Although over the last decade large efforts have been done to design efficient peer-to-peer (P2P) protocols, very few of them have taken into account the problem of firewalls and network address translators (NAT). Most of the existing P2P systems do not work properly when a high percentage of nodes are behind NAT. While a few P2P systems tackled the NAT problem, all of them employ third party nodes to establish a connection towards nodes behind NAT, and these may become bottlenecks, menacing the health of the entire system. A possible solution to this problem is to rent extra resources from the cloud. This paper presents NatCloud, a cloud-assisted NAT-traversal service, where rented cloud resources are added on demand to the overlay, as third party nodes, to help other nodes to make connections to nodes behind NAT. We show the feasibility of integrating our approach with existing gossip-based peer sampling services and evaluate our solution by simulations, conducting extensive experiments under different network conditions.

NATCloud: Cloud-Assisted NAT-Traversal Service

Montresor, Alberto;
2016-01-01

Abstract

Although over the last decade large efforts have been done to design efficient peer-to-peer (P2P) protocols, very few of them have taken into account the problem of firewalls and network address translators (NAT). Most of the existing P2P systems do not work properly when a high percentage of nodes are behind NAT. While a few P2P systems tackled the NAT problem, all of them employ third party nodes to establish a connection towards nodes behind NAT, and these may become bottlenecks, menacing the health of the entire system. A possible solution to this problem is to rent extra resources from the cloud. This paper presents NatCloud, a cloud-assisted NAT-traversal service, where rented cloud resources are added on demand to the overlay, as third party nodes, to help other nodes to make connections to nodes behind NAT. We show the feasibility of integrating our approach with existing gossip-based peer sampling services and evaluate our solution by simulations, conducting extensive experiments under different network conditions.
2016
Proceedings of the 31st Symposium on Applied Computing
Stati Uniti
ACM
Hanna, Kavalionak; Amir, Payberah; Montresor, Alberto; Jim, Dowling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/164968
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact