Micromorphological analyses of soil thin sections from archaeological sites are fundamental tools in geoarchaeology, which includes the study of site formation processes. The thin sections are observed under the optical microscope in polarized light with different lighting conditions (mainly with plane polarized light and with crossed nicols) and digitized with high resolution. The joint analysis of the resulting images allows the detection of significant features for the archaeological interpretation of the site. This work describes some experiments for the automatic or semi-automatic analysis of this kind of images using modules for image segmentation and filtering available in GRASS GIS. Single images are segmented using the different approaches, variational and region growing, implemented in GRASS r.smooth.seg and i.segmentI modules. The resulting images are filtered using threshold values evaluated for each image. Finally, the filtered images with different types of polarization are combined. The resulting map is checked against a reference map created manually by digitizing the contour of relevant areas. This work presents the first experiments for the optimal choice of the segmentation parameters for the variational approach and the threshold values using automatic or semi-automatic approaches.

Automatic segmentation of thin sections with GRASS GIS: first experiments / Angelucci, Diego E.; Chistè, Paolo; Mologni, Carlo; Cappellari, Etienne; Vitti, Alfonso; Zatelli, Paolo. - ELETTRONICO. - 13:(2017), pp. 77-90. (Intervento presentato al convegno XVII GRASS e GFOSS Meeting tenutosi a Parma nel 11-12 Febbraio 2016).

Automatic segmentation of thin sections with GRASS GIS: first experiments

Diego E. Angelucci;Paolo Chistè;Alfonso Vitti;Paolo Zatelli
2017-01-01

Abstract

Micromorphological analyses of soil thin sections from archaeological sites are fundamental tools in geoarchaeology, which includes the study of site formation processes. The thin sections are observed under the optical microscope in polarized light with different lighting conditions (mainly with plane polarized light and with crossed nicols) and digitized with high resolution. The joint analysis of the resulting images allows the detection of significant features for the archaeological interpretation of the site. This work describes some experiments for the automatic or semi-automatic analysis of this kind of images using modules for image segmentation and filtering available in GRASS GIS. Single images are segmented using the different approaches, variational and region growing, implemented in GRASS r.smooth.seg and i.segmentI modules. The resulting images are filtered using threshold values evaluated for each image. Finally, the filtered images with different types of polarization are combined. The resulting map is checked against a reference map created manually by digitizing the contour of relevant areas. This work presents the first experiments for the optimal choice of the segmentation parameters for the variational approach and the threshold values using automatic or semi-automatic approaches.
2017
Geomatics Workbooks: Volume 13
Genova
Geomorfolab – DAD – Università degli Studi di Genova
Angelucci, Diego E.; Chistè, Paolo; Mologni, Carlo; Cappellari, Etienne; Vitti, Alfonso; Zatelli, Paolo
Automatic segmentation of thin sections with GRASS GIS: first experiments / Angelucci, Diego E.; Chistè, Paolo; Mologni, Carlo; Cappellari, Etienne; Vitti, Alfonso; Zatelli, Paolo. - ELETTRONICO. - 13:(2017), pp. 77-90. (Intervento presentato al convegno XVII GRASS e GFOSS Meeting tenutosi a Parma nel 11-12 Febbraio 2016).
File in questo prodotto:
File Dimensione Formato  
GW13_selezione.pdf

accesso aperto

Descrizione: Geomatics Workbooks, Volume. Atti del 13 XVII GRASS e GFOSS Meeting Parma 2016 e del FOSS4G-it XVIII GRASS meeting - X GFOSS Day – OSMit2017 Genova 2017
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Altra licenza (Other type of license)
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/191400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact