In this paper we propose a novel approach to detect anomalies in crowded scenes. This is achieved by analyzing the crowd behavior by extracting the corner features. For each corner feature we collect a set of motion features. The motion features are used to train an MLP neural network during the training stage, and the behavior of crowd is inferred on the test samples. Considering the difficulty of tracking individuals in dense crowds due to multiple occlusions and clutter, in this work we extract corner features and consider them as an approximate representation of the people motion. Corner features are then advected over a temporal window through optical flow tracking. Corner features well match the motion of individuals and their consistency, and accuracy is higher both in structured and unstructured crowded scenes compared to other detectors. In the current work, corner features are exploited to extract motion information, which is used as input prior to train the neural network. T...
Real-time anomaly detection in dense crowded scenes
Ullah, Habib;Conci, Nicola
2014-01-01
Abstract
In this paper we propose a novel approach to detect anomalies in crowded scenes. This is achieved by analyzing the crowd behavior by extracting the corner features. For each corner feature we collect a set of motion features. The motion features are used to train an MLP neural network during the training stage, and the behavior of crowd is inferred on the test samples. Considering the difficulty of tracking individuals in dense crowds due to multiple occlusions and clutter, in this work we extract corner features and consider them as an approximate representation of the people motion. Corner features are then advected over a temporal window through optical flow tracking. Corner features well match the motion of individuals and their consistency, and accuracy is higher both in structured and unstructured crowded scenes compared to other detectors. In the current work, corner features are exploited to extract motion information, which is used as input prior to train the neural network. T...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



