce accurate bathymetry maps over large spatial extents. The empirical (regression-based) techniques (e.g., Lyzenga's model) have widely been applied for estimation of bathymetry from optical imagery in inland/coastal waters. The models in the literature are built upon only magnitude-related predictors derived from spectral radiances/reflectances at different bands. However, optically complicating factors such as variations in bottom type and water column constituents can change not only the magnitude but also the shape of water-leaving spectra. This research incorporates spectral derivatives as shaperelated predictors in order to enhance the description of ...
A novel approach for bathymetry of shallow rivers based on spectral magnitude and shape predictors using stepwise regression / Niroumand Jadidi, Milad; Bovolo, Francesca; Vitti, Alfonso; Bruzzone, Lorenzo. - 10789:(2018), p. 23. ( Image and Signal Processing for Remote Sensing XXIV 2018 Berlin, Germany 10-13 September 2018) [10.1117/12.2325560].
A novel approach for bathymetry of shallow rivers based on spectral magnitude and shape predictors using stepwise regression
Niroumand Jadidi, Milad;Bovolo, Francesca;Vitti, Alfonso;Bruzzone, Lorenzo
2018-01-01
Abstract
Spatial heterogeneities of substrate type, water-surface roughness and also inherent optical properties (IOPs) of the water column can pose substantial challenges to optical remote sensing of fluvial bathymetry. Development of robust techniques with respect to the optical complexities of riverine environments is then central to produce accurate bathymetry maps over large spatial extents. The empirical (regression-based) techniques (e.g., Lyzenga's model) have widely been applied for estimation of bathymetry from optical imagery in inland/coastal waters. The models in the literature are built upon only magnitude-related predictors derived from spectral radiances/reflectances at different bands. However, optically complicating factors such as variations in bottom type and water column constituents can change not only the magnitude but also the shape of water-leaving spectra. This research incorporates spectral derivatives as shaperelated predictors in order to enhance the description of ...| File | Dimensione | Formato | |
|---|---|---|---|
|
SPIE_bathymetry_2018.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



