One of the main problems of Cooperative Spectrum Sensing (CSS) in cognitive radio networks is the high energy consumption. Energy is consumed while sensing the spectrum and reporting the results to the fusion centre. In this chapter, a novel partial CSS is proposed. The main concern is to reduce the energy consumption by limiting the number of participating users in CSS. Particularly, each user individually makes the participation decision. The energy consumption in a CSS round is expected by the user itself and compared to a predefined threshold. The corresponding user will participate only if the expected amount of energy consumed is less than the participation threshold. The chapter includes optimizing the participation threshold for energy efficiency maximization. The simulation results show a significant reduction in the energy consumed compared to the conventional CSS approach.

Energy-efficient cooperative spectrum sensing for cognitive radio networks

Althunibat, Saud Ghassan Abdul Kareem;Di Renzo, Marco;Granelli, Fabrizio
2014-01-01

Abstract

One of the main problems of Cooperative Spectrum Sensing (CSS) in cognitive radio networks is the high energy consumption. Energy is consumed while sensing the spectrum and reporting the results to the fusion centre. In this chapter, a novel partial CSS is proposed. The main concern is to reduce the energy consumption by limiting the number of participating users in CSS. Particularly, each user individually makes the participation decision. The energy consumption in a CSS round is expected by the user itself and compared to a predefined threshold. The corresponding user will participate only if the expected amount of energy consumed is less than the participation threshold. The chapter includes optimizing the participation threshold for energy efficiency maximization. The simulation results show a significant reduction in the energy consumed compared to the conventional CSS approach.
2014
Handbook of Research on Software-Defined and Cognitive Radio Technologies for Dynamic Spectrum Management
USA
IGI Global
9781466665729
9781466665729
Althunibat, Saud Ghassan Abdul Kareem; Narayanan, Sandeep; Di Renzo, Marco; Granelli, Fabrizio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/171684
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact