We present a robust and efficient parallelizable multilingual UIMA-based platform for automatically annotating textual inputs with different layers of linguistic description, ranging from surface level phenomena all the way down to deep discourse-level information. In particular, given an input text, the pipeline extracts: sentences and tokens; entity mentions; syntactic information; opinionated expressions; relations between entity mentions; co-reference chains and wikified entities. The system is available in two versions: a standalone distribution enables design and optimization of userspecific sub-modules, whereas a server-client distribution allows for straightforward highperformance NLP processing, reducing the engineering cost for higher-level tasks.
LiMoSINe Pipeline: Multilingual UIMA-based NLP Platform / Uryupina, Olga; Barbara, Plank; Barlacchi, Gianni; Francisco, J; Valverde, Albacete; Manos, Tsagkias; Uva, Antonio. - ELETTRONICO. - (2016), pp. 157-162. [10.18653/v1/P16-4027]
LiMoSINe Pipeline: Multilingual UIMA-based NLP Platform
Uryupina, Olga;Barlacchi, Gianni;Uva, Antonio
2016-01-01
Abstract
We present a robust and efficient parallelizable multilingual UIMA-based platform for automatically annotating textual inputs with different layers of linguistic description, ranging from surface level phenomena all the way down to deep discourse-level information. In particular, given an input text, the pipeline extracts: sentences and tokens; entity mentions; syntactic information; opinionated expressions; relations between entity mentions; co-reference chains and wikified entities. The system is available in two versions: a standalone distribution enables design and optimization of userspecific sub-modules, whereas a server-client distribution allows for straightforward highperformance NLP processing, reducing the engineering cost for higher-level tasks.File | Dimensione | Formato | |
---|---|---|---|
LiMoSINe .pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
297.23 kB
Formato
Adobe PDF
|
297.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione