The characterization of urban environments in synthetic aperture radar (SAR) images is becoming increasingly challenging with the increased spatial ground resolutions. In SAR images having a geometrical resolution of few meters (e.g. 3 m), urban scenes are roughly speaking characterized by three main types of backscattering: low intensity, medium intensity, and high intensity, which correspond to different land-cover types. Based on the observations of the behavior of the backscattering, in this paper we propose the labeled co-occurrence matrix (LCM) technique to detect and extract built-up areas. Two textural features, autocorrelation and entropy, are derived from LCM. The image classification is based on a similarity classifier defined in the general Lukasiewicz structure. Experiments have been carried out on TerraSAR-X images acquired on Nanjing (China) and Barcelona (Spain), respectively. The obtained classification accuracies point out the effectiveness of the proposed technique i...

Labeled co-occurrence matrix for the detection of built-up areas in high-resolution SAR images

Bruzzone, Lorenzo;
2013-01-01

Abstract

The characterization of urban environments in synthetic aperture radar (SAR) images is becoming increasingly challenging with the increased spatial ground resolutions. In SAR images having a geometrical resolution of few meters (e.g. 3 m), urban scenes are roughly speaking characterized by three main types of backscattering: low intensity, medium intensity, and high intensity, which correspond to different land-cover types. Based on the observations of the behavior of the backscattering, in this paper we propose the labeled co-occurrence matrix (LCM) technique to detect and extract built-up areas. Two textural features, autocorrelation and entropy, are derived from LCM. The image classification is based on a similarity classifier defined in the general Lukasiewicz structure. Experiments have been carried out on TerraSAR-X images acquired on Nanjing (China) and Barcelona (Spain), respectively. The obtained classification accuracies point out the effectiveness of the proposed technique i...
2013
Image and Signal Processing for Remote Sensing XIXImage and Signal Processing for Remote Sensing XIX
Bellingham, WA, USA
SPIE
9780819497611
N., Li; Bruzzone, Lorenzo; Z., Chen; F., Liu
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/101414
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact