In this paper we compare features obtained by different filtering strategies for morphological attribute filters by considering non-increasing attributes. The Attribute profiles (APs) and Self Dual Attribute Profiles (SDAPs) are obtained by sequentially applying attribute filters on tree-based image representations, such as Min- or Max-trees and Inclusion tree, respectively. This work aims to study the effects of using the filtering rules max, min, direct and subtractive, when considering the non-increasing attributes moment of inertia and standard deviation. A very high spatial resolution data set is used in the experiments, and the extracted information obtained by the profiles is analyzed. This is done by studying the effects on the classification accuracy by using the profiles as additional input features to a Random Forest classifier
A COMPARISON OF SELF-DUAL ATTRIBUTE PROFILES BASED ON DIFFERENT FILTER RULES FOR CLASSIFICATION
Benediktsson, Jon Atli;Bruzzone, Lorenzo
2014-01-01
Abstract
In this paper we compare features obtained by different filtering strategies for morphological attribute filters by considering non-increasing attributes. The Attribute profiles (APs) and Self Dual Attribute Profiles (SDAPs) are obtained by sequentially applying attribute filters on tree-based image representations, such as Min- or Max-trees and Inclusion tree, respectively. This work aims to study the effects of using the filtering rules max, min, direct and subtractive, when considering the non-increasing attributes moment of inertia and standard deviation. A very high spatial resolution data set is used in the experiments, and the extracted information obtained by the profiles is analyzed. This is done by studying the effects on the classification accuracy by using the profiles as additional input features to a Random Forest classifierI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



