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Abstract

Multi-Agent Reinforcement Learning (MARL) made significant progress in the last decade, mainly

thanks to the major developments in the field of Deep Neural Networks (DNNs). However, DNNs

suffer from a fundamental issue: their lack of interpretability. While this is true for most applications

of DNNs, this is exacerbated in their applications in MARL. In fact, the mutual interactions between

agents and environment, as well as across agents, make it particularly difficult to understand learned

strategies in these settings. One possible way to achieve explainability in MARL is through the use of

interpretable models, such as decision trees, that allow for a direct inspection and understanding of

their inner workings. In this work, we make a step forward in this direction, proposing a population-

based algorithm that combines evolutionary principles with RL for training interpretable models in

multi-agent systems. We evaluate the proposed approach in a highly dynamic task where two teams

of agents compete with each other. We test different variants of the proposed method in different

settings, namely with/without coevolution and with/without initialization from a handcrafted policy.

We find that, in most settings, our method is able to find fairly effective policies. Moreover, we show

that the learned policies are easy to inspect and, possibly, interpreted based on domain knowledge.
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of1. Introduction

The field of Multi-Agent Reinforcement Learning (MARL) saw quick progress during the last

decade [1]. Most of the milestones achieved in this field are due to the many breakthroughs in the

field of Deep Learning (DL).

While DL approaches are powerful and widespread, they are weak in one fundamental aspect:

they are not interpretable. Namely, it is difficult, for a human, to inspect a DL-based model and

understand why an agent controlled by it performs a certain action [2]. Interpretability is especially

interesting when the agents have to perform critical operations, which often happens where high

interests are at stake: for example, in cases where the model interacts with humans, or in cases

where multiple agents compete with each other, which will be the focus of this work. Moreover, if

several agents interact while performing the task, not only do we have to account for the behavior

of the single agent, but also for the emergent behavior of all agents taken together.

Here, we adopt a hybrid system developed for single-agent tasks, where we combine Evolutionary

Algorithms (EAs) and RL to optimize models based on decision trees (DTs) [3]. In a gist, Grammatical

Evolution (GE) [4] is used to optimize the structure of a DT, while Q-Learning [5] learns the actions

performed by the leaves. To adapt this model to the multi-agent setting, we take a cooperative

coevolutionary approach, where each agent (or group thereof) that takes part in fitness evaluation is

handled by a different optimization process.

In a previous work [6], we employed a fully coevolutionary mapping (i.e., one optimization process

per each agent) and compared it with a non-coevolutionary approach. In this work, we extend the

work from [6] by: (1) trying to lower the overall complexity of the method, using a group-based

mapping where we evolve fewer populations with respect to the total number of agents (i.e., we

consider the case of one optimization process per each group of agents); and (2) trying to inject a

handcrafted policy into the starting population of the evolutionary process, in order to evaluate

the ability of the evolutionary algorithm at improving an existing policy. To summarize, the main

contributions of this paper are the following:

1. We propose a novel coevolutionary approach that uses fewer parallel optimization processes

(which, in turn, can potentially allow scaling to larger problems).

2. We introduce a bootstrap mechanism, that empowers the approach from [6] by enabling it to use

previous knowledge to increase the efficiency of the evolutionary process.
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4. We interpret the DTs obtained with all the approaches, as a practical demonstration of the

benefits of using interpretable models.

The rest of the paper is structured as follows: in Section 2 we overview the literature to highlight

the novelty of the present work. In Section 3 we describe the proposed method, while in Section 4

we present the benchmark task used in the experimentation. Then, in Section 5 we discuss the

results obtained. Finally, in Section 6 we draw the conclusions and indicate some future works.

2. Related work

In the following, we briefly summarize the most relevant works in the field of MARL. For a more

exhaustive review of the field, we refer the interested reader to surveys of the field [7, 1, 2, 8, 9, 10].

Here, we intend to discuss only the most closely related works.

In [8], the authors explore the advantages that a multi-agent approach can offer with respect

to a more complex, single-agent approach. Starting from that seminal study, several works have

approached MARL settings from different perspectives. Sandholm et al., in [11], make a comparison

between table-based and Recurrent Neural Networks (RNNs) in the iterated prisoner’s dilemma.

Their results show that RNNs tend to be less cooperative than table-based RL approaches. In

another work [12] the authors observe Minimax Q, namely an algorithm that merges “minimax” and

Q-learning, produces more robust policies in comparison to the ones learned by classical Q-learning.

Finally, Tan [13] proposes a scalable and decentralized version of Q-learning, called Independent

Q-learning (IQL). However, this algorithm has a drawback, i.e., the inability of using NNs as

function approximators for IQL. This is because NNs require a replay buffer, which is not compatible

with IQL. More recent versions try to mitigate this problem, e.g., by using centralized critics [14],

management agents [15], hysteretic Q-learning [16] or hysteretic deep recurrent networks [17], and

reward shaping [18]. On the other hand, other works circumvent the problems arising with IQL by

switching to an actor-critic model. Chu an Ye, in [19], propose using parameter sharing to improve

efficiency in MARL. In [20], the authors study the impact of communication on the performance

of the multi-agent system. Macua et al, in [21], propose an approach based on duality theory to

derive a novel MARL approach. The method proposed in [22] uses a value-decomposition network

to “translate” a single, joint reward signal into individual reward signals. Finally, the authors in
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multi-agent scenarios.

Another approach is presented in [24], where the authors use Genetic Programming (GP) to

evolve, in a cooperative coevolutionary setting, agents for a prey-predator task. The results indicate

that the evolved strategies were more effective than the strategies handcrafted by the authors.

Finally, regarding the interpretability of machine learning models, recent works propose two

ways to measure it. The first, taken from [25], uses a metric of interpretability based on the elements

that compose the mathematical formula of the model. The second way, taken from [26], uses the

computational complexity of the model as a metric for interpretability. In this work, as described

in Section 5.1, we use the latter method, due to its greater simplicity. In fact, the underlying

assumption is that the fewer computations are performed, the less complex is the model.

3. Method

Our goal is to co-evolve agents that are able to cooperate to solve a task (in our experimentation,

we consider a specific task based on a competition between two teams, of which one is evolved, as

we will show in Section 4; however, the proposed method can be applied also to other MARL tasks,

provided a proper grammar). As we will show in this section, our agents are DTs composed of two

elements that are optimized separately, as already proven successful in our previous works [3, 27, 28].

The inner structure of the DT is optimized by means of GE [4], while the Q-Learning algorithm

[5] learns the optimal action for each leaf. By doing so, the agents can learn also during the task

execution, without having to wait for the next generation as in traditional purely generation-based

evolutionary processes.

As in this case we are working in a multi-agent setting, we need to devise a way to compose the

team that will perform the task. To better analyze the effectiveness of our method, we test three

strategies to compose a team. The first setting is a baseline non-coevolutionary approach where

the team is composed of a single, replicated, agent (note that the agents have the same structure,

but they act independently). We refer to this non-coevolutionary approach as single-population

mapping. The second setting is a fully coevolutionary mapping, where each member of the team

comes from a different optimization process. Finally, we consider a group-based setting, that we

refer to as partially coevolutionary mapping, where a team is divided into groups, each one being

handled by a different optimization process.
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initialization methods: one where the starting populations are randomly initialized, and one where

they are bootstrapped with a handcrafted policy that is injected into the evolutionary process.

By comparing the six combinations of evolutionary settings and initialization methods, we are

interested in answering the following research questions:

RQ1 Is the coevolutionary approach better than the non-coevolutionary one? What is the coevolu-

tionary approach that yields better performance?

RQ2 Can we improve the performance of the evolutionary methods by injecting knowledge (in the

form of a handcrafted policy) into the initial population?

RQ3 Can we interpret the agents obtained in the different settings?

3.1. Fitness evaluation

During the fitness evaluation, a team of A agents performs a task consisting in a simulation of

Nep episodes. As introduced before, at the beginning of the simulation (i.e., at the first episode) the

agent is a DT that needs to learn the mapping between the leaves and actions. Each agent learns

this function by IQL with a dynamic epsilon greedy exploration approach. Hence, it is independent

of the other agents as they are considered part of the environment. However, if enough episodes are

simulated, the agents, continuously interacting with the environment, will co-adapt their behavior

to solve the task.

After the simulation (i.e., at the end of the last episode) we need to assign to the agents their

fitness to measure the quality of the genotype. In particular, we need a method to aggregate the

partial reward of each episode in a final, global value. Note that the aggregation method has to

consider that we aim to measure the quality of the state-space decomposition function [3]. Hence, it

has to be measured when the performance converges.

In a preliminary study (not reported here for the sake of brevity), we considered different

aggregation functions, such as mean, median, maximum, and some percentile values. The resulting

insights are shown below. Using the max function as an aggregator is prone to give too much

importance to outliers, where good performance is due to random actions and not to “good” (i.e.,

stable, consistent) behaviors. Taking the average of the rewards has also a drawback, as the agents

initially use a high epsilon value, hence the initial episodes have a high impact on the mean.
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high performance. In fact, while we expect that the partial rewards increase towards the end of the

simulation, the median would also consider the results when the model has not fully converged yet.

Therefore, after testing different percentiles to aggregate the partial rewards, we found that the

70th percentile represents a good trade-off between the median and the maximum. The overall

fitness evaluation process is illustrated in Figure 1.

Genotype 1

Genotype N

70th percentile

70th percentile

Team

Agent 1

Agent N

E
n
v
i
r
o
n
m
e
n
t

Actions

Percepts

Rewards

Actions

Percepts

Rewards

Cumulative rewards

Cumulative rewards

Fitness

Fitness

Figure 1: Graphical representation of the proposed method.

3.2. Team creation (mappings)

As we described in the previous section, during the fitness evaluation a team of A agents performs

a task. These agents come from one or more evolutionary processes. As mentioned before, we

map the agents of the team according to three different strategies, referred to respectively as

single-population mapping, partially coevolutionary mapping, and fully coevolutionary mapping.

Note that all the mappings create in all cases N teams, where N is the number of individuals in the

population.

The single-population mapping uses a single evolutionary process to compose the N teams. Here

we compose a team from a single individual, replicating it many times. Namely, the agents in the

team share the same genotype (and its corresponding phenotype, i.e., a DT), but their behaviors
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during the task by means of IRL. Hence, they can diverge based on the experience of the agents

during the simulation.

In the partially coevolutionary mapping, we divide the team into m groups, with m < n, where

n is the number of agents that are needed to compose a team. Hence, each group is composed

of multiple agents sharing the same genotype (and its corresponding phenotype). Also in this

case agents sharing the same genotype can however show different behaviors. Note however that,

differently from the previous case, here, we utilize m optimization processes rather than one.

The last case is the fully coevolutionary mapping : this is the extreme case of the partially

coevolutionary mapping when m = n, which leads to groups composed by a single agent and, hence,

to n evolutionary processes (one per agent). Note that, in this case, all the agents have different

genotypes, unless the migration mechanism (see below) moves a genotype to another evolutionary

process. Figure 2 visually represents the three different mappings.

(a) Single-population mapping (b) Partially coevolutionary mapping (c) Fully coevolutionary mapping

Figure 2: Graphical representation of the proposed mapping schemes. The outer circles on the top represent teams
that have to be evaluated, with the inner circles being the agents. Instead, the outer circles on the bottom are
evolutionary processes, with the inner circles being individuals.

3.3. Grammatical evolution

To optimize the agents, we use GE [4], where each genotype is a vector of integers (more on this

below), and a population of genotypes is optimized through the application of mutation, crossover,

selection, and replacement operators, repeated for a certain number of generations until a total

number of individuals is evaluated. This algorithm has been already successfully applied to a number

of RL and robotic tasks [29, 30, 31], hence it represents a valid solution for this kind of tasks. In

this work, in addition to the traditional elements of GE, we add an migration and adoption operator
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the coevolutionary process.

Individual encoding. An individual is a list of integers in which each integer represents the index of

the production to choose for the current rule. We choose a production by calculating the modulo of

the integer currently selected and the number of possible productions. Unlike the original version of

GE, in this work we use fixed-length genotypes. The overall procedure that translate the genotype

into the phenotype is presented in Figure 3

Rule Production

Root if
If if Condition then action else action
Condition inputindex < const
Action leaf or if
const [1, 10], with step of 1
index [1, 10], with step of 1

(a)

x6 < 0.3

Leaf 2

False

Leaf 1

True5 2 0 8

g

(b)

Figure 3: Illustration of the individual encoding: (a) a simplified grammar; (b) example of translation of a genotype g
into a DT, using the grammar shown in (a), with M = 10.

Mutation. We utilize uniform mutation, where each mutation is applied with probability pmut, and

each gene has a probability pgene to mutate its value. The mutation changes the value of the gene

sampling a random number in the range [0,M ], where M is a hyperparameter, whose value must be

much larger than the number of production rules to ensure that they are distributed, approximately,

uniform.

Crossover. We employ a simple one-point crossover that, given two genotypes g1 and g2, randomly

split them in two parts, hence generating g1,1, g1,2, and g2,1 g2,2. Then, we compose the new

genotypes by merging, respectively, g1,1 with g2,2, and g2,1 with g1,2.

Selection. As selection operator, we use the tournament selection: we create T tournaments, each

randomly populated with NT individuals. The best (in terms of fitness) from each tournament is

then selected to become part of the population for the next generation.

Replacement. During the replacement phase, the new individuals, obtained by mutation and

crossover, will replace their parent if they achieve better fitness. Note that, for individuals obtained
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instead, the offspring has instead two parents: in this case, we simply replace only the worst parent.

There is a third case, where an offspring is “adopted” (see the next paragraph): in this case, the

replacement operator is applied on the adopted individual and its “foster parents”, maintaining the

one with better fitness.

Migration and adoption. Migration and adoption occur after applying the mutation and crossover

operators. When an offspring is generated, a population is randomly chosen and the individual

within it with the highest fitness value is selected and copied into the other populations. At this

point, the migrating individual replaces a randomly chosen offspring from the receiving population,

and the parents of that replaced individual are assigned as “foster parents” to the incoming individual.

This last step is when the “adoption” operator takes place. The rationale of this operator is to

propagate good individuals through populations but also to allow to replace migrating individuals

with one of the parents, through the replacement operator, in case the incoming individuals do not

perform well in the new population. Note that, when migration occurs, no trace of the individual is

left in its original population.

While this mechanism may reduce the diversity in the populations, at the same time it improves

convergence speed, which is crucial given the computational complexity and the large search space

that characterizes the typical MARL tasks that our proposed approach is designed for.

3.4. Handcrafted policy injection

For each of the three mappings described in Section 3.2, we run two sets of experiments: one

starting from random population(s), and one in which a handcrafted policy is injected into the initial

population(s). Given an initial policy, we manually translate it into the corresponding decision tree.

Then, we perform a “reverse-translation”, which translates a DT into the corresponding genotype.

This policy is then injected as an individual into each population at the beginning of the evolutionary

process(es). When the individual is injected, it is copied into the population reaching, with a total

number of copies set to 0.05% of the population size. This value has been set empirically so to avoid

too many copies of the same individual (which may cause premature convergence). Note that this

process does not increase the size of the population.

The goal of injecting a handcrafted policy into the starting population(s) is to provide the

evolutionary process with additional knowledge. Note that, purposely, we do not provide as
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handling the four cardinal directions with respect to the agent’s position. A partial representation

of the resulting DT can be seen in Figure 4. Note that, as for the randomly generated individuals,

the leaves do not contain actions, as these will be defined during the training episodes. The injected

strategy is quite straightforward (see Table 3 for the definition of symbols): for each direction, we

check if there are enemies, if there is an obstacle, or if the agent can attack a nearby enemy. The

four directions with respect to the agent’s position are evaluated in the following order: above, left,

right and below.

ela < 0.4

. . .

True

¬o1a

¬ea

ega < 0.3

Leaf

True

Leaf

False

True

Leaf

False

True

Leaf

False

False

Figure 4: Partial representation of the DT obtained from the injected individual. The same structure is repeated in
the empty branch (. . . ) by switching the directions, i.e., up/down and left/right. The meaning of the abbreviations
contained in the nodes is shown in Table 3.

4. Environment

The environment used for our experiments is the Battlefield environment from the MAgent [32]

suite contained in the PettingZoo library [33].

The Battlefield environment is a multi-agent game where there are two teams: the red team and

the blue team. Each team is made up of 12 agents. The goal of each team is to eliminate all the

agents in the opposing team. In order to achieve this result, the agents that belong to the same

team need to learn how to coordinate their movements in an 80× 80 grid surrounded by outer walls.

In the middle of the environment, there are also three inner walls, see Figure 5.
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Figure 5: A screenshot from the Battlefield environment.

Each agent in both teams starts with 10 health points (hp) and when it takes a hit from an

opponent (i.e., the opponent is close to the agent and carries out an attack in its direction) the

amount of hp is reduced by 2. An agent receives 0.1 hp at every timestep, unless it already has 10

hp. An agent dies when it reaches 0 hp. Each episode lasts in total 500 timesteps.

The field of view of each agent is a 13× 13 grid. An agent has both local and global perception.

The local perception area corresponds to a (discretized) circle with a radius of six cells around

that agent and provides to the agent information about presence / absence of an obstacle in a cell,

presence / absence of an enemy in a cell, hp of the enemy in a specific cell, presence / absence of a

teammate in a cell, and hp of the teammate in a specific cell. In the global perception, each cell of

the perception grid represents an area of 7× 7 cells in the environment and provides information

about the density of enemies and teammates in that area. In order to simplify the learning phase

(and the interpretability of the policies evolved), we perform a pre-processing of the inputs to extract

high-level features that are used in the GE to obtain the DTs. An overview of these features used

are reported in Table 3. Note that the “Abbreviation” column shows how we refer to a specific

feature in the rest of the text.

An agent can choose between 21 discrete actions at each timestep. The possible actions are: no

action; move to any of the 8 adjacent cells; move two cells on either left, right, up, down; attack any

11
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them.

At each timestep, an agent receives a reward from the environment. The rewards and their

values are: 5 points if the agent kills an opponent; 0.9 points if the agent hits an opponent (to

encourage the agent to hit opponents without waiting to kill an enemy to get the reward); −0.1

points if the agent dies; −0.1 points for any attack (to make the agent attack only when necessary);

−0.005 points for each timestep (as a form of time penalty). Note that the environment does not

provide an explicit reward for agent collaboration.

Table 1: Parameters used for the two algorithms (GE and Q-learning) used in the experimentation.

Algorithm Parameter Value

Grammatical
Evolution

Nind 60
Ngen 40
pxover 0.4
pmut 0.8
pgene 0.05
Genotype length 500
Selection Tournament
st 3

Q-learning

α 1/v
ε 1
Nep 400
decayε 0.99

Table 2: Grammar used to evolve the DTs. “ |” denotes the possibility to choose between different productions; “dt”
indicates the starting symbol.

Rule Production

dt ⟨root⟩
root ⟨condition⟩ | leaf

condition if ⟨input_index⟩ < ⟨float⟩
then ⟨root⟩ else ⟨root⟩

input_index [0, 33], step 1
float [0.1, 0.9], step 0.1

12
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Feature Abbr. Domain

Obstacle 2 cells above o2a {0, 1}
Obstacle 2 cells left o2l {0, 1}
Obstacle 2 cells right o2r {0, 1}
Obstacle 2 cells below o2b {0, 1}
Obstacle 1 cell above-left o1al {0, 1}
Obstacle 1 cell above o1a {0, 1}
Obstacle 1 cell above-right o1ar {0, 1}
Obstacle 1 cell left o1l {0, 1}
Obstacle 1 cells right o1r {0, 1}
Obstacle 1 cell below-left o1bl {0, 1}
Obstacle 1 cells below o1b {0, 1}
Obstacle 1 cells below-right o1br {0, 1}
Allied global density above aga [0, 1]
Allied global density left agl [0, 1]
Allied global density same quadrant ags [0, 1]
Allied global density right agr [0, 1]
Allied global density below agb [0, 1]
Enemies global density above ega [0, 1]
Enemies global density left egl [0, 1]
Enemies global density same quadrant egs [0, 1]
Enemies global density right egr [0, 1]
Enemies global density below egb [0, 1]
Enemies local density above ela [0, 1]
Enemies local density left ell [0, 1]
Enemies local density right elr [0, 1]
Enemies local density below elb [0, 1]
Enemy presence above-left eal {0, 1}
Enemy presence above ea {0, 1}
Enemy presence above-right ear {0, 1}
Enemy presence left el {0, 1}
Enemy presence right er {0, 1}
Enemy presence below-left ebl {0, 1}
Enemy presence below eb {0, 1}
Enemy presence below-right ebr {0, 1}

Table 4: Available actions and their abbreviation.

Action Abbr.

Move 2 cells above m2a

Move 1 cell above-left m1al

Move 1 cell above m1a

Move 1 cell above-right m1ar

Move 2 cells left m2l

Move 1 cell left m1l

No action mn

Move 1 cells right m1r

Move 2 cells right m2r

Move 1 cell below-left m1bl

Move 1 cells below m1b

Move 1 cells below-right m1br

Move 2 cells below m2b

Attack above-left aal
Attack above aa
Attack above-right aar
Attack left al
Attack right ar
Attack below-left abl
Attack below ab
Attack below-right abr

5. Results

For each combination of mapping and initialization strategy, we perform 10 independent evo-

lutionary runs. Note that we performed 10 independent runs as they were enough to produce

statistically-significant results. Moreover, we had to trade-off between the number of runs to achieve

statistical significance and the computational cost required for the experimentation. Another impor-

tant thing to notice is that we evolve only the policy of the agents in the blue team, while the other

team, the red one, performs random actions. This configuration prevents in fact the blue team from

overfitting to specific strategies of the red one.

We show the parameters used by GE and Q-learning in Table 1, while we present the production
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that evolve for 40 generations. For the RL algorithm, we use a dynamic learning rate to ensure that

the Q function converges to the optimal one. In particular, the learning rate of each leaf is α = 1
v ,

where v is the number of times the leaf is visited.

Since the goal of the task is to eliminate all the opponents, we use three metrics to measure, a

posteriori, the performance of the evolved policies over 100 unseen episodes. The first one is “No.

kills”, which indicates the average number of enemies killed in each episode. Note that a team is

formed by 12 agents, therefore in a single episode the number of enemies killed is limited between 0

and 12. The second one is “Agent reward”, which measures the average reward of the agents in the

team. Finally, the last metric is “Completed”, which measures the percentage of completed episodes,

where an episode is considered completed when the team has completely eliminated the opposing

team.

5.1. RQ1: Performance analysis

In this section, we answer RQ1. Hence, we compare the performance obtained by the three

different mappings. We will observe the fitness trend during the evolution and compare the fitness

of the best individuals obtained.

Firstly, Figure 6 shows the trend of the best fitness obtained by each method during the

evolutionary process. The solid lines indicate the average between the 10 independent runs, while

the shaded area represents the standard deviation.

Here, we can observe that the coevolutionary methods perform better than the non-coevolutionary

baseline. Moreover, the fully coevolutionary approach outperforms the partially coevolutionary one.

This happens in both cases, without (left) and with (right) the injection method. This may be

due to the migration mechanism that allows good agents to spread between different evolutionary

processes.

Figure 7 partially confirm these results. Here, we compare the best teams found at the end

of the evolutionary processes. We compare them using 4 metrics: the final fitness (first row), the

average number of kills obtained by the agents in the team, the average score obtained by the

agents, and the percentage of completed episodes. As mentioned earlier, we calculate the last three

metrics after the evolutionary process, by simulating the best individuals found at the end of the

evolution in 100 new episodes. We further confirm the results by means of the Mann-Whitney-U

statistical test (with confidence level α = 0.05), applying the Bonferroni correction. We observe
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better fitness and better number of kills than the non-coevolutionary approach. However, policy

injection (right column) improves the outcome of the non-coevolutionary baseline, as discussed in

the next subsection.

Finally, the metrics computed for each of the 10 independent runs are shown in Table 5.
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Figure 6: Evolutionary trends (average ± std. dev. across 10 independent runs) of the best fitness found at each
generation of the proposed algorithm in the six tested experimental settings.

5.2. RQ2: Policy injection

Now that we have observed how the coevolutionary methods perform better than the non-

coevolutionary baseline, our next goal is to assess the impact of the policy injection.

First of all, in Figure 8 we can observe a comparison between a team composed of injected

handcrafted agents and one composed of randomly sampled agents. Here, we compare only the

agent reward, as both teams during independent evaluations do not score any kills. However, we can

see that the agent reward for the handcrafted policy statistically outperforms the random agents.

Hence it is plausible to assume that injecting such handcrafted policy into the evolution process can

provide a benefit.

In Figure 6, we can observe that the fitness trends are very similar between the two configurations,

with the trends with injection converging slightly faster than the ones observed without injection.

15



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFigure 7 confirms this trend, highlighting the difference in performance between the two method

in the first row. However, in the a posteriori comparison (second, third and fourth rows), we observe

that the non-coevolutionary approach is only slightly worst, and the difference is not statistically

relevant.

In Figure 9, we can observe how the injection models overall seem to improve their performance

with respect to the models without injection, although we cannot reject the null hypothesis in the

various pairwise tests. This could mean that, the injection of a well-performing individual in a

random population may strongly bias the optimization process towards a local optima that is not

significantly better than the ones reachable by a random population. This is more evident in the

coevolutionary approaches, where the distribution of the results significantly overlap.

Finally, it is worth noticing that the most important improvement appears when applying policy

injection to the single-population approach, indicating that the coevolutionary approaches are able to

learn policies that match the performance of the injected policy without need for human intervention.

Table 5: Results obtained for each of the methods in 10 independent runs.

Method Metrics Runs

Single-population
Without injection

No. kills 10.74 11.98 11.46 0.51 11.98 10.87 9.07 10.03 11.43 10.20
Agent reward 5.89 8.20 7.37 −2.71 8.17 4.26 4.86 5.09 6.65 5.74
Completed 44.00% 99.00% 79.00% 0.00% 98.00% 48.00% 18.00% 17.00% 74.00% 37.00%

Partially
coevolutionary
Without injection

No. kills 11.63 12.00 10.27 11.18 11.66 11.95 12.00 11.66 9.96 12.00
Agent reward 7.04 8.40 5.73 6.14 7.57 7.90 8.39 7.14 6.24 8.44
Completed 72.00% 100.00% 39.00% 50.00% 80.00% 95.00% 100.00% 79.00% 38.00% 100.00%

Fully
coevolutionary
Without injection

No. kills 11.96 11.85 11.98 11.97 11.81 11.91 8.98 11.65 11.15 11.90
Agent reward 7.91 8.05 8.19 7.84 8.08 8.17 4.43 6.83 6.99 8.22
Completed 96.00% 94.00% 98.00% 98.00% 91.00% 98.00% 1.00% 79.00% 63.00% 93.00%

Single-population
With injection

No. kills 10.74 11.98 11.46 0.51 11.98 10.87 9.07 10.03 11.43 10.20
Agent reward 5.89 8.19 7.36 −2.71 8.17 4.26 4.85 5.09 6.65 5.73
Completed 44.00% 99.00% 79.00% 0.00% 98.00% 48.00% 18.00% 17.00% 74.00% 37.00%

Partially
coevolutionary
With injection

No. kills 10.89 10.86 10.80 3.58 11.74 11.60 11.96 11.97 11.98 11.98
Agent reward 5.72 6.29 6.22 0.89 7.22 7.03 7.80 8.05 8.09 8.00
Completed 50.00% 48.00% 41.00% 0.00% 81.00% 66.00% 97.00% 98.00% 99.00% 98.00%

Fully
coevolutionary
With injection

No. kills 11.83 11.99 11.63 11.95 11.38 12.00 11.93 11.34 11.11 12.00
Agent reward 7.51 8.13 7.34 8.04 6.92 8.44 7.80 7.25 6.51 8.34
Completed 90.00% 99.00% 82.00% 98.00% 56.00% 100.00% 97.00% 65.00% 54.00% 100.00%

5.3. RQ3: Agent interpretability

In this section, we describe the behavior of two selected agents, one evolved with the fully

coevolutionary mapping, and one with the partially coevolutionary mapping, interpreting such

behavior from their phenotype (i.e., their corresponding DTs). However, it should be noted that the

considerations we will draw here are valid also for agents evolved in the other configurations. To

16



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofbetter understand the evolved policies, is worth remembering that we evolve only the blue agents’

behavior. Moreover, we assume that the blue agents always start on the right side of the environment

(see Figure 5). To facilitate the description of the evolved policy, we added an id to each node in the

DTs.

We show the first agent in Figure 10. Analyzing the structure of the tree, we can observe how

the agent moves in the environment. This agent tries to encircle the enemy, moving up to the left (id

24) until it perceives that enough enemies are below or to the right (ids 6 and 18 respectively). After

having overrun the enemy, the agent turns back, then it moves towards the enemy, and eventually it

starts to move to the right or down (ids 11, 21 25, and 22). Namely, the agent tries to flank the

enemy moving to the top left of the map, to then turn and attack the enemy from behind.

Another interesting behavior of this agent relies on the fact that it tries not to be on the front

lines: in fact, if there is a high density of allies in the same quadrant (id 14), it tends to move to the

right (id 17), therefore from the direction from which its team started.

The attack actions are easy to understand: if an enemy is located in a certain cell, the agent

simply attacks that cell. There are two particular cases. One is caused by the few visits of a certain

leaf (id 9). The other one happens when there is an enemy above the agent (id 16): in this case, the

agent tries to escape to the right (id 26), unless there is an obstacle in the above right cell (id 19),

in which case it attacks the enemy (id 27). Since an obstacle can be either a wall or an ally, this

particular condition leads to two different behaviors. If the obstacle is an ally, the agent helps to kill

the opponent, otherwise it tries to escape to the right. If the obstacle is a wall, this means that the

agent is located on the left side of that wall, since there is no possibility to have an opponent above

while the agent is located next to a wall. This means that if there is a wall on the right, the agent

cannot escape and has to fight. According to the behavior that this agent appears to have, this tells

us that the agent tries to support other allies in the area, while it retreats if enemies are trying to

surround it. Summarizing, this agent performs like a “cavalry wing”, trying to overrun the enemy

team to encircle them and attack from behind.

The second selected agent, presented in Figure 11, has a different behavior: while it tries to

avoid being near friendly units, it always moves towards the enemy. Hence, we can describe this as

an “interceptor”, that actively moves in less populated areas to search for the enemy.

Other interesting behaviors emerge from the observation of the teams in the environment. A

common behavior of the agents that, by chance, start closer to the opponent team is to go through
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runs, it is possible to see some agents moving to the top of the environment, passing the inner

walls from above, and then descending to hit the enemies they encounter. Much rarer is the reverse

behavior, where agents pass the inner walls from below and then move up (this is possibly due to

the fact that the passage on the bottom of the environment is narrower).

6. Conclusions and future works

In the past few years, the field of MARL has been gaining a lot of attention from the research

community, due to its wide applicability to real-world scenarios. However, for such purposes,

interpretability is a crucial requirement.

In this work, we studied different approaches for interpretable MARL, starting from our previous

works on single-agent Interpretable RL. We studied different schemes, including non-coevolutionary,

partially coevolutionary, and fully coevolutionary mappings. Overall, our results show that the

coevolutionary approaches outperform the non-coevolutionary one. Moreover, the partially coevo-

lutionary approach has the additional advantage of significantly reducing the number of parallel

evolutionary processes, thus providing an opportunity for scaling more efficiently. However, it is

worth noting that the number of parallel evolutionary processes can be used as a hyperparameter to

trade-off between performance and computational cost.

Furthermore, we studied the impact of injecting human knowledge, in the form of a handcrafted

policy, into the optimization process (which is one of the advantages of training interpretable

models with respect to non-interpretable ones). The results show that introducing human knowledge

in the evolutionary processes reduces the gap between the non-coevolutionary approach and the

coevolutionary ones.

Future work includes testing the proposed method on other multi-agent tasks, self-optimizing the

number of groups, using Quality-Diversity evolutionary algorithms, e.g. based on MAP-Elites, as

done in [34, 28, 35, 36, 37, 38], Enki [39], or DOMiNO [40], and, finally, studying more sophisticated

migration mechanisms.
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Figure 7: Comparison between all the methods on the metrics of interest. Bold numbers indicate statistically
significant p-values.
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Figure 10: Example DT found in the fully coevolutionary setting. The “(*)” notation indicates that the leaf has been
visited a number of times that is not sufficient to train it, thus it can be seen as a random action. The numbers in
parentheses are the identifiers of the nodes (added for the sake of explanation).
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Figure 11: Example DT found in the partially coevolutionary setting. The “(*)” notation indicates that the leaf has
been visited a number of times that is not sufficient to train it, thus it can be seen as a random action. The numbers
in parentheses are the identifiers of the nodes (added for the sake of explanation).
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Highlights

• We propose an evolutionary algorithm for multi-agent reinforcement learning.

• We consider interpretable models based on decision trees.

• We demonstrate the method on a highly dynamic competitive multi-agent
task.

• Our results show the effective applicability of the proposed method.
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