
Enhancing Qubit Readout with Autoencoders

Piero Luchi,1, 2, ∗ Paolo E. Trevisanutto,3 Alessandro Roggero,1, 2 Jonathan L DuBois,4

Yaniv J. Rosen,4 Francesco Turro,1, 2 Valentina Amitrano,1, 2 and Francesco Pederiva1, 2

1Dipartimento di Fisica, University of Trento, via Sommarive 14, I–38123, Povo, Trento, Italy
2INFN-TIFPA Trento Institute of Fundamental Physics and Applications, Trento, Italy

3Scientific Computing Department STFC-UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
4Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

In addition to the need for stable and precisely controllable qubits, quantum computers take ad-
vantage of good readout schemes. Superconducting qubit states can be inferred from the readout
signal transmitted through a dispersively coupled resonator. This work proposes a novel readout
classification method for superconducting qubits based on a neural network pre-trained with an
autoencoder approach. A neural network is pre-trained with qubit readout signals as autoencoders
in order to extract relevant features from the data set. Afterwards, the pre-trained network inner
layer values are used to perform a classification of the inputs in a supervised manner. We demon-
strate that this method can enhance classification performance, particularly for short and long time
measurements where more traditional methods present lower performance.

I. INTRODUCTION

The construction of a computer exploiting quantum –
rather than classical – principles represents a formidable
scientific and technological challenge. Nowadays, super-
conducting quantum processor are reaching outstanding
results in simulation [1–4] and computational power [5].
However, building a fault-tolerant quantum processor
still presents many technical challenges. First of all, it
is required the ability to generate high-fidelity gates, ex-
ploiting both hardware (e.g. improving the manufactur-
ing process and the design of available qubits [6–8]) and
software improvements (e.g. designing precise optimal
control protocols [9–11]). In second place, one needs the
ability to perform a complete quantum error correction
protocol [12–14]. Finally, it is of primary importance to
have an high-fidelity qubit readout measurement to ex-
tract information from the device especially for observ-
ables that are very sensitive to it (see e.g. [15] for an ex-
treme case of this). In addition to a careful design of the
system parameters [16, 17] or improvement in fabrication
processes extending qubits coherence time [6, 18], read-
out fidelity can be enhanced through the use of machine-
learning techniques.

The currently most common qubit readout technique is
the dispersive readout (in the Quantum Electrodynam-
ics, QED, circuit architecture) which couples the qubit
to a readout resonator. In this approach, the state of
the qubit is determined by measuring the phase and am-
plitudes of an electromagnetic field transmitted through
the resonator [19–22]. Hardware, random thermal noise,
gate error or qubit decay processes that occur during
measurements may reduce the readout fidelity. Machine
learning techniques and classification schemes could help
to restore a good fidelity by improving the classification
precision of the signal to the right state of the qubit.

∗ piero.luchi@unitn.it

Gaussian mixture model [23] is the most commonly used
classification method given its ease of use. It exploits
a parametric modelling of the averaged readout signals
probability distribution in terms of sum of Gaussians to
perform a classification of each measurement. In [24–
27] the authors proposed various classification methods
based on neural networks trained on the full dynamics of
the measurement, instead of on the their averages, ob-
taining good results. Another approach is the hidden
Markov model proposed in [28], which allows for a de-
tailed classification of the measurement results and de-
tection of the decay processes that the qubit could un-
dergo during the measurement. These schemes help to
improve the accuracy of the classification of the qubit
readout measurements.

In this work, we propose a novel semi-unsupervised
machine learning classification method based on autoen-
coder pre-training applied to the heterodyne readout sig-
nal of a superconducting qubit [19, 29]. Autoencoders are
a type of artificial neural network designed to encode effi-
ciently a set of data by learning how to regenerate them
from a synthetic encoded representation [30, 31]. The
encoding process automatically isolates the most rele-
vant and representative features of the input dataset, i.e.
those features which allow for the most faithful recon-
struction of input data while neglecting noise and non rel-
evant details [32, 33]. Hence, the main idea of this work is
to exploit this characteristic of autoencoders and perform
the data classification not on the readout signals or on
their time average, but on their encoded representation
produced by autoencoder training. The model consists
of two sections. The first is composed by an autoencoder
trained to reconstruct the qubit readout signals dataset.
The second section is a two layer feed-forward neural net-
work trained to classify the encoded representation of the
measurement signals. We demonstrate that this method
can enhance the state classification of readout signals, es-
pecially for short readout times where other more tradi-
tional methods have worse performance and, in general,
shows a more stable performance for a broad range of

ar
X

iv
:2

21
2.

00
08

0v
1

 [
qu

an
t-

ph
]

 3
0

N
ov

 2
02

2

mailto:piero.luchi@unitn.it

2

measurement time lengths. We remark the fact that the
most significant improvement occurs with a combination
of hardware and software improvements, as obtained by
the authors in Ref. [34]. In this paper the focus will be
only on the software improvement on present machines.

The paper is organized as follows. In Sec. I, qubit
setup and readout, a review of machine learning mod-
els of interest, as well as our proposed method, are pre-
sented. In Sec. II, the method is tested on two study
cases, based on real data, and the classification results
together with considerations of the method’s applicabil-
ity are presented. Finally, in Sec. III, conclusions are
drawn.

II. METHODS

A. Qubit readout

We consider a transmon-type qubit coupled to a de-
tuned resonator (i.e. a quantum harmonic oscillator) in
the context of a strong projective dispersive measurement
scheme [20, 21].

Due to the qubit interaction, the readout resonator
undergoes a frequency shift whose value depends on the
qubit state. This dependency can be exploited to perform
measurements of the qubit state in the dispersive regime
i.e. when the detuning of qubit and resonator is large
relative to their mutual coupling strength [35]. Once the
resonator is irradiated with a specific microwave pulse,
the registered transmitted signal will incorporate differ-
ent amplitude and phase shifts based on the qubit’s state.
The demodulation procedure can extract such informa-
tion from the signal, discriminating between qubit states.

In our setup (a superconducting qubit controlled via
QUA software [36]), a signal of amplitude A and fre-
quency ωr is sent into the readout resonator. In inter-
acting with the system, this signal is modulated by the
response of the resonator. The output signal is then fil-
tered, amplified, and down-converted to an intermediate
frequency ωIF = ωr − ωLO through a signal mixer, with
ωLO the frequency of the local oscillator (an electronic
component needed by the mixer to change signals fre-
quency). Finally, it has to be demodulated to extract
information about the qubit state that the readout sig-
nal acquired in the interaction.

Formally, the demodulation is an integral of the signal
multiplied by a sinusoidal function:

I =
2

Tm

∫ Tm

0

r(τ) cos(ωIF τ)dτ (1)

Q = − 2

Tm

∫ Tm

0

r(τ) sin(ωIF τ)dτ, (2)

where the readout signal is denoted by r(τ) and Tm is
the integration time.

FIG. 1: Pictorial representation of qubit readout data. Panel a
Example of in-phase, I(t), and quadrature, Q(t), components of

heterodyned signal of a single shot obtained via sliced
demodulation (as described in Sec.II A). Panel b Example of the
whole data-set. Each point is the time average of a measurement
represented in the I-Q plane for qubit states 0,1, and 2. The lines
represent the 2D Gaussians contour plot (see Sec. II B 1) for the 3
Gaussian distribution. The dotted red-yellow line is an example

of a measurement signal represented in the I-Q plane. The colours
represent the time evolution (in nanoseconds).

In the usual approach, complete demodulation is per-
formed by integrating over time intervals Tm, obtaining
a single value for the I and Q components for each qubit
readout signal. In this way, each measurement can be
represented as a point in the I-Q plane as displayed in
panel (b) of Fig. 1.

However, an alternative approach can be employed,
the so-called sliced demodulation, which consists in di-
viding the time interval [0, Tm] into N subintervals and
performing the demodulation separately on each chunk
of the signal, namely:

I(t) =
2

∆t

∫ t+∆t

t

r(τ) cos(ωIF τ)dτ (3)

Q(t) = − 2

∆t

∫ t+∆t

t

r(τ) sin(ωIF τ)dτ , (4)

with ∆t = Tm/C the subinterval length and C the num-
ber of intervals. In this way, we obtain two time series,
I(t) and Q(t) for each measurement. An example of this
I(t) and Q(t) sequence is plotted in panel (a) of Fig. 1 or,

3

represented in the I-Q plane as a trajectory (state-path
trajectory), in panel (b) of the same figure. Moreover,
this trajectory can be time-averaged to obtain a single
point as in the case of full demodulation (See panel b of
Fig. 1). In principle, this type of demodulation should
retain information that otherwise is lost in the averaging
process of the complete demodulation. This information
will be exploited in this work to increase state detection
accuracy.

Usually, in full demodulation, the readout accuracy
is adjusted and maximized by tuning the readout
length, i.e. the demodulation integration time Tm. The
aim is to obtain clouds of points (see. Fig. 1) with a
distribution that is as Gaussian as possible in order
to use the Gaussian Mixture Model to perform the
classification (see. Sec. II B). In fact, short integration
times produce poorly distinguishable states, while for
long times, the qubit states tend to decay during the
measurement, which produces a non-Gaussian data
distribution and, again, low classification accuracy. In
contrast the full, sliced, demodulation data retains more
information about the qubit state measurements and,
in principle, allows for increased accuracy of the state
classification. Moreover, as will observed in this work,
it reduces the dependence of the classification result on
Tm since the data do not need to be Gaussian distributed.

It should be mentioned that data preparation is not
error-free. Indeed, it may happen that, due to control
errors or environmental coupling, the state (|0〉,|1〉 or |2〉)
that is expected is not actually prepared. There will
therefore be data in the dataset that, although labelled
with a certain state, actually belong to another one. So
the classification will not be 100% accurate even with the
model proposed in this paper because the dataset suffers
from this inaccuracy.

B. Machine Learning Models

We briefly review the three machine learning algo-
rithms used in this work.

1. Gaussian Mixture Model

Gaussian mixture model (GMM) approximate a distri-
bution of data (in this case, the clouds of mean demodu-
lation points in panel (b) of Fig.1) as a weighted superpo-
sition of Gaussian distributions [23]. The GMM models
the distribution by training on the dataset of points in
the I-Q plane. A new point is attributed to one of the
classes based on the probability that it belongs to one of
the three Gaussians of the GMM.

2. Feed-forward Neural Network

Feed-forward neural networks (FFNN) are the simplest
class of neural networks. Trained over a labelled dataset,
they are capable of classifying new inputs. Formally the
neural network implements a closed-form parametrized
function, Nφ, which maps input in X ⊆ Rm into a space
Y ⊆ Rn which encodes in some way the information on
the classes the inputs are divided into. The inputs are
the full qubits readout signals. An optimal classification
of data is obtained by adjusting the parameters φ mak-
ing use of optimization algorithms. This is obtained by
minimizing some type of loss function l between the cor-
rect label yi of input xi and the neural network predicted
label ŷi = Nφ(xi), namely:

min
θ

∑
i

l
(
yi, Nφ(xi)

)
. (5)

This optimization is commonly carried out making use
of the well known back-propagation algorithm [30, 37].

3. Autoencoders

Autoencoders are neural networks designed to learn,
via unsupervised learning procedures, efficient encoding
of data [31, 38, 39]. This encoding is achieved by ad-
justing the network’s weights and biases to regenerate
the input data. It is composed of a first part, the en-
coder, which learns to map the input data into a lower
dimensional representation (the latent space), ignoring
insignificant features or noise, and a second part, the
decoder, that, conversely, is trained to reconstruct the
original input from the low dimensional encoding in the
latent space. Autoencoders perform dimensionality re-
duction and feature learning.

Mathematically, the autoencoder is a model composed
of two closed-form parametrized functions, the encoder
fθe and the decoder gθd . The parameters θ = [θe, θd]
need to be optimized to perform the correct inputs re-
construction. These functions are defined as:

fθe : X → L
gθd : L → X .

The function fθe takes an input xi ∈ X ⊆ Rm from the
data-set

{
x1,x2, ...

}
and maps it into the feature-vector

hi ∈ L ⊆ Rp with p < m i.e. hi = fθe(xi). Conversely,
the decoder function, gθd maps the feature-vector hi back
into the input space, giving a reconstruction x̃i of the
input xi.
The parameters θ of the autoencoder are optimized
such that the model minimizes the reconstruction error
l(x, x̃), i.e. a measure of the discrepancy of the recon-
structed input from the original one. The general mini-
mization problem is, therefore:

4

min
θ

∑
i

l
(
xi, gθd(fθe(xi)

)
. (6)

Again, this is optimized with the already mentioned back-
propagation algorithm [30, 37].

C. Model: Neural Network with Autoencoder type
Pre-training

In this work we propose a classification model based on
a neural network with an autoencoder pre-training which
we denote ”PreTraNN ”. It is composed of two sections.

The first section consists of an encoder fθe whose pa-
rameters θe are pre-trained in advance as an autoencoder
over the input dataset. The encoder consists of two lay-
ers with L1 and L2 neurons and a third layer, the latent
layer, with LH neurons. The decoder gθd necessary for
the pre-training has the same structure as the encoder
but in the reverse order. Given a input of dimension d,
we always set L1 = 3

4d, L2 = 2
4d and LH = 1

4d. The
activation functions are the sigmoid for the first layer of
the encoder (and the last layer of the decoder) and the
tanh function for all the internal layers. The choice of
internal layer size is explained in Appendix A 1 while the
complete specifications of the autoencoder are reported
in Appendix B.

The second section is a feed-forward neural network,
Nφ, dependent on a set of parameters φ which works as
a classifier taking as inputs the feature-vector of the en-
coder and, as outputs, the exact labels of the readout sig-
nals. It is composed of two hidden layers with LN1 and
LN2 neurons, respectively, and an output layer with a
number of neurons equal to the number of data’s classes.
Given d the dimension of the input, we set LN1 = 2d and
LN2 = d. The activation functions are tanh for the inter-
nal layers and the softmax for the last layer, commonly
employed for classification purposes.

The assignment of the label yi to a qubit readout signal
xi(t) works as follows:

1. The discrete signal xi is flattened by stacking the
I and Q components in a single one dimensional
vector, i.e Xi = [xiI ,x

i
Q] so it can be plugged into

the neural network.

2. The input Xi is transformed in the feature-vector
hi via the encoder function, i.e. hi = fθe(Xi).

3. The feature-vector hi is plugged into the feed-
forward neural network Nφ to be assigned to one
out of the three classes. Formally, Nφ(hi) = ŷi

where ŷi is the predicted label for the input Xi.

A pictorial representation of the PreTraNN classification
working principle is displayed in Fig. 2.

FIG. 2: Pictorial representation of the working principle and the
architecture of the PreTraNN method described in Sec. II C.

Section 1 : Example of the measurement signal x(t) we want to
classify with PreTraNN. Section 2 : The input x(t)i is flattened to

obtain Xi, plugged into the encoder, previously trained as an
autoencoder, and transformed into its encoded representation hi.
Section 3 : The latent layer of the encoder,hi is passed into a

feed-forward neural network trained to assign the label ŷi.

1. Training

The training is performed separately for the two sec-
tions that compose the PreTraNN model.

The autoencoder is trained first. The dataset is com-
posed by inputs xi with i = 1, 2, ...,M , representing the
2D trajectories in the I-Q plane. The neural network ar-
chitecture requires a one dimensional vector input so xi

need to to be flattened, stacking the I and the Q com-
ponents in a single one-dimensional vector. So we com-
pose a new dataset of Xi = [xiI xiQ]. The parameters

5

FIG. 3: Pictorial representation of PreTraNN training described
in Sec. II C. Section 1 : The autoencoder is trained to reconstruct

the measurement signals. This should train the network to
extract the relevant features form each temporal chunk. Section
2 : After the training, the decoder part of the network is removed,
and the encoded representation of data (represented in the plot at

the top right) are used as train input dataset for the second
section of the PreTraNN model which is trained to classify them

into the correct class yi

θ = [θe, θd] of the autoencoder Aθ(x
i) = gθd(fθe(Xi))

are trained by minimizing Eq. (6) where we choose as
loss function l the mean square error

l =
1

d

d∑
t=1

(
Xi[t]− X̂i[t]

)2

, (7)

with d the length of the input data Xi and X̂i = Aθ(X
i)

the reconstructed input.
In a second step, the neural network Nφ is trained

taking as inputs the feature-vectors hi of the encoder fθe
and, as output, the real labels yi of the corresponding
xi(t). The optimal network’s parameters φ are obtained
by minimizing Eq. (5) where the loss function l is cho-
sen to be the cross entropy loss function, widely used in
classification.

A pictorial explanation of the PreTraNN training pro-
cedure is depicted in Fig. 3 while a complete specification
of the autoencoder structure is reported in Appendix B.

D. Benchmark Methods

We compare the result of the proposed PreTraNN
model with two state-of-the-art methods introduced
above: the Gaussian mixture model (GMM) and a simple
feed-forward neural network (FFNN).

The GMM is trained directly on I-Q points, averages
of the readout signal.

The FFNN is instead trained over the readout sig-
nals dataset, taking as input the flattened vectors Xi =

[xiI ,x
i
Q] and, as outputs, their labels yi. The architec-

ture of the FFNN consists of two inner layers of dimen-
sion LFF1

= 2d and LFF2
= d, with d the input dimen-

sion, and a output layer. The activation function are the
tanh for the internal layer and the softmax for the out-
put layer. The structure of the FFNN is the same of the
second section of the PreTraNN. The only difference is
that while the PreTraNN neural network takes as input
the readout signal encoded in the latent space, the hi

vector, the FFNN takes directly the signals Xi.

E. Metrics

To measure the accuracy of the classification systems,
we utilize the ”classification accuracy”, i.e. the proba-
bility that each signal is attributed to the correct label
(i.e. the correct state of the qubit). This classification is
obtained as a percentage of correctly attributed signals
out of their total number (for each state). The global
accuracy is the average of the accuracies of each state.

F. Datasets

As already mentioned, two versions of the same dataset
are used in this work. They will be now more clearly
defined.

We collect heterodyned readout signals for each qubit
state state. Each measurement is obtained by preparing
the device in states (e.g. |0〉 or |1〉) and then by mea-
suring it immediately, storing the obtained signals. The
selection of the time windows ∆t for the sliced demodu-
lation requires careful consideration. The demodulation
time-step ∆t should span an integer number of periods of
the readout signal to avoid imprecise demodulation. The
frequency of the readout signal is ωIF = 60 MHz, so its
period is 1/ωIF ≈ 16 ns. For this reason, in this work,
we took a time window ∆t = 16 ns. Hence, each readout
signal xi(t) has a point every 16 ns. The length of the
measurement, Tm is also an essential parameter. Here
we choose to consider measurements of increasing length
starting from 800 ns up to 8000 ns, corresponding to dis-
crete signals whose number of elements spans from 50 to
500, to study the efficiency of the classification methods
in different configurations.

These measurements (an example of which is shown in
panel (a) Fig. 1) are the two-dimensional xi(t) trajecto-
ries that, flattened to form the Xi inputs (See Sec. II C),
will form the dataset for the PreTraNN and FFNN. The
dataset for the GMM, on the other hand, is obtained by
time-averaging each xi(t) measurement so as to obtain
two values that can be represented in I-Q space (an ex-
ample of which is shown in panel (b) Fig. 1). The dataset
is then shuffled and split in train and test datasets in a
75% - 25% proportion.

The size of the dataset impacts the accuracy of the
method and needs some consideration to avoid under-

6

fitting or unnecessarily long training times. Such consid-
erations are drawn in Appendix A 2.

III. RESULTS

The purpose of this work is to demonstrate how the
feature extraction capability of the autoencoder helps
improve the effectiveness of qubit readout. So, specifi-
cally, how the PreTraNN method performs better than
other commonly used methods for readout, namely GMM
and a simple FFNN. In this section, PreTraNN and the
benchmark methods are compared in terms of classifica-
tion accuracy and their overall performance are studied.

In addition, to deepen the analysis, the application of
the models is extended to two readout configurations.
The first is the readout of the usual two-level qubit and
the second is the readout of a three-level qutrit. This
analysis will give an idea of the good scalability of Pre-
TraNN for multiple levels readout.

A. Two-state qubit readout

In this case the qubit is prepared and immediately
measured in state |0〉 and |1〉. The dataset consists of
16000 readout signals (8000 for each state) and it is split
into train and test subsets in 75%/25% proportions. Con-
sideration on the choice of the dataset are drawn in Ap-
pendix A 1. The PreTraNN, FFNN and GMM setup is
the one defined in Sec. II C and Sec. II D.

1. Classification accuracy

We start by showing our results for the classification
accuracy of the three methods for increasing measure-
ment length Tm to compare their performance in different
cases. All experiments are carried out in the configura-
tion defined in Sec. II and every experiment is computed
10 times and averaged. We report the state classification
accuracy for each state separately in Fig. 4 and the global
classification between state |0〉 and |1〉 in Fig. 5.

We start by considering Fig. 4. First of all, it can
be noted that, for short measurements, the GMM dis-
plays a very bad classification capability. In fact it misses
completely the labelling, assigning almost all values to
state |1〉. This behaviour should be attributed to the fact
that, for short measurement times, the points distribu-
tions heavily overlap preventing GMM from fitting them
appropriately with two Gaussians (see also Fig. 6 for a
illustrative example). A second thing that can be noted
is that for middle and long measurement times the GMM
performs respectively better and worse for state |0〉 and
state |1〉, than the other two methods. This behaviour
has a simple explanation: the qubit ground state (the |0〉
state) does not have leakage to the excited state (the |1〉
state) while the contrary is true. As a consequence, there

(a) Upper panel: Classification accuracy for state |0〉 by the three
methods as a function of the measurement time. Lower panel: a

zoom on the 2400-8000 ns part of the plot.

(b) Upper panel: Classification accuracy for state |1〉 of the three
methods as a function of the measurement time. Lower panel: a

zoom on the 2400-8000 ns part of the plot.

FIG. 4: Classification accuracy comparison, for state |0〉 and |1〉
separately, between Gaussian Mixture Model (GMM), the simple
feed-forward neural network (FFNN) and the PreTraNN method .

The readout time Tm spans from 800 ns to 8000 ns.

is an asymmetry in the data points distributions. This
results in states prepared as |1〉 to be spotted on state
|0〉 distribution due to decay process, while the reverse
does not happen. Therefore the GMM, fitting the distri-
bution with two Gaussians, can not handle this asymme-
try performing very differently in the two cases. Lastly,
PreTraNN method shows a very stable behaviour, while
FFNN a fluctuating trend.

In Fig. 5, the global discrimination accuracy between
state |0〉 and |1〉 is reported. It is obtained averaging
the classification accuracies of |0〉 and |1〉 states case.
The PreTraNN method outperforms the GMM and the
FFNN methods for every measurement time. It is in-
teresting to note that, after 2400 ns, as in the previous
figure, the FFNN shows an oscillating behaviour and in

7

FIG. 5: Global classification accuracy between state |0〉 and |1〉
for increasing measurement time Tm. The accuracy obtained with

PreTraNN method is higher (or at most equal) to the ones
obtained with GMM and FFNN.

general worse results than the other methods, making
this method unreliable. We can speculate that this be-
haviour derives from the fact that, for very large inputs,
the training is more difficult and a simple FFNN does
not converge adequately. This suggest that FFNN is not
completely adequate for this purpose. Concerning the
GMM, it is reasonable to assume that the improvement
we obtain with PreTraNN stems from its greater com-
plexity . Unlike GMM, PreTraNN takes into account
the whole measurement ”history”. Hence, more infor-
mation to exploit for the classification is available. It is
interesting to note that our method also performs better
than FFNN although it also considers the entire history
of the measurements. This shows that the autoencoder
pre-training over input data helps to improve the perfor-
mance of the classification. In fact we stress again that
the FFNN and the PreTraNN’s second section are struc-
turally the same. The only difference is that the FFNN
classify directly the qubit readout signals, Xi, while Pre-
TraNN’s second section classifies the encoded version of
them, hi = fθe . The feature extraction capability of
autoencoders helps to make the classification accuracy
higher and more independent of measurement time.

It can also be noted that GMM accuracy has a global
maximum at 4000 ns. As mentioned before, for the
GMM to work well, the distribution of I-Q points for
each qubit state must be as Gaussian as possible. It
happens that, for short measurement times, the points
distributions overlap since the qubit-resonator response
is still in a transient state, while, for long times, decay-
ing processes come into play which make the distribution
skewed. Therefore, we can deduce that the length of 4000
ns produces the ”most Gaussian” point distribution that
allows the GMM to reach the greatest accuracy. This
measurement time is therefore the one that should be set
for the readout. The PreTraNN method makes less strict
the need of this adjustment since it works well for a larger

of such experimental parameters Tm. In general can be
seen that, in PreTraNN method, the classification accu-
racy is only increasing or constant. As a consequence,
the trimming is faster and easier since need of finding
the maximum accuracy is removed.

We want also to stress that in other works, such as
Ref. [24], the readout accuracy may be greater than
the one reported here. As described above, the machine
used for this work has a certain level of error in prepar-
ing state |1〉. This, however, is of secondary importance
since the purpose of the present work was not to present
new hardware over-performing the current state-of-the-
art one, but only to propose a method to improve readout
in the present machines. Thus, interest was primarily fo-
cused on improving performance of a given machine form
the software point of view.
The classification obtained with PreTraNN, not only im-
proves the classification accuracy , but it also better re-
produces the actual distribution of data. In Fig. 6 the
comparison of the GMM and PreTraNN labelling result
on data with different readout times is reported. The la-
belling for the FFNN is similar to the PreTraNN one, so it
was omitted for clarity purposes. The first column shows
data with the actual labels (represented by colours) as
they were prepared in the quantum device. The second
and third columns, instead, represent the same data but
labelled according to GMM and PreTraNN, respectively.
The same analysis is performed for short, medium and
long times (rows of the figure). As anticipated, we con-
clude again that the GMM completely misses the clas-
sification for short times while the PreTraNN provides
a considerably more realistic and accurate classification.
The two distributions of points overlapping can now be
spotted again.

The exact labels show the asymmetry in the data dis-
tribution due to decay of the excited state: many |1〉-
labelled point lay in |0〉 distribution. The comparison
between the labels highlights that there are many points
belonging to state |1〉 that even PreTraNN fails to rec-
ognize. Probably many of those points result from the
imperfect calibration of the π-pulse used to prepare the
state |1〉 on the machine.

Another important measure to takes into account is
the confusion matrix, which help to visualize the clas-
sification performances of the three method in compar-
ison. In Fig. 7 are reported the confusion matrices for
the three methods in three different measurement length
setups. Each row reports the confusion matrices of the
three models for a specific measurement length. Clearly,
the best confusion matrices are those obtained for long
times and with PreTraNN model.

2. Autoencoder features

In this section we give examples of the two impor-
tant autoencoders features: input regeneration and la-
tent space values. Fig. 8 shows an example of 3200 ns

8

FIG. 6: Pictorial representation of the dataset with exact, GMM’s and PreTraNN’s labelling. Each point is the time average of the I(t)
and Q(t) signals. The actual label, i.e. the prepared state, is represented in the first column. The GMM and PreTraNN methods labels

are represented in the second and third columns.

(i.e. 400 components) input reconstruction done by the
autoencoder. The solid lines represent the original input
(divided into the two quadratures), while the lines with
markers represent the output of the autoencoder, i.e., the
regeneration of the input from its synthetic representa-
tion in the latent space of the autoencoder. It can be seen
that the reconstruction is quite faithful to the original.

The latent space representation is presented in Fig. 9.
The thin coloured lines represent the latent space values
of different inputs while the thick black line is the av-
erage of such lines. It can be seen that the latent space
vectors for the two states are somewhat different on aver-
age. Both have 0 on average but those for |0〉 have larger
fluctuations and a bit of structure. In particular, in both
plots specific points where all the hi vectors follow defi-
nite trend (e.g., the points around 20 and 60 for state |0〉
) can be spotted. These differences allows the increase in
classification performance shown in this paper.

One might wonder how input reconstruction varies as

the latent representation varies. To answer this ques-
tion we can proceed as follows. We use the encoder
to obtain the latent representation of an input, we then
vary slightly only one of its values, and finally we plug
the modified latent vector into the decoder to obtain its
”reconstruction”. We do this several times by varying
slightly the input each time. Fig. 10 depicts the result of
this procedure. The thick lines represented the correct
reconstruction of an input (divided into I and Q compo-
nents) while the thin lines represent the reconstruction
for increasing values of the 20th component of the latent
representation. We can see that by slowly varying this
value, we obtain a slowly varying family of reconstruc-
tions.

9

FIG. 7: Confusion matrices for classification between states |0〉 and |1〉 for the three methods for short, medium and long readout times.

3. Computational cost and scaling

The higher structural complexity of the PreTraNN ar-
chitecture means training and classification times longer
than GMM. In the following we report the results to-
gether with some consideration on the scaling of the
method.

The training for every neural network is performed
with the ”early stopping” approach to avoid over- or
under-fitting. Instead of fixing the number of epochs,
the training is stopped when the accuracy of the model
does not increase for two epochs in a row. In Fig. 11 are
reported the results. The upper table shows the training
time of each model with respect of readout length Tm
for a 16000 elements dataset, the lower table, instead,
represents the average time for a single input classifica-
tion for each method. In both cases the times are repre-
sented in logarithmic scale to better spot trend. Times
are reported in seconds and refer to a mid-range laptop
computer with 4 cores and 8 GB of RAM.

Considering the training time, it can be noted that
PreTraNN method takes a significantly longer time than
GMM (from 2 to 3 orders of magnitude) but not much

more than the FFNN, despite the two training stages of
the PreTraNN. As one might expect, the training time of
non-GMM methods increases as the inputs measurement
time increases. In fact, long measurement times corre-
spond to wider neural networks and, therefore, longer
optimizations.

From the classification time point of view, we see that
the times of the PreTraNN to label a single data (0.039
and 0.042 seconds, respectively) are almost equal and
much longer than GMM’s (0.00013 seconds). Moreover,
for each method, the classification time does not depend
on the measurement length.

It is important to specify that the classification time of
an inputs batch of size S is not S times the classification
time of a single input. We report the actual classification
times as a function of batch size in Tab. I.

Based on this data, some considerations can be made.
First of all we can assert that the training for PreTraNN
and FFNN remains easily manageable by any computer,
even for the longest measurement times. In fact, the
training times, although much larger than the GMM, re-
main very small in absolute value. In general the training
process is not a problem since is done in advance.

10

FIG. 8: An example of input regeneration made by the
autoencoder. In both panels the solid lines represent the

measurement signal divided in its two quadratures, respectively
In-phase (I) and In-Quadrature (Q). The lines with markers,

instead, represent the input reconstruction made by the
autoencoder.

FIG. 9: Representation of latent space of the autoencoder for
state |0〉 (upper) and |1〉 state (lower). In both panels, the

coloured lines are the latent space representation (i.e. hi vector)
of inputs for state |0〉 or |1〉. The solid black lines represent

instead the average of these values.

On the classification time side, instead, more careful
considerations must be made. If only an offline classifi-
cation is needed, there are no stringent time constraints,
and the model could be considered fast enough for some
applications. If one instead needs a real-time or online
readout on the machine, the classification times must be
below the qubit lifetime. Since state-of-the-art super-
conducting transmon qubits have a lifetime of 200-500
microseconds [8, 40], in principle, we want a classifica-
tion time that is well below these values, possibly on
the order of tens or hundreds of nanoseconds. For this
goal neither the GMM nor PreTraNN have, under the
conditions used in this work, the necessary characteris-
tics. Of course with the use of more powerful computers
the classification time can be reduced by a few orders
of magnitude. Moreover, a FPGA or an ASIC imple-

FIG. 10: The figure depicts an example of how the input
reconstruction varies if a single value of the latent representation
is varied slightly. Upper panel represent the in-phase component,
lower panel the in quadrature one. In both panels the thick lines

are the original ”correct” input reconstruction, the thin lines
represent the reconstructions obtained by slowly varying a value
of the latent representation. In both panels, arrows are used to

indicate the direction of changes induced by increasing the latent
value.

input batch size 1 100 10000
Classif. time
PreTraNN [s]

0.04200 0.04300 0.22400

Classif. time
GMM [s]

0.00012 0.00013 0.00043

TABLE I: Classification times for PreTraNN and GMM as
function of inputs batch size. Every reported time is the result of
an average of 100 experiment. The FFNN method is not reported

because its behaviour follows PreTraNN’s.

mentation could improve even more the efficiency of the
classification step or also improve the training process
implementing it in a online way. See Ref. [41–44].

To summarize, the ability to perform short time mea-
surement classification (with higher accuracy) is of great
interest in quantum computing. The proposed approach
allows for a good accuracy for short measurements com-
pared to GMM. This can be exploited for real-time con-
trol systems, e.g., quantum orchestration platforms, lead-
ing to measurement speed-up or reducing computational
time in error correction routines. Attention must be
paid to the classification speed of the system. At least
partially, however, the longer time required to perform
classification can be compensated for by shorter mea-
surements (as little as 1000 ns) than those of the GMM
(4000 ns) while achieving the same classification accu-
racy. The PreTraNN performs well regardless of readout
time, allowing one to potentially skip the readout time
Tm trimming. Moreover, this method can be utilized for
usual two-level qubits or, conversely, extended to arbi-
trary numbers of levels or qubits with slight modifications
in its structure and simply using different datasets. All
this considered, the proposed method offers a promising
approach to exploit short measurements that disturb the

11

FIG. 11: Training and classification times for GMM, FFNN and
PreTraNN methods. The times are reported in seconds for a

middle range laptop computer. Upper panel : Training time in
function of the measurement time (i.e. the length of the inputs).
Lower panel : Classification time. The average time of GMM is
0.00013 second, for FFNN is 0.039 seconds and PreTraNN 0.037

seconds.

device as little as possible with less computational effort.

B. Three-state qutrit

In this case study, we exploit the possibility of access-
ing the higher quantum levels of superconducting qubits.
We prepare and measure the qubit in |0〉,|1〉 and |2〉 state
and store the obtained data. The whole dataset consists
of 24000 element (8000 for each state) divided into 75%

FIG. 12: Upper panel : State |0〉 classification accuracy for the
three methods as a function of the measurement time in the case

of a qutrit. Lower panel : a zoom on the medium-long times.

FIG. 13: Upper panel : State |1〉 classification accuracy for the
three methods as a function of the measurement time in the case

of a qutrit. Lower panel : a zoom on the medium-long times.

FIG. 14: Upper panel : State |2〉 classification accuracy for the
three methods as a function of the measurement time. Lower

panel : a zoom on the medium-long times.

train data and 25% test data. Again, for consideration
on how the dataset is chosen, see. Sec. II C. The archi-
tecture of the models is the same as in the previous case (
and as defined in Sec. II C and Sec. II F). The only differ-
ence between the two cases is the number of classes in the
dataset. This allows to show the good scaling properties
of the model.

1. Classification accuracy

In this paragraph the global and the state-by-state
classification accuracy is reported. In Fig. 12,13,14 we
show the classification accuracy for, respectively, state
|0〉,|1〉 and |2〉. The lower panel of each figure is a zoom
on the 2400-8000 ns part of the plot to better see the
details. Even in this configuration we can see the same

12

FIG. 15: Global classification accuracy for |0〉,|1〉 and |2〉 states
classification for a qutrit.

trends as in the 2-level case. The GMM misclassifies for
low times, and the FFNN still exhibits a seesaw pattern
that makes it poorly suited to the task. Again, GMM
performs better than PreTraNN in state |0〉 and worse in
state |1〉 classification due to the data distribution asym-
metry.

In Fig. 15 we present, instead, results for the global
accuracy. The PreTraNN method achieves better classi-
fication performance for every measurement time. Again
the GMM accuracy presents a increasing and decreas-
ing trend with a maximum located at 4000 ns, while the
FFNN, notwithstanding a reduction in the fluctuating
trend, obtains a lower classification accuracy than the
other two methods possibly due to training difficulties
for high dimensional datasets.

We can also study the performances of PreTraNN as
a function of the number of qudit levels. This will give
us an idea on how the method scales. In Fig. 16 we
report the difference in percentage points (p.p.) of the
PreTraNN global accuracy with respect to GMM’s for the
two and three level cases for every measurement time Tm.
Each point is the difference in p.p. between the global
classification accuracy of the PreTraNN and GMM meth-
ods, for a particular Tm. The lower panel zooms on the
middle and long times range. On the right panels the
average difference for all Tm is highlighted. An increas-
ing value of this difference, as the levels of the system
increase, suggest a possible increasing advantage in use
the PreTraNN method for increasing system levels. In
this case we see that, at least considering medium and
long times, this trend can be clearly seen. Considering
all measurement times this trend is inverted but we have
to consider that the short measurement time values for
GMM are not particularly representative. Fig. 17, in-
stead, reports the same calculation referred to FFNN
method. Here the trend is clear for both the whole set of
measurement times and the medium an long range.

This analysis suggests that there is a marginal increase

FIG. 16: Difference in percentage points [p.p.] between the
accuracy of PreTraNN and GMM for the qubit and qutrit cases

for different measurement time Tm. Lower panel report the
analysis only for medium-long times. The small panels on the

right show the average difference for all values of the respective
plot on the left.

FIG. 17: Difference in percentage points [p.p.] between the
accuracy of PreTraNN and FFNN for the 2 or 3 qubit state case.
Lower panel report the analysis only for medium-long times. The
small panels on the right show the average value of respective plot

on the left.

in the effectiveness of PreTraNN compared to the other
two methods as the classes of the dataset increase (i.e.,
as the dataset complexity rises). In other word, the dif-
ference in the global classification accuracy between Pre-
TraNN and GMM or between PreTraNN and FFNN is
bigger, on average, in the case of the three classes dataset,
corresponding to qutrit readout data.

This analysis, although limited to 2 and 3 classes prob-
lem, suggests that the PreTraNN method should scale
well as the qudit dimension increase. We can assume
that it also scales well with the number of qubits but

13

further analysis is needed to better characterize the per-
formance.

Furthermore, PreTraNN requires only minimal struc-
tural modifications for different qudit dimensions. One
only need to adjust the number of output nodes in
the last stage of the network and to use an appropri-
ate dataset with a different number of classes. While
the training times rise due to the increased dataset size
(training time grows linearly with the dataset dimen-
sion), the classification time remains the same as the
previous 2-state case.

IV. CONCLUSION

This work demonstrates that a feed-forward neural
network with autoencoder pre-training allows for a ro-
bust qubit readout classification scheme with high ac-
curacy and low dependence on the experimental device
feature values. It allows for a consistent classification per-
formance even for short readout times, unlike the more
traditional schemes affected by the overlapping measure-
ment results. It obtain good results also for longer mea-
surement time where GMM method decrease its effi-
ciency due to energy relaxation processes and a simple
feed-forward neural network becomes difficult to train
properly resulting in fluctuating results.

In addition, the proposed method allows for good clas-
sification on shorter measures, achieving a measurement

speedup.

More importantly, because of shorter readout times,
the measurement speedup increases. This property is
helpful for real-time control systems, e.g., quantum or-
chestration platforms or quantum error correction, where
we need to disturb the system as little as possible.

In general it was shown that the method performs well
for all measurement times, helping in increasing classi-
fication result from a software point of view. On the
other side, the classification times for a single measure
are higher than standard methods but can be improved
with more optimized FPGA and ASIC implementations.
Lastly, the proposed approach can be readily extended
to an arbitrary number of states (or, possibly, number of
qubits) with minimal modification of the model structure
and obtaining marginally increasing performances.

V. ACKNOWLEDGMENTS

This research was partially supported by Q@TN grants
ML-QForge (PL). The Lawrence Livermore work was
performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 with support from
Laboratory Directed Research and Development grant
19-DR-005 LLNL-JRNL-842516. P.E.T. acknowledges
the Q@TN consortium for his support

[1] R. Barends, L. Lamata, J. Kelly, L. Garćıa-Álvarez, A. G.
Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, et al., Nat. Commun. 6, 7654 (2015).

[2] G. Wendin, Rep. Prog. Phys. 80, 106001 (2017).
[3] Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li,

C. Wang, F. Liang, J. Lin, Y. Xu, et al., Science 364,
753 (2019).

[4] E. T. Holland, K. A. Wendt, K. Kravvaris, X. Wu, W. E.
Ormand, J. L. DuBois, S. Quaglioni, and F. Pederiva,
Phys. Rev. A 101, 062307 (2020).

[5] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell, et al., Nature 574, 505 (2019).

[6] A. Nersisyan, S. Poletto, N. Alidoust, R. Manenti,
R. Renzas, C.-V. Bui, K. Vu, T. Whyland, Y. Mohan,
E. A. Sete, et al., “Manufacturing low dissipation super-
conducting quantum processors,” in 2019 IEEE Interna-
tional Electron Devices Meeting (IEDM) (2019) pp. 31–1.

[7] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia,
N. Grabon, and V. E. Manucharyan, Phys. Rev X 9,
041041 (2019).

[8] H. L. Huang, D. Wu, D. Fan, and X. Zhu, Sci. Chi. Info.
Sci. 63, 1 (2020).

[9] J. Werschnik and E. Gross, Jour. Phys. B 40, R175
(2007).

[10] J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301
(2002).

[11] S. Kirchhoff, T. Keßler, P. J. Liebermann, E. Assémat,
S. Machnes, F. Motzoi, and F. K. Wilhelm, Phys. Rev.
A 97, 042348 (2018).

[12] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio,
S. M. Girvin, and R. J. Schoelkopf, Nature 482, 382
(2012).

[13] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W.
Cross, M. Steffen, J. M. Gambetta, and J. M. Chow,
Nature Comm. 6, 1 (2015).

[14] M. Gong, X. Yuan, S. Wang, Y. Wu, Y. Zhao, C. Zha,
S. Li, Z. Zhang, Q. Zhao, Y. Liu, F. Liang, J. Lin, Y. Xu,
H. Deng, H. Rong, H. Lu, S. C. Benjamin, C. Z. Peng,
X. Ma, Y. A. Chen, X. Zhu, and J.-W. Pan, Nat. Sci.
Rev. 9 (2021), 10.1093/nsr/nwab011.

[15] A. Roggero and A. Baroni, Phys. Rev. A 101, 022328
(2020).

[16] T. Walter, P. Kurpiers, S. Gasparinetti, P. Mag-
nard, A. Potočnik, Y. Salathé, M. Pechal, M. Mondal,
M. Oppliger, C. Eichler, et al., Phys. Rev. App. 7, 054020
(2017).

[17] Y. Sunada, S. Kono, J. Ilves, S. Tamate, T. Sugiyama,
Y. Tabuchi, and Y. Nakamura, Phys. Rev. App. 17,
044016 (2022).

[18] A. P. Place, L. V. Rodgers, P. Mundada, B. M. Smitham,
M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon,
A. Vrajitoarea, S. Sussman, et al., Nature Comm. 12,
1 (2021).

https://doi.org/10.1038/ncomms8654
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/ 10.1126/science.aaw1611
https://doi.org/ 10.1126/science.aaw1611
https://doi.org/ 10.1103/PhysRevA.101.062307
https://doi.org/ 10.1038/s41586-019-1666-5
https://doi.org/ 10.1109/IEDM19573.2019.8993458
https://doi.org/ 10.1109/IEDM19573.2019.8993458
https://doi.org/ 10.1103/PhysRevX.9.041041
https://doi.org/ 10.1103/PhysRevX.9.041041
https://doi.org/ 10.1007/s11432-020-2881-9
https://doi.org/ 10.1007/s11432-020-2881-9
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1103/PhysRevLett.89.188301
https://doi.org/10.1103/PhysRevLett.89.188301
https://doi.org/10.1103/PhysRevA.97.042348
https://doi.org/10.1103/PhysRevA.97.042348
https://doi.org/10.1038/nature10786
https://doi.org/10.1038/nature10786
https://doi.org/10.1038/ncomms7979
https://doi.org/ 10.1093/nsr/nwab011
https://doi.org/ 10.1093/nsr/nwab011
https://doi.org/10.1103/PhysRevA.101.022328
https://doi.org/10.1103/PhysRevA.101.022328
https://doi.org/ 10.1103/PhysRevApplied.7.054020
https://doi.org/ 10.1103/PhysRevApplied.7.054020
https://doi.org/ 10.1103/PhysRevApplied.17.044016
https://doi.org/ 10.1103/PhysRevApplied.17.044016
https://doi.org/ 10.1038/s41467-021-22030-5
https://doi.org/ 10.1038/s41467-021-22030-5

14

[19] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).

[20] A. Wallraff, D. Schuster, A. Blais, L. Frunzio, J. Majer,
M. Devoret, S. Girvin, and R. Schoelkopf, Phys. Rev.
Lett. 95, 060501 (2005).

[21] R. Bianchetti, S. Filipp, M. Baur, J. Fink, M. Göppl,
P. J. Leek, L. Steffen, A. Blais, and A. Wallraff, Phys.
Rev. A 80, 043840 (2009).

[22] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck,
D. Schuster, and S. M. Girvin, Phys. Rev. A 77, 012112
(2008).

[23] D. A. Reynolds, Encycl. Biometr. 741 (2009).
[24] E. Magesan, J. M. Gambetta, A. D. Córcoles, and J. M.

Chow, Phys. Rev. Lett. 114, 200501 (2015).
[25] A. Seif, K. A. Landsman, N. M. Linke, C. Figgatt,

C. Monroe, and M. Hafezi, Jour. Phys. B 51, 174006
(2018).

[26] B. Lienhard, A. Vepsäläinen, L. C. Govia, C. R. Hof-
fer, J. Y. Qiu, D. Ristè, M. Ware, D. Kim, R. Winik,
A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill, T. A.
Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, Phys. Rev. App. 17, 014024 (2022).

[27] D. Quiroga, P. Date, and R. Pooser, in 2021 IEEE In-
ternational Conference on Quantum Computing and En-
gineering (QCE) (IEEE, 2021) pp. 481–482.

[28] L. A. Martinez, Y. J. Rosen, and J. L. DuBois, Phys.Rev.
A 102, 062426 (2020).

[29] X. Wu, S. L. Tomarken, N. A. Petersson, L. A. Martinez,
Y. J. Rosen, and J. L. DuBois, Phys. Rev. Lett. 125,
170502 (2020).

[30] C. M. Bishop and N. M. Nasrabadi, Pattern recognition
and machine learning, Vol. 4 (Springer, 2006).

[31] Y. Bengio, A. Courville, and P. Vincent, IEEE
Trans.Patt. Analy. and Mach. Intell. 35, 1798 (2013).

[32] L. Pasa and A. Sperduti, Adva. Neur. Infor. Process.
Syst. 27 (2014).

[33] B. T. Ong, K. Sugiura, and K. Zettsu, in 2014 IEEE
International Conference on Big Data (Big Data) (IEEE,
2014) pp. 760–765.

[34] L. Chen, H.-X. Li, Y. Lu, C. W. Warren, C. J.
Križan, S. Kosen, M. Rommel, S. Ahmed, A. Osman,
J. Biznárová, et al., arXiv preprint arXiv:2208.05879
(2022), 10.48550/arXiv.2208.05879.

[35] S. Kohler, Phys. Rev. A 98, 023849 (2018).
[36] “Quantum orchestration platform,” (2021).
[37] X. Yu, M. O. Efe, and O. Kaynak, IEEE Transac. Neur.

Netw. 13, 251 (2002).
[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-

ing (MIT Press, 2016) http://www.deeplearningbook.

org.
[39] A. Shrestha and A. Mahmood, IEEE Access 7, 53040

(2019).
[40] M. Kjaergaard, M. E. Schwartz, J. Braumüller,

P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D.
Oliver, An. Rev. Cond. Matt. Phys. 11, 369 (2020).

[41] I. Westby, X. Yang, T. Liu, and H. Xu, Jour. Supercom-
put. 77, 14356 (2021).

[42] R. Sarić, D. Jokić, N. Beganović, L. G. Pokvić, and
A. Badnjević, Biomed. Sig. Process. Contr. 62, 102106
(2020).

[43] Y. Jewajinda and P. Chongstitvatana, in ECTI-
CON2010: The 2010 ECTI International Confernce on
Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (IEEE, 2010)

pp. 1050–1054.
[44] S. Gandhare and B. Karthikeyan, in 2019 International

Conference on Vision Towards Emerging Trends in Com-
munication and Networking (ViTECoN) (IEEE, 2019)
pp. 1–4.

[45] “Keras website,” https://keras.io/.
[46] “Keras website,” https://scikit-

learn.org/stable/index.html.
[47] D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980

(2014).

Appendix A: Numerical Consideration on
Autoencoder

1. Autoencoder’s latent space dimension

FIG. 18: PreTraNN global classification accuracy for the 3-state
case with 2400 ns readout inputs as a function of the latent space

dimension. The higher accuracy is reached at 1/4 the input
dimension.

In the design of the architecture of a neural network,
there is no solid theoretical guidance but one has to rely
on a heuristic and ”trial and error” attitude based on
experience. However to make the procedure more quan-
titative, one can vary the structure in an automated way
and study how its metrics vary. In this way one can
identify, within a certain degree of approximation, the
architecture that works best for the specific problem.

In the case of the autoencoder, the main parameter is
the autoencoder’s latent space size. In principle, a latent
space that is too small is not sufficient to perform expres-
sive encoding, while too large of a latent space increases
the computational cost without extracting in a compact
way information from the dataset. In the limiting case of
a latent space equal to the input space, the neural net-
work becomes equivalent to applying an identity to the
inputs.

In this appendix we describe the procedure used in our
work to identify the best autoencoder structure. We took
the PreTraNN with trajectories of 2400 ns (150 time-
steps of 16 ns, i.e. inputs dimension of 300 values), and
trained it for different values of latent space. We started
from a latent dimension equal to the input dimension and
gradually went down till one-tenth of it. The dimension

https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/ 10.1103/PhysRevLett.95.060501
https://doi.org/ 10.1103/PhysRevLett.95.060501
https://doi.org/10.1103/PhysRevA.80.043840
https://doi.org/10.1103/PhysRevA.80.043840
https://doi.org/ 10.1103/PhysRevA.77.012112
https://doi.org/ 10.1103/PhysRevA.77.012112
https://doi.org/10.1103/PhysRevLett.114.200501
https://doi.org/ 10.1088/1361-6455/aad62b
https://doi.org/ 10.1088/1361-6455/aad62b
https://doi.org/ 10.1103/PhysRevApplied.17.014024
https://doi.org/10.1109/ICRC53822.2021.00018
https://doi.org/10.1109/ICRC53822.2021.00018
https://doi.org/10.1109/ICRC53822.2021.00018
https://doi.org/10.1103/PhysRevA.102.062426
https://doi.org/10.1103/PhysRevA.102.062426
https://doi.org/ 10.1103/PhysRevLett.125.170502
https://doi.org/ 10.1103/PhysRevLett.125.170502
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/BigData.2014.7004302
https://doi.org/10.1109/BigData.2014.7004302
https://doi.org/ 10.48550/arXiv.2208.05879
https://doi.org/ 10.48550/arXiv.2208.05879
https://doi.org/10.1103/PhysRevA.98.023849
https://qm-docs.qualang.io/introduction/qop_overview
https://doi.org/10.1109/72.977323
https://doi.org/10.1109/72.977323
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/ 10.1007/s11227-021-03849-7
https://doi.org/ 10.1007/s11227-021-03849-7
https://doi.org/10.1016/j.bspc.2020.102106
https://doi.org/10.1016/j.bspc.2020.102106
https://doi.org/10.1109/ViTECoN.2019.8899550
https://doi.org/10.1109/ViTECoN.2019.8899550
https://doi.org/10.1109/ViTECoN.2019.8899550

15

of the other two inner layers was set linearly interpolating
between the size of the input and latent space. The de-
coder had the same structure but reversed. Contextually,
three properties of PreTraNN were studied as a function
of latent dimension: the global classification accuracy,
the autoencoder training loss and autoencoder training
time. To obtain more consistent results, for each latent
dimension the training was repeated 10 times with dif-
ferent samplings of the dataset and the properties values
was averaged.

In Fig. 18 the PreTraNN global classification accuracy
for decreasing latent space dimension is reported. The
abscissa shows the size of the latent space in terms of
fractions of the input length (so that the information
extracted from this case can be scaled directly to the
other input lengths). The greatest accuracy, moreover
with the smallest error bars, is achieved with a latent
space whose size is one-fourth that of the input space. In
absolute terms, the classification accuracy is quite stable
for every latent space dimension but an increasing trend
from 1 to 1/4 can be clearly spotted.

In Fig.19 is represented the loss function values (mean
squared error) during the training of the autoencoder for
different latent space dimensions. For large latent space
sizes, the training converges faster for the first epochs
but then assumes a fluctuating trend. For latent spaces
that are small (e.g. 1/10, 1/8 the inputs size), on the
other hand, convergence stalls at much higher values of
loss function. Thus the best values are 1/2, 1/4 and 1/6
of the input length.

In Fig. 20 the training time in seconds is reported.
Clearly, the training time decreases as the latent space
decreases, since the number of network parameters de-
creases. A short training time is preferable.

Given this PreTraNN behaviour, we can choose the
latent space dimension making a trade-off between the
reported metrics. The value which maximize the classifi-
cation accuracy having at the same time good loss func-

FIG. 19: Autoencoder training loss function as function of
training epochs for different latent space relative dimension. To

large latent dimension (1, 1/1.3 1/2 times the input size) present
a fluctuating behaviour and are useless for feature extraction

while to small latent dimension do not allow effective encoding
and their loss function remains high (1/8 and 1/10 the input size).

FIG. 20: Autoencoder training time in function of latent space
relative dimension. Clearly larger latent spaces correspond to

neural networks with more parameters and thus longer training
times.

tion convergence and (relatively) short training time is a
latent dimension of 1/4 the inputs size. This is the value
chosen to carry out the analysis in this work. The dimen-
sion of the 2 internal layers is set linearly interpolating
between the latent space and the input dimensions.

2. Dataset size and convergence

FIG. 21: Global classification accuracy of the PreTraNN as
function of the number of dataset elements.

In order to obtain a good training convergence which
maximize the classification accuracy an adequate dataset
is needed. Small datasets are fast to train but usu-
ally produce inadequate classification accuracies, while
large ones have the opposite behaviour. At the same
time, the growth of the classification accuracy capabil-
ity is marginally decreasing with increasing dataset size.
Here we report some analysis on the behaviour of the
PreTraNN in function of the dataset dimension studying
the same three properties introduced in the previous sec-
tion i.e. loss function, classification accuracy and training
time. Even in this case we took the PreTraNN with 2400
ns measurement signals (150 time-steps of 16 ns, i.e. in-
puts dimension of 300 values) with a latent space of 75
neurons, and trained it for different dataset dimension.
We started from training dataset of 3000 elements (1000

16

FIG. 22: Autoencoder loss (mean square error) as function of the
epochs for increasing dataset size.

element for each class) and gradually increase its dimen-
sion till 60000 elements (with a 75% of them dedicated to
training). For each dataset dimension the training was
repeated 10 times with different sampling of the dataset
and the properties values averaged.

In Fig. 21 the global classification accuracy as func-
tion of the dataset size is reported. It can be seen that
the accuracy increases as the dataset grows even if with
decreasing speed.

FIG. 23: Training time for increasing dataset dimension.

In Fig. 22 is represented the loss function values (mean
squared error) during the training of the autoencoder for
different configurations. The trend is quite neat. The
larger is the dataset the better is the convergence, al-
though for large data sets the convergence becomes more
unstable.

In Fig. 23 the training time in seconds is reported.
As expected, the training time increase linearly with the
dataset dimension. A short training time is preferable.

Given these results, the trade-off between accuracy,
loss function, and training time, in order to maximize
effectiveness and minimize cost, was identified in the
24000-item dataset for the 3-states case and the 16000-
item dataset for 2-states case.

Layer Size
Activ.
funct.

Keras
type

Encoder
input L sigmoid Dense
1th hidden L3/4 tanh Dense
2nd hidden L2/4 tanh Dense
latent L/4 tanh Dense

Decoder
1th hidden L2/4 tanh Dense
2nd hidden L3/4 tanh Dense
output L sigmoid Dense

TABLE II: Autoencoder’s specifications. The ”Size” column
represent the number of neurons for each layer in fraction of the
input dimension L. The ”Keras type” column reports the type of

keras layer employed.

Appendix B: Models specifications

We report here the complete characterization of the
autoencoder, the PreTraNN, the FFNN and the GMM
models and their procedure of training.

In this work the neural networks building and training
is performed via the python package Keras [45]. For the
GMM instead the sklearn python package [46].

a. Autoencoder In every configuration employed in
this work, the encoder is composed by an input layer, a
first hidden layer and a second hidden layer connected to
the latent layer. The decoder, on the other hand, has the
same structure but mirrored. So it has a first hidden layer
connected to the latent layer, a second hidden layer and
finally an output layer. We employ a full connectivity
network implemented with the Dense layer specification
in Keras. In Tab. II all the information on the network
are reported.

The training is performed using the Adam stochastic
optimization algorithm [47] with the standard configu-
ration implemented in Keras. The loss function is the
mean square error. The training is performed with the
Early Stopping procedure that stops the training if the
loss does not decrease for two epoch in a row.

b. FFNN and PreTraNN’s second stage The sec-
ond stage of the PreTraNN and the is a simple feed-
forward neural network. It is composed by a input layer
(of the same dimension of the latent layer of autoen-
coder), a first hidden layer and a second hidden layer
connected to the output layer. The dimension C of the
output layer depends on the number of classes we are
doing the classification with. Hence, C = 2 for qubit
classification of Sec. III A, while C = 3 for qutrit clas-
sification of Sec. III B. The connectivity between the
neurons is full. The optimization algorithm is the Adam.
The loss function is the the cross-entropy, suitable for
classification purpose. The training is performed with
the Early Stopping procedure that stops the training if
the loss does not decrease for two epoch in a row. Other
information are summarized in Tab. III. The structure
of FFNN model is the same but with a number of input
neurons equal to the dataset dimension instead of the
latent layer dimension.

17

Layer Size
Activ.
funct.

Keras
type

Input L/4 (L) tanh Dense

1th hidden L2/4 (2L) tanh Dense

2nd hidden L/4 (L) tanh Dense
Output C softmax Dense

TABLE III: Structure and specifications of PreTraNN’s second
section (FFNN) network with Keras. L is the dataset inputs

length, C is the dimension of the output layer which change based
on the number of classes.

c. Gaussian Mixture Model The GMM is imple-
mented with sklearn package with the standard build-in
parameters specifying only the number of classes of the
inputs dataset.

	Enhancing Qubit Readout with Autoencoders
	Abstract
	I Introduction
	II Methods
	A Qubit readout
	B Machine Learning Models
	1 Gaussian Mixture Model
	2 Feed-forward Neural Network
	3 Autoencoders

	C Model: Neural Network with Autoencoder type Pre-training
	1 Training

	D Benchmark Methods
	E Metrics
	F Datasets

	III Results
	A Two-state qubit readout
	1 Classification accuracy
	2 Autoencoder features
	3 Computational cost and scaling

	B Three-state qutrit
	1 Classification accuracy

	IV Conclusion
	V Acknowledgments
	 References
	A Numerical Consideration on Autoencoder
	1 Autoencoder's latent space dimension
	2 Dataset size and convergence

	B Models specifications

