In this paper we present a low-cost distributed embedded system for Structural Health Monitoring (SHM) that uses very cost-effective MEMS accelerometers, instead of more expensive piezoelectric analog transducers. The proposed platform provides online filtering and fusion of the collected data directly on-board. Data are transmitted after processing using a WiFi transceiver. Low-cost and synchronized devices permit to have more fine-grained measurements and a comprehensive assessment of the whole building, by evaluating their response to vibrations. The challenge addressed in this paper is to execute a quite computationally-demanding digital filtering on a low-cost microcontroller STM32, and to reduce the signal-to-noise ratio typical of MEMS devices with a spatial redundancy of the sensors. Our work poses the basis for low-cost methods for elaborating complex modal analysis of buildings and structures.
Low-cost and distributed health monitoring system for critical buildings / Girolami, Alberto; Brunelli, Davide; Benini, Luca. - ELETTRONICO. - (2017), pp. 1-6. (Intervento presentato al convegno 2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, EESMS 2017 tenutosi a Italy nel 2017) [10.1109/EESMS.2017.8052686].
Low-cost and distributed health monitoring system for critical buildings
Brunelli, Davide;
2017-01-01
Abstract
In this paper we present a low-cost distributed embedded system for Structural Health Monitoring (SHM) that uses very cost-effective MEMS accelerometers, instead of more expensive piezoelectric analog transducers. The proposed platform provides online filtering and fusion of the collected data directly on-board. Data are transmitted after processing using a WiFi transceiver. Low-cost and synchronized devices permit to have more fine-grained measurements and a comprehensive assessment of the whole building, by evaluating their response to vibrations. The challenge addressed in this paper is to execute a quite computationally-demanding digital filtering on a low-cost microcontroller STM32, and to reduce the signal-to-noise ratio typical of MEMS devices with a spatial redundancy of the sensors. Our work poses the basis for low-cost methods for elaborating complex modal analysis of buildings and structures.File | Dimensione | Formato | |
---|---|---|---|
2017-EESMS-Girolami-SHM.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.59 MB
Formato
Adobe PDF
|
3.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione