Besides appearance information, the video contains temporal evolution, which represents an important and useful source of information about its content. Many video representation approaches are based on the motion information within the video. The common approach to extract the motion information is to compute the optical flow from the vertical and the horizontal temporal evolution of two consecutive frames. However, the computation of optical flow is very demanding in terms of computational cost, in many cases being the most significant processing step within the overall pipeline of the target video analysis application. In this work we propose a very efficient approach to capture the motion information within the video. Our method is based on a simple temporal and spatial derivation, which captures the changes between two consecutive frames. The proposed descriptor, Histograms of Motion Gradients (HMG), is validated on the UCF50 human action recognition dataset. Our HMG pipeline with...

Histograms of Motion Gradients for real-time video classification

Duta, Ionut Cosmin;Sebe, Niculae
2016-01-01

Abstract

Besides appearance information, the video contains temporal evolution, which represents an important and useful source of information about its content. Many video representation approaches are based on the motion information within the video. The common approach to extract the motion information is to compute the optical flow from the vertical and the horizontal temporal evolution of two consecutive frames. However, the computation of optical flow is very demanding in terms of computational cost, in many cases being the most significant processing step within the overall pipeline of the target video analysis application. In this work we propose a very efficient approach to capture the motion information within the video. Our method is based on a simple temporal and spatial derivation, which captures the changes between two consecutive frames. The proposed descriptor, Histograms of Motion Gradients (HMG), is validated on the UCF50 human action recognition dataset. Our HMG pipeline with...
2016
Proceedings - International Workshop on Content-Based Multimedia Indexing
Los Alamitos
IEEE Computer Society
9781467386951
9781467386951
Duta, Ionut Cosmin; Uijlings, Jasper R. R.; Nguyen, Tuan A.; Aizawa, Kiyoharu; Hauptmann, Alexander G.; Ionescu, Bogdan; Sebe, Niculae
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/148087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 99
  • OpenAlex 28
social impact