The availability of multitemporal images acquired by several very high geometrical resolution (VHR) optical sensors makes it possible to build VHR image Time-Series (TS) with a temporal resolution better than the one achievable when considering a single sensor. However, such TS include images showing different characteristics from the geometrical, radiometrical and spectral viewpoint. Thus, there is a need of methods for building consistent VHR optical TS when using multispectral Multi-Sensor (MS) images. Here we focus on the spectral domain only, by designing a method to transform one image in an MS-TS into the spectral domain of another image in the same MS-TS, but acquired by a different sensor. To this end, a prediction-based approach relying on Artificial Neural Networks (ANN) is employed. In order to mitigate the impacts of possible changes occurred on the ground, the prediction model estimation is based on unchanged samples only. Experimental results obtained on VHR optical MS images confirm the effectiveness of the proposed approach.
Scheda prodotto non validato
I dati visualizzati non sono stati ancora sottoposti a validazione formale da parte dello Staff di IRIS, ma sono stati ugualmente trasmessi al Sito Docente Cineca (Loginmiur).
Titolo: | VHR time-series generation by prediction and fusion of multi-sensor images |
Autori: | Solano-Correa, Yady Tatiana; Bovolo, Francesca; Bruzzone, Lorenzo |
Autori Unitn: | |
Titolo del volume contenente il saggio: | 2015 IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS) |
Luogo di edizione: | Milan, Italy |
Casa editrice: | IEEE |
Anno di pubblicazione: | 2015 |
ISBN: | 978-1-4799-7929-5 978-1-4799-7929-5 |
Handle: | http://hdl.handle.net/11572/117332 |
Appare nelle tipologie: | 04.1 Saggio in atti di convegno (Paper in proceedings) |