This paper proposes a novel technique for retrieving the dielectric features of weak scatterers in microwave imaging by means of a Compressive Sensing (CS)-based method enhanced by a multi-zoom strategy. A Relevance Vector Machine (RVM) is used to invert the data of the problem recast in a Bayesian framework, exploiting the combination of the a-priori information on the sparseness of the unknowns and the acquired knowledge during the iterative multi-scaling methodology. Representative results are presented to illustrate advantages and limitations of the proposed method.

Multi-resolution compressive sensing inversion of scattering data / Poli, L.; Oliveri, G.; Massa, And A.. - STAMPA. - (2017), pp. 1599-1602. (Intervento presentato al convegno 11th European Conference on Antennas and Propagation (EUCAP), 2017 tenutosi a Parigi nel 19th-24nd March 2017) [10.23919/EuCAP.2017.7928548].

Multi-resolution compressive sensing inversion of scattering data

L. Poli;G. Oliveri;And A. Massa
2017-01-01

Abstract

This paper proposes a novel technique for retrieving the dielectric features of weak scatterers in microwave imaging by means of a Compressive Sensing (CS)-based method enhanced by a multi-zoom strategy. A Relevance Vector Machine (RVM) is used to invert the data of the problem recast in a Bayesian framework, exploiting the combination of the a-priori information on the sparseness of the unknowns and the acquired knowledge during the iterative multi-scaling methodology. Representative results are presented to illustrate advantages and limitations of the proposed method.
2017
2017 11th European Conference on Antennas and Propagation (EUCAP 2017)
Piscataway, NJ
IEEE
978-1-5090-3742-1
Poli, L.; Oliveri, G.; Massa, And A.
Multi-resolution compressive sensing inversion of scattering data / Poli, L.; Oliveri, G.; Massa, And A.. - STAMPA. - (2017), pp. 1599-1602. (Intervento presentato al convegno 11th European Conference on Antennas and Propagation (EUCAP), 2017 tenutosi a Parigi nel 19th-24nd March 2017) [10.23919/EuCAP.2017.7928548].
File in questo prodotto:
File Dimensione Formato  
Microsoft Word - Abstract.ELEDIA.EuCAP-2017.Imaging-IMSA-BCS.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 237.04 kB
Formato Adobe PDF
237.04 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/188337
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact