Constraint optimization problems play a crucial role in many application domains, ranging from engineering design to finance and logistics. Specific techniques are therefore needed to handle complex fitness landscapes characterized by multiple constraints. In the last decades, a number of novel meta-heuristics have been applied to constraint optimization. Among these, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been attracting lately the most attention of researchers. Recent variants of CMA-ES showed promising results on several benchmarks and practical problems. In this paper, we attempt to improve the performance of an adaptive penalty CMA-ES recently proposed in the literature. We build upon it a 2-stage memetic framework, coupling the CMA-ES scheme with a local optimizer, so that the best solution found by CMA-ES is used as starting point for the local search. We test, separately, the use of three classic local search algorithms (Simplex, BOBYQA, and L-BFGS-B),...
Constraint optimization problems play a crucial role in many application domains, ranging from engineering design to finance and logistics. Specific techniques are therefore needed to handle complex fitness landscapes characterized by multiple constraints. In the last decades, a number of novel meta-heuristics have been applied to constraint optimization. Among these, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been attracting lately the most attention of researchers. Recent variants of CMA-ES showed promising results on several benchmarks and practical problems. In this paper, we attempt to improve the performance of an adaptive penalty CMA-ES recently proposed in the literature. We build upon it a 2-stage memetic framework, coupling the CMA-ES scheme with a local optimizer, so that the best solution found by CMA-ES is used as starting point for the local search. We test, separately, the use of three classic local search algorithms (Simplex, BOBYQA, and L-BFGS-B), and we compare the baseline scheme (without local search) and its three memetic variants with some of the state-of-the-art methods for constrained optimization.
A CMA-ES-based 2-stage memetic framework for solving constrained optimization problems / De Melo, Vinícius Veloso; Iacca, Giovanni. - (2015), pp. 143-150. ( 2014 IEEE Symposium on Foundations of Computational Intelligence, FOCI 2014 Orlando 9th December-12th December 2014) [10.1109/FOCI.2014.7007819].
A CMA-ES-based 2-stage memetic framework for solving constrained optimization problems
Iacca, Giovanni
2015-01-01
Abstract
Constraint optimization problems play a crucial role in many application domains, ranging from engineering design to finance and logistics. Specific techniques are therefore needed to handle complex fitness landscapes characterized by multiple constraints. In the last decades, a number of novel meta-heuristics have been applied to constraint optimization. Among these, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been attracting lately the most attention of researchers. Recent variants of CMA-ES showed promising results on several benchmarks and practical problems. In this paper, we attempt to improve the performance of an adaptive penalty CMA-ES recently proposed in the literature. We build upon it a 2-stage memetic framework, coupling the CMA-ES scheme with a local optimizer, so that the best solution found by CMA-ES is used as starting point for the local search. We test, separately, the use of three classic local search algorithms (Simplex, BOBYQA, and L-BFGS-B),...| File | Dimensione | Formato | |
|---|---|---|---|
|
A CMA-ES-based 2-Stage Memetic Framework for Solving Constrained Optimization Problems.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
365.1 kB
Formato
Adobe PDF
|
365.1 kB | Adobe PDF | Visualizza/Apri |
|
A_CMA-ES-based_2-stage_memetic_framework_for_solving_constrained_optimization_problems.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
789.74 kB
Formato
Adobe PDF
|
789.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



