Video segmentation has become an important and active research area with a large diversity of proposed approaches. Graph-based methods, enabling top performance on recent benchmarks, usually focus on either obtaining a precise similarity graph or designing efficient graph cutting strategies. However, these two components are often conducted in two separated steps, and thus the obtained similarity graph may not be the optimal one for segmentation and this may lead to suboptimal results. In this paper, we propose a novel framework, joint graph learning and video segmentation (JGLVS), which learns the similarity graph and video segmentation simultaneously. JGLVS learns the similarity graph by assigning adaptive neighbors for each vertex based on multiple cues (appearance, motion, boundary and spatial information). Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the similarity graph, such that the connected components in the resulted similarity graph are exactly eq...

Joint graph learning and video segmentation via multiple cues and topology calibration

Song, Jingkuan;Sebe, Niculae
2016-01-01

Abstract

Video segmentation has become an important and active research area with a large diversity of proposed approaches. Graph-based methods, enabling top performance on recent benchmarks, usually focus on either obtaining a precise similarity graph or designing efficient graph cutting strategies. However, these two components are often conducted in two separated steps, and thus the obtained similarity graph may not be the optimal one for segmentation and this may lead to suboptimal results. In this paper, we propose a novel framework, joint graph learning and video segmentation (JGLVS), which learns the similarity graph and video segmentation simultaneously. JGLVS learns the similarity graph by assigning adaptive neighbors for each vertex based on multiple cues (appearance, motion, boundary and spatial information). Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the similarity graph, such that the connected components in the resulted similarity graph are exactly eq...
2016
ACM Multimedia
New York
Association for Computing Machinery, Inc
9781450336031
Song, Jingkuan; Gao, L.; Puscas, M. M.; Nie, F.; Shen, F.; Sebe, Niculae
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/166695
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex 20
social impact