Numerous applications continuously produce big amounts of data series, and in several time critical scenarios analysts need to be able to query these data as soon as they become available, which is not currently possible with the state-of-the-art indexing methods and for very large data series collections. In this paper, we present the first adaptive indexing mechanism, specifically tailored to solve the problem of indexing and querying very large data series collections. The main idea is that instead of building the complete index over the complete data set up-front and querying only later, we interactively and adaptively build parts of the index, only for the parts of the data on which the users pose queries. The net effect is that instead of waiting for extended periods of time for the index creation, users can immediately start exploring the data series. We present a detailed design and evaluation of adaptive data series indexing over both synthetic data and real-world workloads. The results show that our approach can gracefully handle large data series collections, while drastically reducing the data to query delay: by the time state-of-the-art indexing techniques finish indexing 1 billion data series (and before answering even a single query), adaptive data series indexing has already answered $3*10^5$ queries.

Indexing for Interactive Exploration of Big Data Series

Zoumpatianos, Konstantinos;Palpanas, Themistoklis
2014-01-01

Abstract

Numerous applications continuously produce big amounts of data series, and in several time critical scenarios analysts need to be able to query these data as soon as they become available, which is not currently possible with the state-of-the-art indexing methods and for very large data series collections. In this paper, we present the first adaptive indexing mechanism, specifically tailored to solve the problem of indexing and querying very large data series collections. The main idea is that instead of building the complete index over the complete data set up-front and querying only later, we interactively and adaptively build parts of the index, only for the parts of the data on which the users pose queries. The net effect is that instead of waiting for extended periods of time for the index creation, users can immediately start exploring the data series. We present a detailed design and evaluation of adaptive data series indexing over both synthetic data and real-world workloads. The results show that our approach can gracefully handle large data series collections, while drastically reducing the data to query delay: by the time state-of-the-art indexing techniques finish indexing 1 billion data series (and before answering even a single query), adaptive data series indexing has already answered $3*10^5$ queries.
2014
Proceedings of the 2014 ACM SIGMOD international conference on Management of data
AA. VV.
New York
ACM
9781450323765
Zoumpatianos, Konstantinos; S., Idreos; Palpanas, Themistoklis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/101105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact