GPR techniques and technologies have been subject of intense research activities at the Italian level in the last 15 years because of their potential applications specifically to civil engineering. More in detail, several innovative approaches and models have been developed to inspect road pavements to measure the thickness of their layers as well as to diagnose or prevent damage. Moreover, new frontiers in bridge inspection as well as in geotechnical applications such as slides and flows have been investigated using GPR. From the methodological viewpoint, innovative techniques have been developed to solve GPR forward-scattering problems, as well to locate and classify subsurface targets in real-time and to retrieve their properties through multi-resolution strategies, and linear and non-linear methodologies. Furthermore, the application of GPR and other non-destructive testing methods in archaeological prospecting, cultural heritage diagnostics, and in the localization and detection of vital signs of trapped people has been widely investigated. More recently, new theoretical and empirical paradigms regarding water moisture evaluation in various porous media and soil characterization have been published as the results of long terms research activities. Pioneer studies are also currently under development with the scope to correlate GPR measurement with mechanical characteristics of bound and unbound construction materials. In such a framework, this abstract will be aimed at reviewing some of the most recent advances of GPR techniques and technologies within the Italian industrial and academic communities [also including their application within international projects such as FP7 ISTIMES (http://www.istimes.eu)], and at envisaging some of the most promising research trends currently under development.

GPR Technologies and Methodologies in Italy: A Review

Massa, Andrea;
2014-01-01

Abstract

GPR techniques and technologies have been subject of intense research activities at the Italian level in the last 15 years because of their potential applications specifically to civil engineering. More in detail, several innovative approaches and models have been developed to inspect road pavements to measure the thickness of their layers as well as to diagnose or prevent damage. Moreover, new frontiers in bridge inspection as well as in geotechnical applications such as slides and flows have been investigated using GPR. From the methodological viewpoint, innovative techniques have been developed to solve GPR forward-scattering problems, as well to locate and classify subsurface targets in real-time and to retrieve their properties through multi-resolution strategies, and linear and non-linear methodologies. Furthermore, the application of GPR and other non-destructive testing methods in archaeological prospecting, cultural heritage diagnostics, and in the localization and detection of vital signs of trapped people has been widely investigated. More recently, new theoretical and empirical paradigms regarding water moisture evaluation in various porous media and soil characterization have been published as the results of long terms research activities. Pioneer studies are also currently under development with the scope to correlate GPR measurement with mechanical characteristics of bound and unbound construction materials. In such a framework, this abstract will be aimed at reviewing some of the most recent advances of GPR techniques and technologies within the Italian industrial and academic communities [also including their application within international projects such as FP7 ISTIMES (http://www.istimes.eu)], and at envisaging some of the most promising research trends currently under development.
2014
2014 European Geoscience Union General Assembly (EGU-GA 2014)
Wien
EGU
A., Benedetto; F., Frezza; G., Manacorda; Massa, Andrea; L., Pajewski
File in questo prodotto:
File Dimensione Formato  
C336.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 47.21 kB
Formato Adobe PDF
47.21 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/100547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact