This paper analyzes and compares different Multiple Kernel Learning (MKL) algorithms for the classification of remote sensing (RS) images. The main purpose of the comparison is to identify advantages and disadvantages of different MKL algorithms in terms of their computational time and classification accuracy. Furthermore, some guidelines on the proper selection of the MKL algorithms associated with different RS image classification problems are derived.

A comparative study on Multiple Kernel Learning for remote sensing image classification / Niazmardi, Saeid; Demir, Begum; Bruzzone, Lorenzo; Safari, Abdolreza; Homayouni, Saeid. - ELETTRONICO. - (2016), pp. 1512-1515. (Intervento presentato al convegno 36th IEEE International Geoscience and Remote Sensing Symposium: IGARSS 2016 tenutosi a Beijing, China nel 10th-15th July 2016) [10.1109/IGARSS.2016.7729386].

A comparative study on Multiple Kernel Learning for remote sensing image classification

Niazmardi, Saeid;Demir, Begum;Bruzzone, Lorenzo;
2016-01-01

Abstract

This paper analyzes and compares different Multiple Kernel Learning (MKL) algorithms for the classification of remote sensing (RS) images. The main purpose of the comparison is to identify advantages and disadvantages of different MKL algorithms in terms of their computational time and classification accuracy. Furthermore, some guidelines on the proper selection of the MKL algorithms associated with different RS image classification problems are derived.
2016
2016 IEEE International Geoscience and Remote Sensing Symposium Proceedings
Piscataway, NJ
Institute of Electrical and Electronics Engineers Inc.
9781509033324
Niazmardi, Saeid; Demir, Begum; Bruzzone, Lorenzo; Safari, Abdolreza; Homayouni, Saeid
A comparative study on Multiple Kernel Learning for remote sensing image classification / Niazmardi, Saeid; Demir, Begum; Bruzzone, Lorenzo; Safari, Abdolreza; Homayouni, Saeid. - ELETTRONICO. - (2016), pp. 1512-1515. (Intervento presentato al convegno 36th IEEE International Geoscience and Remote Sensing Symposium: IGARSS 2016 tenutosi a Beijing, China nel 10th-15th July 2016) [10.1109/IGARSS.2016.7729386].
File in questo prodotto:
File Dimensione Formato  
07729386.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 239.24 kB
Formato Adobe PDF
239.24 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/168515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact