Quick identification of post-earthquake destroyed buildings is critical for disaster management. It can be performed in unsupervised way by comparing pre-disaster and post-disaster Very-High-Resolution (VHR) SAR images. Spatial context needs to be modeled for effective change detection (CD) in VHR SAR images as they are complex and characterized by spatial correlation among pixels. We propose a unsupervised context-sensitive method for CD in multi-temporal VHR SAR images using pre-trained Convolutional-Neural-Network (CNN) based feature extraction. The sub-optimal CNN, pre-trained on an aerial optical image dataset and further optimized for using on SAR images by tuning the batch normalization layer of the CNN, enables us to obtain multi-temporal deep features that are pixelwise compared to identify the changed pixels. Detected changed pixels are further analyzed based on the double bounce property of the buildings in SAR images to detect the pixels corresponding to destroyed buildings...

Destroyed-buildings detection from VHR SAR images using deep features / Saha, Sudipan; Bovolo, Francesca; Bruzzone, Lorenzo. - 10789:(2018). ( Image and Signal Processing for Remote Sensing XXIV 2018 Berlin 10-13 September 2018) [10.1117/12.2325149].

Destroyed-buildings detection from VHR SAR images using deep features

Sudipan Saha;Francesca Bovolo;Lorenzo Bruzzone
2018-01-01

Abstract

Quick identification of post-earthquake destroyed buildings is critical for disaster management. It can be performed in unsupervised way by comparing pre-disaster and post-disaster Very-High-Resolution (VHR) SAR images. Spatial context needs to be modeled for effective change detection (CD) in VHR SAR images as they are complex and characterized by spatial correlation among pixels. We propose a unsupervised context-sensitive method for CD in multi-temporal VHR SAR images using pre-trained Convolutional-Neural-Network (CNN) based feature extraction. The sub-optimal CNN, pre-trained on an aerial optical image dataset and further optimized for using on SAR images by tuning the batch normalization layer of the CNN, enables us to obtain multi-temporal deep features that are pixelwise compared to identify the changed pixels. Detected changed pixels are further analyzed based on the double bounce property of the buildings in SAR images to detect the pixels corresponding to destroyed buildings...
2018
Image and Signal Processing for Remote Sensing XXIV
Berlin, Germany
SPIE
9781510621619
Saha, Sudipan; Bovolo, Francesca; Bruzzone, Lorenzo
Destroyed-buildings detection from VHR SAR images using deep features / Saha, Sudipan; Bovolo, Francesca; Bruzzone, Lorenzo. - 10789:(2018). ( Image and Signal Processing for Remote Sensing XXIV 2018 Berlin 10-13 September 2018) [10.1117/12.2325149].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/217148
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact