Automated car following, or platooning, is a promising Inter-Vehicle Communication (IVC) application which has the potential of reducing traffic jams, improving safety, and decreasing fuel consumption by forming groups of vehicles which autonomously follow a common leader. The application works by sharing vehicles' data through high frequency periodic beaconing which, due to channel congestion, might not work in highly dense scenarios. To address this issue, in this paper we propose a dynamic approach called Jerk Beaconing which exploits vehicle dynamics to share data only when needed. The results, compared to a commonly assumed 10Hz beaconing, show huge benefits in term of network resource saving. Moreover, our approach outperforms static beaconing in terms of safety as well, as it is able to keep inter-vehicle distance closer to the desired gap even in highly demanding scenarios.
Jerk Beaconing: A Dynamic Approach to Platooning
Segata, Michele;Lo Cigno, Renato Antonio
2015-01-01
Abstract
Automated car following, or platooning, is a promising Inter-Vehicle Communication (IVC) application which has the potential of reducing traffic jams, improving safety, and decreasing fuel consumption by forming groups of vehicles which autonomously follow a common leader. The application works by sharing vehicles' data through high frequency periodic beaconing which, due to channel congestion, might not work in highly dense scenarios. To address this issue, in this paper we propose a dynamic approach called Jerk Beaconing which exploits vehicle dynamics to share data only when needed. The results, compared to a commonly assumed 10Hz beaconing, show huge benefits in term of network resource saving. Moreover, our approach outperforms static beaconing in terms of safety as well, as it is able to keep inter-vehicle distance closer to the desired gap even in highly demanding scenarios.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione