In this paper, real time flaw characterization inside the structure under test (SUT) exploiting Learning by Examples (LBE) strategies is illustrated in the framework of Electromagnetic NDT (E-NDT). In particular, several LBE methodologies are investigated when dealing with the inversion of Eddy Current Testing (ECT) data. The performance of LBE algorithms is evaluated in terms of CPU time efficiency, and prediction accuracy on noisy data. Towards this end, a comparison between different regression techniques is shown by considering both synthetic and real experimental ECT data.

Real-time flaw characterization through learning-by-examples techniques: a comparative study applied to ECT / Ahmed, Shamim; Miorelli, Roberto; Salucci, Marco; Massa, Andrea. - STAMPA. - 42:(2017), pp. 228-235. [10.3233/978-1-61499-767-2-228]

Real-time flaw characterization through learning-by-examples techniques: a comparative study applied to ECT

Salucci, Marco;Massa, Andrea
2017-01-01

Abstract

In this paper, real time flaw characterization inside the structure under test (SUT) exploiting Learning by Examples (LBE) strategies is illustrated in the framework of Electromagnetic NDT (E-NDT). In particular, several LBE methodologies are investigated when dealing with the inversion of Eddy Current Testing (ECT) data. The performance of LBE algorithms is evaluated in terms of CPU time efficiency, and prediction accuracy on noisy data. Towards this end, a comparison between different regression techniques is shown by considering both synthetic and real experimental ECT data.
2017
Studies in Applied Electromagnetics and Mechanics
The Netherland
IOS PRESS
Ahmed, Shamim; Miorelli, Roberto; Salucci, Marco; Massa, Andrea
Real-time flaw characterization through learning-by-examples techniques: a comparative study applied to ECT / Ahmed, Shamim; Miorelli, Roberto; Salucci, Marco; Massa, Andrea. - STAMPA. - 42:(2017), pp. 228-235. [10.3233/978-1-61499-767-2-228]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/207796
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact