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Abstract Accurate predictions of inclusive scattering cross
sections in the linear response regime require efficient and
controllable methods to calculate the spectral density in
a strongly-correlated many-body system. In this work we
reformulate the recently proposed Gaussian Integral Trans-
form technique in terms of Fourier moments of the system
Hamiltonian which can be computed efficiently on a quan-
tum computer. One of the main advantages of this frame-
work is that it allows for an important reduction of the com-
putational cost by exploiting previous knowledge about the
energy moments of the spectral density. For a simple model
of medium mass nucleus like 40Ca and target energy resolu-
tion of 1 MeV we find an expected speed-up of ≈ 125 times
for the calculation of the giant dipole response and of ≈ 50
times for the simulation of quasi-elastic electron scattering
at typical momentum transfers.

1 Introduction

Response functions describe the linear response of a many-
body system after an excitation and contain the same infor-
mation as an inclusive reaction cross section. They can be
expressed in terms of the spectral density operator δ(Ĥ −ω)

of the Hamiltonian Ĥ describing the many-body system.
First principle calculations of response function is in gen-
eral extremely challenging for strongly correlated systems.
A very powerful approach to study dynamical properties of
many-body systems is to employ integral transform tech-
niques which map the local spectral density into more man-
ageable ground state expectation value which can be used to
infer properties of the response function. This is the approach
used in the Lorentz Integral Transform (LIT) method [1,2]
and the more recent Gaussian Integral Transform (GIT)
method [3,4]. Thanks to the ability to efficiently simulate
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the real time dynamics of many-body systems, simulations
employing quantum computers offer the possibility to tackle
the calculation of scattering cross sections from first princi-
ples (see e.g. [5] for a recent review). Interestingly, in order
to describe inclusive scattering in the linear response regime
using the response function, integral transform techniques
are also useful in the design of efficient quantum algorithms
[3,6]. It is therefore important and timely to extend the avail-
able techniques in order to reduce as much as possible the
computational resources required to calculate the nuclear
response function on a quantum device.

Given an Hamiltonian Ĥ , an initial state |Ψ0〉 and a Her-
mitian excitation operator Ô , our goal is to evaluate the fre-
quency dependent response function defined as

S(ω) = 〈Ψ0|Ô†δ
(
ω − Ĥ

)
Ô|Ψ0〉

=
∑
m

∣∣∣〈Ψ0|Ô|m〉
∣∣∣
2
δ (ω − Em)

(1)

where in the last line we used the expansion on the eigenbasis
{|m〉} of Ĥ . In general, it is difficult to directly use this defi-
nition as it requires a complete knowledge of the full energy
eigenspectrum. The main idea is, similarly to the LIT and the
GIT methods, to consider instead an integral transform with
kernel K given by

Φ(ν) =
∫

dωK (ν, ω)S(ω)

= 〈Ψ0|Ô†K
(
ν, Ĥ

)
Ô|Ψ0〉

=
∑
m

∣∣∣〈Ψ0|Ô|m〉
∣∣∣
2
K (ν, Em) .

(2)

Note that both the original transform and it’s integral trans-
form have units of inverse energy. Furthermore, in this work
we will focus on translationally invariant kernel functions
for which K (ν, ω) = K (ν − ω), but extensions to the more
general case are straightforward.
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Once Φ(ν) has been obtained, one usually attempts an
inversion of the integral transform in order to obtain S(ω)

back, however this procedure can introduce uncontrollable
errors whenever the kernel function has compact support
[7,8]. A variety of approximate inversion techniques that
introduce, more or less explicitly, additional smoothing to
reduce these artifacts have been proposed in the past [9–13].
However, if the kernel function is chosen appropriately this
last step might not be necessary [3,4]. In particular, it is con-
venient to consider kernels such that
∫ Δ

−Δ

dνK (ν) ≥ 1 − Σ, (3)

A kernel satisfying Eq. (3) is called Σ-approximate with
resolution Δ [3]. The reason for this definition is that, in the
commonly encountered situation where one is interested in
observables of the form

Q(S, f ) =
∫

dωS(ω) f (ω), (4)

for some bounded function f , one can use directly the integral
transform Φ to approximate Q(S, f ) with Q(Φ, f ) with
controllable error [3]. More intuitively, we can think of Φ as a
finite width approximation of the original response function
with an energy resolution given by Δ and additional tails
controlled by the parameter Σ . The original response is then
recovered in the limit Δ,Σ → 0.

This approach was recently used in Ref. [4] to provide
a controllable approximation of the spectral density using
histograms derived from the integral response (see also [14]
for a recent application for computing spectral functions in
light nuclei using the Coupled Cluster method).

A direct procedure to construct integral kernels satisfying
Eq. (3) is to use a polynomial expansion such as

K (ν − ω) =
∞∑
n

cn(ν)φn(ω), (5)

with {φn} an orthonormal basis of polynomials. This leads
directly to an alternative expression for the integral transform
in this basis

Φ(ν) =
∞∑
n

cn(ν)〈Ψ0|Ô†φn

(
Ĥ

)
Ô|Ψ0〉 =

∞∑
n

cn(ν)mn,

(6)

where mn denotes the nth frequency moment of the response
function over these polynomials

mn =
∫

dωφn(ω)S(ω). (7)

If the series in Eq. (6) converges rapidly, one can then estimate
the integral transform Φ(ν) with a small error by keeping
only the first N terms in the expansion. Since the response
function, and thus its integral transform, have units of inverse

energy we will quantify the error in its approximation as ε/Ω

with ε > 0 and Ω a suitable energy constant. As shown
in [3], we can approximate a response function with a Σ-
accurate kernel with resolution Δ using a basis of Chebyshev
polynomials and a number of terms given by

N ≈ Õ
(

‖Ĥ‖
Δ

√
log

(
1

Σ

)
log

(
Ω

Δε

))
, (8)

with ‖Ĥ‖ as the spectral norm of the Hamiltonian. The nota-
tion used here neglects subleading logarithmic factors, in
particular we define Õ( f (x)) = O( f (x) log( f (x))) in line
with previously reported estimates [3].

This results applies to any possible response function and
is helpful whenever the Chebyshev moments of the Hamilto-
nian can be computed efficiently. This can be done efficiently
and exactly with quantum computers [15–19] or in approxi-
mate way with classical methods, such as the Coupled Cluster
approach [4,14]. In many applications the spectral function
has a number of distinctive features like being dominated
by low energy contributions or displaying a distinct peak
structure like e.g. in the quasi-elastic regime. Many of these
features are captured by energy moments of the form [20]

μn =
∫

dωωn S(ω). (9)

For instance, the qualitative shape of a quasi-elastic peak
can be characterized with a good accuracy from the first few
moments alone [21]. The advantage of using moments μn

to characterize the spectral density is that in many situations
they can be calculated explicitly using ground-state many-
body methods (e.g. with Monte Carlo [22–24]).

In this work we employ a Fourier basis for the polyno-
mial expansion of the integral transform Eq. (6) in order to
incorporate this information into the calculation of the full
spectral density and reduce the overall computational cost
of the simulation. Thanks to their ability to efficiently simu-
late the real-time evolution of many-body systems, quantum
computers are expected to be able to give us access to expec-
tation values of the form

gψ(t) = 〈ψ |eit Ĥ |ψ〉, (10)

for states ψ which can be efficiently prepared. The function
gψ(t) contains important information about the many body
system, and several authors have proposed techniques to use
this to get access to a variety of observables like excitation
energies, the local spectral density and even thermodynamic
expectation values [25–29].

Under general considerations, we can expect two main
time scales to play a role: first, in order to obtain a frequency
resolution of order Δ, the maximum time required will need
to scale as T = O(1/Δ); second, since the full energy spec-
trum is contained in a frequency interval of size ‖Ĥ‖, a time
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step δt = O(1/‖Ĥ‖) will guarantee a perfect reconstruction
without aliasing thanks to the Shannon–Nyquist theorem.
The combination of these two time scales predicts a scaling
of the number of time-steps required as T/δt = O(‖Ĥ‖/Δ).
However, as shown recently in Ref. [27], in situations where
the spectral function has an energy variance σ 2 	 ‖Ĥ‖2, a
good Fourier approximation can be obtained with a scaling
T/δt = O(σ/Δ) instead. The goal of this work is to formal-
ize this intuition and provide rigorous error bounds allowing
use of prior information about the energy moments of the
spectral function in order to reduce the number of expecta-
tion values required.

In Sect. 2 we present the general framework employing
Fourier moments to approximate the response function and
specialize the treatment to the Gaussian Integral Transform
in Sect. 2.1. Section 3 details two example response functions
that are reconstructed with this method and the improved effi-
ciency afforded by employing energy moments. In Sect. 4 we
conclude by discussing applications of this method to typi-
cal scattering properties in nuclear physics, and the estimated
improvement in number of Fourier moments required.

2 Fourier based reconstruction

In order to use directly a discrete Fourier transform to perform
the expansion of the integral kernel in Eq. (5) it’s convenient
to define a periodic extension of the kernel function as follows
[26]

K χ (ν, ω) =
∞∑

n=−∞
K

(
ν, ω + nχ‖Ĥ‖

)
, (11)

where the period P = χ‖Ĥ‖ is expressed here as a function
of the spectral norm. This convention allows us to truncate the
sum at the first term if we take χ 
 1: since the spectrum is
bounded, only the term with n = 0 has a finite contribution.
As χ is reduced, more terms will start to contribute to the
sum and the extended integral kernel K χ will start to deviate
from the original. The main advantage of this construction is
that we can express directly the periodically-extended kernel
as a Fourier series

K χ (ν, ω) = 1

χ‖Ĥ‖
∞∑

n=−∞
kχ
n (ν) exp

(
−i

2πn

χ‖Ĥ‖ω

)
, (12)

where the Fourier transformed coefficients are given by

kχ
n (ν) =

∫ ∞

−∞
dω exp

(
i

2πn

χ‖Ĥ‖ω

)
K (ν, ω). (13)

The main advantage of working with K χ and this Fourier
series representation is that we can now express a general
integral transform of the response function as a linear com-
bination of expectation values of the time-evolution operator.

From the definition in Eq. (2) we can in fact express the new
integral transform as follows

Φχ(ν) = 〈Ψ0|Ô†K χ (ν, Ĥ)Ô|Ψ0〉
= 1

χ‖Ĥ‖
∞∑

n=−∞
kχ
n (ν)〈Ψ0|Ô†e−inδt Ĥ Ô|Ψ0〉

(14)

with finite time-steps of size δt = 2π/(χ‖Ĥ‖). Provided we
choose a smooth integral kernel in the ω variable, the series
expansion converges quickly and we can therefore obtain an
accurate approximation of the integral transform by taking a
truncation to some finite order

Φ
χ
N (ν) = 1

χ‖Ĥ‖
N∑

n=−N

kχ
n (ν)〈Ψ0|Ô†e−inδt Ĥ Ô|Ψ0〉.

(15)

For example, if we consider integral kernels in C∞, the
convergence will be in general super-polynomial in N and,
importantly, rigorous bounds on the truncation error can
be found with relatively straightforward calculations. It is
important to note at this point that the use of a smoothing ker-
nel with a finite energy resolution Δ is critical to ensure that
the expansion is well-behaved: indeed a direct approxima-
tion of the response function S(ω) using a finite Fourier sum
would have encountered difficulties due to the discreteness of
the energy spectrum for a finite system, which creates sharp
peaks. The difference between the present approach and
related ones (from Refs. [3,4]) with more heuristic smooth-
ing procedures like the Maximum Entropy Method [9,11]
or alternative polynomial expansion methods like the Ker-
nel Polynomial Method [30] is that the energy window over
which the smoothing is applied is fully under control and all
errors can be accounted for. The price to pay to be able to use
higher energy resolution is a corresponding increase in the
number of terms in the expansion Eq. (15) which corresponds
to a comparable increase in the maximum time T = Nδt
over which one needs to be able to simulate the many-body
dynamics. We will discuss this in more detail for a specific
choice of integral kernel in the next section.

2.1 Gaussian integral transform

As shown already in Ref. [3], the Gaussian Integral Trans-
form (GIT) is particularly useful for the purpose of obtaining
a Σ-accurate integral transform with resolution Δ with a fast
converging polynomial expansion like Eq. (5). This result is
rather intuitive since a Gaussian envelope is a perfect trade-
off between good resolution in frequency and small widths in
the time domain. The original construction from Ref. [3] used
a Chebyshev expansion for the polynomial basis, however in
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this work we instead explore an expansion of the Gaussian
kernel into Fourier modes.

The first step is to determine an appropriate value for the
width Λ of the Gaussian kernel in order to satisfy the condi-
tion in Eq. (3). A direct calculation gives

1√
2πΛ

∫ Δ

−Δ

dν exp

(
− ν2

2Λ2

)
= erf

(
Δ√
2Λ

)
≥ 1 − Σ.

(16)

Using the upper-bound on the complementary error function
erfc(x) = 1 − erf(x) by a Gaussian

erfc(x) ≤ exp(−x2), (17)

we can find the following sufficient condition [3]

Σ ≥ exp

(
− Δ2

2Λ2

)
⇒ Λ ≤ Δ√

2 log(1/Σ)
. (18)

Following the notation from Eqs. (11) and (12), we can
then express the periodically extended Gaussian kernel as

Gχ (ν, ω) = 1

χ‖Ĥ‖
∞∑

n=−∞
gχ
n (ν) exp (−iδtnω) (19)

with the corresponding Fourier coefficients

gχ
n (ν) = exp (−iδtnν) exp

(
−δt2Λ2

2
n2

)
. (20)

In the expressions above we used δt = 2π/(χ‖Ĥ‖) for the
time-step. We can now write the approximate integral trans-
form obtained by truncating the series as

Φ
χ
N (ν) = 1

χ‖Ĥ‖
N∑

n=−N

gχ
n (ν)

〈
Ψ0|Ô†e−inδt Ĥ Ô|Ψ0

〉
. (21)

The ideal integral transform Φ(ν) would be obtained in
principle by choosing Λ in order to satisfy Eq. (18), taking
χ = 2 and letting N → ∞. The error in the approximation
Φ

χ
N is caused only by taking a finite number of terms N and

(possibly) reducing the value of χ which parametrizes the
frequency interval used in the periodic extension. For a fixed
value of the frequency ν we can then bound the error with

|Φχ
N (ν) − Φ(ν)| ≤ |Φχ(ν) − Φ(ν)| + |Φχ

N (ν) − Φχ(ν)|,
(22)

where we simply used the triangle inequality. The advantage
is that the two error contributions on the right hand side can
be bounded individually in a simpler way. We will denote
the first error on the right hand side as εP and the second as
εN . In addition to these two sources of error, we need also to
account for the fact we will estimate the Fourier moment

mχ
n = 〈Ψ0|Ô†e−inδt Ĥ Ô|Ψ0〉 (23)

by computing the expectation value with a finite statistical
sample leading to an additional error

εS =
∣∣∣Φχ

N (ν) − Φ
χ

N (ν)

∣∣∣ , (24)

where we have denoted by Φ
χ

N (ν) the finite sample estimate
of Φ

χ
N (ν). The total error will be given then by the sum of

all contributions ε = εP + εN + εS .
Before presenting our results for the complexity of esti-

mating an accurate approximation of the integral transform
Φ(ν), it is convenient to specify several of the conventions we
use, note however that the results provided in Appendix A are
completely general and do not depend on these conventions.
First of all, since the response function (and thus it’s integral
transform) have dimensions of inverse energy, we will con-
sider a dimensionless error parameter ε > 0 obtained using
a suitable energy scale Ω . That is, we want to find values χ

and N for which

|Φχ

N (ν) − Φ(ν)| ≤ ε

Ω
. (25)

Second, we consider the situation where we are interested
in approximating the response function on a finite energy
window ω ∈ [ωmin, ωmax]. For many applications in nuclear
physics is also customary to shift the Hamiltonian by the
ground state energy so that all frequencies become positive.
Since both of these considerations apply directly to the inte-
gral transform, we will consider the situation where Ĥ has
been shifted so that the ground state is at ωmin = −‖Ĥ‖ and
consider a range [−‖Ĥ‖,−‖Ĥ‖ + δν] for the energies we
want the value of Φ(ν). Finally, since we are interested in
computing the Fourier moments mχ

n on a quantum computer,
we will consider the situation where the excitation operator
has been appropriately rescaled so that the state Ô|Ψ0〉 is nor-
malized to one. This directly implies that the zeroth moment
μ0 will also be equal to one. A rescaling of this form has been
employed already in past works on quantum algorithms for
the response function [3,4,6,31,32] and is natural when using
efficient methods for preparing the excited state (see [33]).

The only error term that depends directly on the energy
variance σ 2 = μ2 − μ2

1 is the first one, while the other
ones will only depend parametrically on the chosen period
P = χ‖Ĥ‖. We start with the truncation error which can
be bounded easily using standard techniques resulting in the
following requirement for the number of terms

N ≥ χ‖Ĥ‖√
2πΛ

√
log

(
0.4

Ω

εNΛ

)
. (26)

A full derivation of this result can be found in Appendix A.3.
The dependence on the error is typical for Gaussian kernels
(cf. [3,4]). The statistical contribution of the error can be
controlled, with confidence level 1 − δ, by requiring in the
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worst case a number of experiments given by

S = N
Ω2

ε2
SΛ

2
log

(
2

δ

)

= χ‖Ĥ‖Ω2

√
2πε2

SΛ
3

√
log

(
0.4

Ω

εNΛ

)
log

(
2

δ

)
, (27)

where in the second line we used the estimate from Eq. (26).
We present a full derivation of this result in Appendix A.4. As
we can see, the sample complexity of the scheme is directly
proportional to the factor χ controlling the period.

The remaining error εP , controlled by the choice of χ ,
can be found under two separate situations: the general
case where we do not use information from known energy
moments μn and the typical case where we have information
at least on the energy variance. As mentioned in the text fol-
lowing Eq. (11), in the first situation we want to take χ 
 1 in
order to minimize the error. In particular, as shown explicitly
in Appendix A.1, we find that for εP ≤ εP/Ω the following
choice would be sufficient

χ = 2 +
√

2Λ

‖Ĥ‖

√
log

(
2Ω

εPΛ

)
. (28)

In the limit Λ → 0 we recover the Shannon–Nyquist theorem
which gives χ = 2 for a perfect reconstruction. At this point
we can look for the asymptotic scaling of both N and S
while guaranteeing a total error εP +εN +εS ≤ ε. If we take
εP = εN = εS = ε/3 we find immediately

N = Õ
(

‖Ĥ‖
Δ

√
log

(
1

Σ

)
log

(
Ω

εΔ

)

+ log

(
Ω

εΔ

√
log

(
1

Σ

)))
,

(29)

which, apart from a logarithmic correction, is the same result
found for the Chebyshev version of the GIT protocol. In turn
we find that the required number of samples will scale in
general as

S = Õ
(

‖Ĥ‖Ω2

ε2Δ3 log3/2
(

1

Σ

)
log

(
1

δ

))
(30)

again similar to the Chebyshev version (cf. Appendix A.4
and the orginal work Ref. [3]). The main difference is that the
Chebyshev implementation avoids the (necessary) approxi-
mation of the time-evolution operator. If simulations schemes
with optimal asymptotic scaling with the error are used, like
the one based on Refs. [16,17], the Chebyshev GIT will have
an advantage in terms of number of operations over its Fourier
version described here.

We now turn to the main result of this work where instead
we use information about first two energy moments to design
a scheme with better scaling. The main result we use is the

Chebyshev inequality which, in terms of response functions,
states that (assuming μ0 = 1)

1 −
∫ μ1+Γ

μ1−Γ

dωS(ω) = Prob [|ω − μ1| ≥ Γ ] ≤ σ 2

Γ 2 ,

(31)

for any positive constant energy Γ . The idea is to use Eq. (31)
to constrain the integrated strength of the spectrum away from
the mean. The interested reader can find the full derivation
in Appendix A.2, the final result is

χ = 2.7

ε
1/3
P

Ω1/3σ 2/3

‖Ĥ‖ + δν

‖Ĥ‖ , (32)

which is valid for Λ ≤ 2σ (see Appendix A.2 for an estimate
valid also in a lower resolution regime). This immediately
gives an estimate for the required number of moments

N =O
(

1

Δ

(
Ω1/3σ 2/3

ε1/3 + δν

)√
log

(
1

Σ

)
log

(
Ω

εΔ

))

(33)

Several comments are in order at this point. First of all,
the scaling of N with the target error ε is exponentially
worse than the original result Eq. (29) which didn’t use
energy moments. For situations that require very small errors
ε � Ωσ 2/‖Ĥ‖3 then the general scheme with χ from
Eq. (28) should be used instead. This drawback can be mit-
igated if more information is available. For instance if we
know the value of the n central moment μ̃n then we can
bring the cost down to

N = O
(

Ω1/(n+1)μ̃n
1/(n+1)

Δε1/(n+1)

√
log

(
1

Σ

)
log

(
Ω

εΔ

)

+δν

Δ

√
log

(
1

Σ

)
log

(
Ω

εΔ

))
. (34)

See Appendix A.2 for additional details and a proof.
The second important comment we can make about the

result Eq. (33), which also applies to its generalization
Eq. (34), is that if we want to reconstruct the energy spec-
trum over a large frequency range scaling asO(‖Ĥ‖) then the
second contribution proportional to δν will dominate and we
recover again the general result obtained without moments.
This somewhat counter-intuitive behavior can be understood
by noticing that our error metric in Eq. (25) measures the
error in a pointwise fashion: a very narrow but tall peak in
the energy spectrum will contribute to the error even if its
spectral weight is small. For specific applications, like the
calculation of energy histograms presented in Ref. [4], bet-
ter bounds could be obtained. We leave this development for
future work.
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Finally we note that all the results presented in this work
depend on an arbitrary energy scale Ω which controls the
energy dimension of the final error. An appropriate choice for
this parameter depends on the specific physical application
desired. For example, in applications where one is interested
in obtaining histograms of the spectrum like in Ref. [4], the
choice Ω = Δ seems appropriate.

3 Numerical examples

In this section we present some numerical experiments that
show in practice the savings afforded by the method pre-
sented here. In order to show the general trend, we will
employ two simple model response functions SA(ω) and
SB(ω). In both cases we produce a peak at low frequencies
according to a skewed Gaussian distribution

Speak(ω) = 1

β
√

2π
exp

−(ω − ξ)2

2β2

(
1 + erf

(
α(ω − ξ)√

2β

))
,

(35)

where ξ is the location of the peak, β is the scale of the distribution
and α the skewedness. In order to explore the impact of a tail at high
energies we also use

Stail (ω) =
{

0 for ω < ωthr

λρ (|ω − ωthr |γ + ρ)−1 for ω ≥ ωthr
(36)

Here λ is an overall normalization, ρ sets the scale and γ the
exponent of a power-law decaying tail.

In the numerical tests shown here we took ‖Ĥ‖ = 1 and
512 eigenvalues {ωk} distributed over the whole spectrum.
The two model response functions we consider are

SA(ω) =
∑
k

Speak(ωk)∑
k Speak(ωk)

δ(ω − ωk)

SB(ω) =
∑
k

Speak(ωk) + Stail(ωk)∑
k

(
Speak(ωk) + Stail(ωk)

)δ(ω − ωk)

(37)

where the normalization in the denominators is chosen in
order to guarantee that μ0 = 1 for both response functions.
The parameters for the response functions are

ξ = ωthr = −0.95 α = 5 β = 0.05 λ = 1 ρ = 0.002.

(38)

We show the two model response function in Fig. 1. The
main panel shows SA(ω) and SB(ω) over the entire frequency
range, the presence of the tail in SB(ω) is easily seen. In
the inset we show instead the two response function in lin-
ear scale for the energy range of interest [−1,−0.8], cor-
responding to the choice δν = 0.2. In this range the two
responses appear almost identical. In the figure we also report

Fig. 1 The two model response functions shown as a function of fre-
quency: black dots are for SA(ω) while red squares for SB(ω). The inset
shows the same responses but on a narrower range and with linear scale.
Also indicated are the mean μ and the square root of the variance σ for
both distributions

the obtained values for the mean μ ≡ μ1 and the square root
of the variance σ for the two models

μA = −0.911 σ A = 0.031

μB = −0.907 σ B = 0.067 (39)

The presence of the high-frequency tail does not modify
appreciably the mean value while the variance is increased
by more then a factor of two.

Due to the presence of delta function peaks, which are gen-
erated by the discreteness of the spectrum of a finite matrix, in
general we cannot directly compare the integral transform Φ

with the originating response function S(ω) since the normal-
ization conventions are different. For the discrete response
function we have
∫ 1

−1
dωS(ω) =

∑
k

S(ωk) = 1, (40)

while for the continuous integral transform instead
∫ 1

−1
dωΦ(ω) = 1. (41)

In order to directly compare the two, we approximate the
integral over frequencies with the finite difference

∫ 1

−1
dωΦ(ω) ≈ δω

2/δω∑
n=0

Φ (nδω − 1) , (42)

and choose δω = 2/512 in order to match the average spac-
ing between the eigenvalues. In the following we will then
consider the dimensionless quantity δωΦ which implies the
choice Ω = δω for the energy scale of the error. We further
choose the parameters of the integral kernel as

Δ = 0.02 Σ = 0.01. (43)
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Fig. 2 Comparison between the model response function SA(ω) and
SB(ω) (black dots and red squares respectively) with their rescaled inte-
gral transforms δωΦA(ω) and δωΦB(ω) (green solid line and turquoise
dotted line respectively). The inset shows the same curves but over the
full energy range

Fig. 3 Comparison between the ideal (scaled) integral transforms
δωΦB(ω) (turquoise solid lines) and different periodic extensions. The
bottom panel shows the approximation obtained using P for a generic
response denoted as δωΦ

χ
B (ω) (blue dotted line) while the top panel

shows the approximation obtained with a smaller P found using the
known energy variance σ 2 and denoted as [σ ] δωΦ

χ
B (ω) (brown solid

line). The shaded grey areas are energies outside the interval [νmin, νmax]

Figure 2 shows a comparison between SA(ω) and SB(ω)

with their rescaled integral transforms δωΦA(ω) (shown as a
solid green curve) and δωΦB(ω) (shown as a dotted turquoise
curve). We can clearly see that the rescaling described above
allows us to compare them directly.

Since the truncation error εN and the sampling error εS
are more standard and the bounds described in this work are
not novel, we concentrate in the following in the analysis of
the systematic error εP coming from the need to perform a
periodic extension of the integral kernel.

We present in Fig. 3 a direct comparison between the ideal
(scaled) integral transform δωΦB(ω) for model B (turquoise

solid lines) with the approximations obtained by applying
a periodic extension to the integral kernel with different
choices of periods P (cf. Eq. (11) above). In all cases we
set εP = 0.01 for the target error. The approximation in
the bottom panel, denoted δωΦB(ω) (blue dotted line), is
obtained using the conservative choice from Eq. (28) which
is valid in general. We see clearly that the effect is to push
the replicas outside the whole range of the Hamiltonian,
which in our case is [−1, 1], and therefore no appreciable
change affects the transform in the required energy range
[νmin, νmax] = [−1, 0.8]: the maximum observed deviation
is ≈ 10−8. To highlight the location of this energy range,
we have shaded in grey the region of energies outside of it.
Also, for ease of visualization, we have presented results in
a larger range of energies in order to be able to see where the
replicas are located. The top panel shows instead the periodic
extensions obtained using the improved bound on P obtained
in this work which uses directly prior information about the
first and second energy moment. It is apparent that now the
integral transform outside the energy window of interest is
severely distorted due to the presence of the periodic repli-
cas. However, inside the required region, the maximum devi-
ations are well below the value εP = 0.01 chosen as target:
we observe in fact an error ≈ 10−4. Very similar results have
been observed for the approximations of the integral trans-
form of model A. Before analyzing the relationship between
target error and the empirically observed deviation, we want
to point out the the reduction in the value of the period are

Pσ
A

Pgen
≈ 0.111

Pσ
B

Pgen
≈ 0.14, (44)

for the two model responses respectively. Here we denoted
by Pgen the value obtained without information about the
energy moments and with Pσ the value obtained using the
knowledge of the energy variance. In terms of the required
number of moments to guarantee a total approximation error
less than εP + εN = 0.02 we find using Eq. (26)

Ngen = 218 Nσ
A = 25 Nσ

B = 31. (45)

In order to better understand the above observation that
the measured error seems to be much smaller than the tar-
get one, which employs a possibly not tight bound on the
error, we present in Fig. 4 an analysis of the scaling of the
empirical error with the one set as target. The bottom panel
shows how the approximation error in the scaled integral
transform changes as a function of the target error for the
cases where we use the improved estimate for the period Pσ

which uses the energy variance. The solid black line shows
the upper-bound employed to control the error while the solid
green line and solid turquoise line show the observed maxi-
mum errors for both models respectively. We can see that, as
expected, the real error is always below the bound we use but
that the two models show a very different scaling for small
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Fig. 4 The top panel shows, as a function of the target error, the frac-
tional reduction in the period from the genera case value P = Pgen

obtained using information about the energy variance: the green line
shows Pσ

A /P for model A while the turquoise is Pσ
B /P for model B.

The bottom panel shows the observed approximation error for the two
models as a function of the target error: the green line for model A and
the turquoise line for model B. The solid black line represents the best
error bound we derived for this approximation (see Appendix A.2)

target errors: the integral transform of model A has an error
which decreases super-polynomially with target error while
for model B the bound is saturated for small enough values of
target error. We can understand this behavior in terms of the
high-energy tail of the original response functions: as can be
seen from the inset of Fig. 2 the response function for model
B is dominated by the slowly decaying tail for energies out-
side the range of interest [νmin, νmax] = [−1,−0.8] while
the strength of model A decays much faster. Once the target
error becomes comparable to the strength in the tail of model
B then one is forced to consider Pσ = Pgen as for a general
response. On the other hand, for model A as soon as the value
of Pσ exceeds the range of frequencies of interest than the
error decays quickly following the strength of the response.
These results show very clearly the important effect produced
by slowly decaying tails in the response function and how
their presence is automatically captured by the tail bounds
employed in this work. The observation that the error bound
is essentially saturated for small errors in model B suggests
that it is unlikely to be possible to considerably improve our
estimate for the optimal period Pσ in general. Finally, for not
too small values of the target error � 10−3 our error bound
overestimated the real error by more than an order of mag-
nitude. In this regime it is possible that improved estimates
using higher central moments [cf. Eqs. (34) and (93)] would
be able to increase the savings in computational cost even
further.

We have also performed numerical tests on more com-
plex spectral densities, with multiple peaks of varying widths
and heights, and obtained comparable results. This is to be
expected since the relevant properties of the response func-

tion are its energy moments which, together with the required
energy resolution, control the efficiency of the approach pre-
sented in this work.

4 Conclusions

In this work we have extended the Gaussian Integral Trans-
form method [3] by employing a Fourier basis for the polyno-
mial expansion of the integral transform of the spectral den-
sity. This replaces the need to estimate Chebyshev moments
of the Hamiltonian with analogous Fourier moments that can
be evaluated as expectation values of the real-time evolu-
tion operator exp(−i t Ĥ) (cf. Eq. (15)). Importantly, evalu-
ation of both of these moments can be achieved efficiently
using existing quantum algorithms. The main advantage of
employing a Fourier basis is the possibility of using prior
information about the spectral density, in the form of its first
few energy moments, to reduce the number of observables
needed for an accurate reconstruction of the spectrum. Most
of our derivation and numerical examples are focused on the
reasonable assumption that only the mean and variance of the
energy spectrum are available to the user but we also provide
improved bounds in case more moments are available.

The technique presented here can allow for orders of mag-
nitude speed-ups in the evaluation of the spectral density. In
order to give some concrete examples in nuclear physics,
we take the Hamiltonian derived from Lattice EFT and used
in previous cost estimates for quantum computations of the
response function (see [31]) to model a medium mass nucleus
with A = 40. As a first example we consider a calculation
of the dipole response of 40Ca for excitation energies up to
100 MeV, with resolution Δ = 1 MeV, small tail contri-
butions Σ = 0.01 and approximation error ε = 0.01 (we
take Ω = Δ as scale). Using the experimental values from
Ref. [34] (see also [35]) we estimate μGT

1 ≈ 20 MeV and
σGT ≈ 22 MeV. With these values we find more than two
orders of magnitude reduction in the number of moments
required

Ngen
GT = 42372 Nσ

GT = 339. (46)

As a second example we consider instead the simulation
of longitudinal response in quasi-elastic electron-nucleus
scattering at momentum transfer q. Typical values of the
moments are μ

QE
1 = q2/2M , with M the nucleon mass,

and σ QE ≈ kF ≈ 250 MeV, with kF the Fermi momen-
tum [36,37]. For a momentum transfer q = 400 MeV and a
maximum excitation energy δν = 400 MeV we find

Ngen
QE = 42372 Nσ

QE = 838. (47)

An expected saving by a factor ≈ 50.
It is likely that for calculations in this regime the simple

low-energy model used in Ref. [31] might not be suitable.
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Due to the expected increase in the Hamiltonian norm, we
would expect a larger relative saving in number of moments
in cases where higher resolution Hamiltonians with a larger
momentum cut-off are employed.

Lastly, we want to comment on the fact that the total com-
putational cost controlled by the maximum evolution time
T = Nδt still scales as O(1/Δ) and we therefore have no
violation of the no-fast-forwarding theorem [38]. Interest-
ingly for Hamiltonians that can be fast-forwarded [38,39]
the computational cost is no longer bounded by T but by N
instead. For applications like the reconstruction of the spec-
tral function or the calculation of thermodynamic observables
like in Ref. [27] this will be completely given by classical
cost. One can also employ the construction presented here
to prepare states in a given energy window by performing
the summation in Eq. (12) (or more correctly it’s finite N
approximation) coherently on a quantum device using the
Linear Combination of Unitaries strategy [40]. This is sim-
ilar to the energy filter proposed in Ref. [41] or the original
GIT [3] (if used coherently) and the explicit appearance of
the energy variance in our cost estimates can prove useful
in reducing the cost for some situations. A similar procedure
could be employed as a subroutine to the Verified Phase Esti-
mation [42] in order to estimate general expectation values.
We leave a more thorough exploration of these possibilities
to future work on spectral filters.
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A Derivation of error bounds

In this appendix we provide a full derivation of the error
bounds used in the main text. In order to simplify the notation
we will denote the Gaussian kernel as

Gν(ω) = 1√
2πΛ

exp

(
− (ν − ω)2

2Λ2

)
, (48)

and it’s periodic extension with period P as

GP
ν (ω) =

∞∑
k=−∞

Gν(ω + kP) =
∞∑

k=−∞
Gν+kP (ω). (49)

We start with the error introduced by using the periodic
extension of the kernel

|Φχ(ν) − Φ(ν)| = εP (ν). (50)

A.1 Periodic extension in the general case

We can write this difference explicitly as

εP (ν) =
∣∣∣∣
∫

dωGP
ν (ω)S(ω) −

∫
dωGν(ω)S(ω)

∣∣∣∣

=
∣∣∣∣∣
∫

dω

( ∞∑
k=−∞

Gν+kP (ω) − Gν(ω)

)
S(ω)

∣∣∣∣∣

=
∣∣∣∣∣∣

∫
dω

∑
k �=0

Gν+kP (ω)S(ω)

∣∣∣∣∣∣

=
∫

dω
∑
k �=0

Gν+kP (ω)S(ω) (51)

where in the last line we used the fact that both S(ω) and the
Gaussian kernel are positive definite. We can now use the fact
that S(ω) = 0 for frequencies outside the energy spectrum
so that

εP (ν) =
∫ ‖Ĥ‖

−‖Ĥ‖
dω

∑
k �=0

Gν+kP (ω)S(ω). (52)

At this point we can use the fact that S(ω) is integrable, and
in particular we can write

∫ ‖Ĥ‖

−‖Ĥ‖
dωS(ω) =

∫
dωS(ω) = μ0, (53)

the zeroth-moment (cf. Eq. (9) in the main text). Using this
result one can then bound the error with

εP (ν) ≤ μ0 sup
ω∈[−‖Ĥ‖,‖Ĥ‖]

∑
k �=0

Gν+kP (ω). (54)

It is convenient to rewrite the summation as follows

[
Gν+P (ω) + Gν−P (ω)

] +
∞∑
k=2

[
Gν+kP (ω) + Gν−kP (ω)

]
,
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since the second term can be bounded easily using

∞∑
k=2

Gν+kP (ω) ≤
∫ ∞

1
dxGν+x P (ω), (55)

∞∑
k=2

Gν+kP (ω) ≤
∫ ∞

1
dxGν+x P (ω)

= 1√
2πΛ

∫ ∞

1
dxe− (ω−ν−x P)2

2Λ2

= 1

2P
erfc

(
P − ω + ν√

2Λ

)
(56)

so that, including the contribution with −k, we find

∞∑
k=2

[
Gν+kP (ω) + Gν−kP (ω)

]

≤ 1

2P
erfc

(
P − ω + ν√

2Λ

)

+ 1

2P
erfc

(
P + ω − ν√

2Λ

)
(57)

We can now proceed to use the bound in Eq. (17) of the
main text to write

εP (ν) ≤ C sup
ω∈[−‖Ĥ‖,‖Ĥ‖]

(Gν+P (ω) + Gν−P (ω)) , (58)

where the constant factor C is given by

C = μ0

(
1 +

√
π

2

Λ

P

)
. (59)

In order to turn this into a useful bound, we will consider the
largest error that can occur for any

ν ∈ [νmin, νmax] ⊆ [−‖Ĥ‖, ‖Ĥ‖], (60)

which directly implies that

ω − ν ∈ [−‖Ĥ‖ − νmax, ‖Ĥ‖ − νmin]
⊆ [−2‖Ĥ‖, 2‖Ĥ‖]. (61)

First, notice that one of two Gaussians in Eq. (58) will always
dominate over the other. To see this we will consider two
cases separately: first let’s take

ω − ν ∈ [−‖Ĥ‖ − νmax, 0]. (62)

In this range of values we have

|P − ω + ν| = P − ω + ν ≥ P > 0

|P + ω − ν| = |P − |ω − ν||
{

> 0 for P > ‖Ĥ‖ + νmax
≥ 0 for P ≤ ‖Ĥ‖ + νmax

(63)

For this range, the second Gaussian centered in ν − P dom-
inates and we need to have P > ‖Ĥ‖ + νmax in order to

prevent the exponent to go to zero. Therefore

Gν+P (ω) + Gν−P (ω) ≤ 2Gν−P (ω)

≤ 2√
2πΛ

exp

(
− (P − ‖H‖ − νmax)

2

2Λ2

)
. (64)

If we take the complementary range of values

ω − ν ∈ [0, ‖Ĥ‖ − νmin], (65)

we find instead the the first Gaussian dominate and, for P >

‖Ĥ‖ − νmin we find the useful bound

Gν+P (ω) + Gν−P (ω) ≤ 2Gν+P (ω)

≤ 2√
2πΛ

exp

(
− (P − ‖H‖ + νmin)

2

2Λ2

)
. (66)

These results suggest that we should take

P = (1 + η)‖Ĥ‖ + max [|νmin|, νmax] , (67)

for some appropriate η > 0. For this choice we have in fact

εP (ν) ≤ 2μ0√
2πΛ

(
1 +

√
π

2

Λ

P

)
e− η2‖Ĥ‖2

2Λ2 . (68)

In order to simplify the calculation of a good value for η that
would guarantee εP (ν)Ω < εP , for some (dimensionless)
target error tolerance εP > 0, we use the simple lower bound
P > ‖Ĥ‖ and find

η ≥
√

2Λ

‖Ĥ‖

√√√√log

(√
2

π

μ0

εP

Ω

Λ

(
1 +

√
π

2

Λ

‖Ĥ‖
))

. (69)

Neglecting sub-leading logarithmic factors we find therefore
the asymptotic scaling

χ = P

‖Ĥ‖ = Õ
(

1 + Λ

‖Ĥ‖

√
log

(
μ0Ω

εPΛ

))
. (70)

A more practical bound which uses the conventions of the
main text is the following one

χ = 2 +
√

2Λ

‖Ĥ‖

√
log

(
2Ω

εPΛ

)
, (71)

which is the result quoted in the main text.

A.2 Periodic extension with moment information

We now turn to show how to obtain an improved error bound
using information about the energy moments. As before, and
without loss of generality, we will consider ν ∈ [νmin, νmax].
For the following manipulations, it will be convenient to
change variables and define

νmin = μ1 − Ωmin νmax = μ1 + Ωmax, (72)

with μ1 the first energy moment which gives us informa-
tion about the average energy in the spectral function and
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Ωmin,Ωmax both positive. At this point we start from the
expression for the error εP (ν) obtained in Eq. (51) before
and rewrite it as follows

εP (ν) =
∫

dω
∑
k �=0

Gν+kP (ω)S(ω)

=
∫ μ1−ασ

−∞
dω

∑
k �=0

Gν+kP (ω)S(ω)

+
∫ μ1+ασ

μ1−ασ

dω
∑
k �=0

Gν+kP (ω)S(ω)

+
∫ ∞

μ1+ασ

dω
∑
k �=0

Gν+kP (ω)S(ω)

= ε1(ν) + ε2(ν) + ε3(ν),

(73)

for some α > 0 and where we have denoted by σ the square
root of the variance

σ =
√

μ2 − μ2
1. (74)

The central integral can be bounded in the same way we
obtained the result in the previous section, the main difference
is that now we take the interval

ω − ν ∈ [−ασ − Ωmax, ασ + Ωmin] . (75)

In this range we can bound the central contribution with

ε2(ν) ≤ 2μ0√
2πΛ

(
1 +

√
π

2

Λ

P

)
e− η2α2σ2

2Λ2 , (76)

where now we took the period to be

P = (1 + η)ασ + max [Ωmin,Ωmax] , (77)

for some η > 0. Note that, in order for the exponential to
become small, we would need P > ηασ > Λ so that we can
use the simpler bound

ε2(ν) ≤ 2μ0√
2πΛ

(
1 +

√
π

2

)
e− η2α2σ2

2Λ2 , (78)

which will incur at most a logarithmic cost. In order to guar-
antee this term to be smaller than εP/(2Ω), for dimensionless
εP > 0, we can take [cf. Eq. (69)]

η =
√

2Λ

ασ

√√√√log

(√
8

π

μ0

εP

Ω

Λ

(
1 +

√
π

2

))
. (79)

In order to bound the other two terms, we first bound the
sum over k with an integral using

∞∑
k=1

Gν+kP (ω) ≤
∫ ∞

0
dxGν+x P (ω), (80)

together with a similar one for the negative terms

∞∑
k=1

Gν−kP (ω) ≤
∫ ∞

0
dxGν−x P (ω)

=
∫ 0

−∞
dxGν+x P (ω),

(81)

so that summing them together we find the bound

∞∑
k �=0

Gν+kP (ω) ≤
∫ ∞

−∞
dxGν+x P (ω) = 1

P
. (82)

The sum of the two missing terms ε13(ν) = ε1(ν) + ε3(ν) is
thus bounded by the following

ε13(ν) ≤ 1

P

(∫ μ−ασ

−∞
dωS(ω) +

∫ ∞

μ+ασ

dωS(ω)

)

= 1

P

(
1 −

∫ μ+ασ

μ−ασ

dωS(ω)

)

≤ σ 2

Pα2σ 2 = 1

Pα2

≤ 1

(1 + η)α3σ
.

(83)

Here we used the normalization of S(ω) to get to the second
line, the Chebyshev bound Eq. (31) in the main text to get to
the third and Eq. (77) for the last one. At this point we can
in principle use the expression for η in Eq. (79) to find an
appropriate value for α so that ε13(ν) < εP/(2Ω). In order to
better see the general trend, we instead ensure that α satisfies

α ≥
√

2Λ

σ

√
log

(
3.6

μ0Ω

εPΛ

)
, (84)

so that η < 1. We can then solve

1

(1 + η)α3σ
≤ 1

α3σ
≤ εP

2Ω
. (85)

This results in the following bound

α ≥
√

2Λ

σ
max

[√
log

(
3.6

μ0Ω

εPΛ

)
,
σ 2/3Ω1/3

Λ

0.9

ε
1/3
P

]
.

(86)

This result can be inserted directly into Eq. (77) to obtain the
final estimate for the period P required.

We now use the conventions described in the main text
to obtain a more intuitive result and distinguish explicitly
two different regimes. For 2σ ≥ Λ the second term will
dominate for all εP � 0.6 and for all values if we increase
the numerical factor to 1.9. In this case we can take

χ = 2.7

ε
1/3
P

Ω1/3σ 2/3

‖Ĥ‖ + δν

‖Ĥ‖ , (87)
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as quoted in the main text. Here we used the fact that

max [Ωmin,Ωmax] ≤ Ωmin + Ωmax

= νmax − νmin = δν. (88)

For large values of Λ > 2σ we would need to use the full
expression in Eq. (86) above instead.

Finally, for cases where we know the value of central
moments

μ̃n =
∫

dω |ω − μ1|n S(ω), (89)

forn higher then 2 are known, then one can use a the following
generalization of the Chebyshev inequality

Prob [|ω − μ1| ≥ Γ ] ≤ μ̃n

Γ n
. (90)

Using this additional information we can take instead

P = (1 + η)αμ̃n
1/n + max [Ωmin,Ωmax] , (91)

and can therefor choose α as follows

α ≥
√

2Λ

μ̃n
1
n

max

[√
log

(
4
μ0Ω

εPΛ

)
,

(
μ̃nΩ

εP

) 1
n+1 0.9

Λ

]
.

(92)

For
˜

μ
1/n
n ≥ Λ we have the following simpler result

χ = 2.7

ε
1/(n+1)
P

(Ωμ̃n)
1/(n+1)

‖Ĥ‖ + δν

‖Ĥ‖ , (93)

valid up to n = 15. This can be advantageous for small errors
provided the central moments do not grow too much.

A.3 Truncation error

Here we provide the details underlying the bound for the
truncation error

εN (ν) = |Φχ
N (ν) − Φχ(ν)|, (94)

used in the main text. In order to simplify the notation we
will use mχ

n to denote the moments (see Eq. (7)). For our
Fourier polynomials these are

mχ
n =

∫
dωS(ω) exp

(
−i

2π

χ‖Ĥ‖nω

)

= 〈Ψ0|Ô† exp

(
−i

2π

χ‖Ĥ‖nĤ
)
Ô|Ψ0〉,

(95)

In addition, note that |mχ
n | ≤ μ0 with μ0 the zeroth energy

moment. This can be easily seen by normalizing the state
Ô|Ψ0〉with

√
μ0 and using the fact that the evolution operator

is unitary. We can now express explicitly the truncation as

follows

εN (ν) = 1

χ‖Ĥ‖

∣∣∣∣∣
∞∑

n=N+1

(
gχ
n (ν)mχ

n + gχ
−n(ν)mχ

−n

)
∣∣∣∣∣ , (96)

with gχ
n (ν) the Fourier coefficients from Eq. (20). Using the

bound on the moments mχ
n we then find immediately

εN (ν) ≤ μ0

χ‖Ĥ‖
∞∑

n=N+1

(∣∣gχ
n (ν)

∣∣ + ∣∣gχ
−n(ν)

∣∣)

= 2μ0

χ‖Ĥ‖
∞∑

n=N+1

exp

(
− 2π2Λ2

χ2‖Ĥ‖2
n2

)

≤ 2μ0

χ‖Ĥ‖
∫ ∞

N
dx exp

(
− 2π2Λ2

χ2‖Ĥ‖2
x2

)

= μ0√
2πΛ

erfc

(
N

√
2πΛ

χ‖Ĥ‖

)

≤ μ0√
2πΛ

exp

(
−N 2 2π2Λ2

χ2‖Ĥ‖2

)
(97)

where we used the triangle inequality on the first line, the
bound on a sum with an integral in the third and Eq. (17) in the
last. Note that the bound does not depend on the frequency
ν anymore. We can now find the value for N that would
guarantee εN (ν)Ω ≤ εN for some (dimensionless) target
error tolerance εN > 0. The result is

N ≥ χ‖Ĥ‖√
2πΛ

√
log

(
μ0Ω√
2πΛεN

)
. (98)

This is the result used in the main text.

A.4 Statistical error

We now turn to the discussion of the bound on the statistical
error in the evaluation of the Fourier moments mχ

n . For the
moment we will assume we have estimated each moment
with a fixed error εM which for simplicity we take to be
equal for all moments (thanks to the rapid decrease in the
coefficients an adaptive strategy be more advantageous). We
also neglect the error on the zeroth momentmχ

0 since its value
is known beforehand. Since errors on different moments are
independent, we add the error contributions in quadrature to
find

ε2
S ≤ ε2

Mμ2
0

χ2‖Ĥ‖2

N∑
n=1

(∣∣gχ
n (ν)

∣∣2 + ∣∣gχ
−n(ν)

∣∣2
)

= 2
ε2
Mμ2

0

χ2‖Ĥ‖2

N∑
n=1

exp

(
− 4π2Λ2

χ2‖Ĥ‖2
n2

)

≤ 2
ε2
Mμ2

0

χ2‖Ĥ‖2

∫ N

0
dx exp

(
− 4π2Λ2

χ2‖Ĥ‖2
x2

)
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< 2
ε2
Mμ2

0

χ2‖Ĥ‖2

∫ ∞

0
dx exp

(
− 4π2Λ2

χ2‖Ĥ‖2
x2

)

= ε2
Mμ2

0

2πχ‖Ĥ‖Λ, (99)

where we used the fact that the variance of the moments is
less than μ2

0 and the same procedure employed in Eq. (97).
In order to attain a total expected error εS ≤ εS/Ω we then
need to take

εM <
εS

μ0

√
2πχ‖Ĥ‖Λ

Ω
(100)

resulting in an expected number of samples

S > 2N
Ω2μ2

0

2πχ‖Ĥ‖Λε2
S

. (101)

The additional factor of 2 in the numerator comes from the
need to evauate separately the real and imaginary part of each
moment separately. If we want to ensure this is sufficient
with high probability we can use Markov’s to ensure the
probability that the error is below ε2

S is larger than 2/3 by
increasing the target error εS by a factor of at least

√
3 and

then use the Chernoff bound and majority voting to increase
the probability to 1 − δ with logarithmic effort. For instance

S = N
Ω2μ2

0

χ‖Ĥ‖Λε2
S

log

(
2

δ

)
, (102)

will be enough for a confidence level 1−δ. Together with the
bound from Eq. (98) this shows that the number of samples
is independent from the number of terms N .

The treatment above assumes errors are completely uncor-
related which might not necessarily be the case due to the
need of controlling systematic errors with e.g. error mitiga-
tion techniques. For a more conservative error estimate we
consider instead a bound to εS obtained by summing the indi-
vidual errors in absolute value. Following the same procedure
used above we find the final result

S = N
Ω2μ2

0

Λ2ε2
S

log

(
2

δ

)
, (103)

quoted in the main text. We want to conclude this appendix
with a similar result regarding the original Chebyshev based
GIT from Ref. [3]. The estimate of the sample complexity
reported there didn’t use the strategy employed here and as a
result the original work gave an estimate S = O(N 3) which
was somewhat pessimistic. Using in fact the present strategy,
together with the results in Appendix D.3 of [3] and restoring
the energy dimensions in order to be compatible with our
current conventions we can show that a number of samples

given by

SCheb = 2N
Ω2

Λ2ε2
S

log

(
2

δ

)
, (104)

are enough to control the statistical errors.
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