We present a methodology for building lexical sets for argument slots of Italian verbs. We start from an inventory of semantically typed Italian verb frames and through a mapping to WordNet we automatically annotate the sets of fillers for the argument positions in a corpus of sentences. We evaluate both a baseline algorithm and a syntax driven algorithm and show that the latter performs significantly better in terms of precision.

Using WordNet to build lexical sets for Italian verbs / Feltracco, Anna; Gatti, Lorenzo; Magnolini, Simone; Magnini, Bernardo; Jezek, Elisabetta. - (2016), pp. 100-104. (Intervento presentato al convegno 8th Global WordNet Conference, GWC 2016 tenutosi a București nel 27th January-30th January 2016).

Using WordNet to build lexical sets for Italian verbs

Feltracco, Anna;Gatti, Lorenzo;Magnini, Bernardo;Jezek, Elisabetta
2016-01-01

Abstract

We present a methodology for building lexical sets for argument slots of Italian verbs. We start from an inventory of semantically typed Italian verb frames and through a mapping to WordNet we automatically annotate the sets of fillers for the argument positions in a corpus of sentences. We evaluate both a baseline algorithm and a syntax driven algorithm and show that the latter performs significantly better in terms of precision.
2016
Proceedings of the 8th Global WordNet Conference
București
Global WordNet Association
9789730207286
Feltracco, Anna; Gatti, Lorenzo; Magnolini, Simone; Magnini, Bernardo; Jezek, Elisabetta
Using WordNet to build lexical sets for Italian verbs / Feltracco, Anna; Gatti, Lorenzo; Magnolini, Simone; Magnini, Bernardo; Jezek, Elisabetta. - (2016), pp. 100-104. (Intervento presentato al convegno 8th Global WordNet Conference, GWC 2016 tenutosi a București nel 27th January-30th January 2016).
File in questo prodotto:
File Dimensione Formato  
procedings.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 254.33 kB
Formato Adobe PDF
254.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/169494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact