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Abstract

Lung ultrasound (LUS) is a relatively novel application of ultrasound technology, which
is increasingly expanding since the nineties. However, contrary to standard ultrasound
imaging, which was primarily developed for imaging noninvasively the anatomy of in-
ternal body parts, LUS is mainly based on the visual interpretation of imaging artifacts.
Among which, the so-called vertical artifacts are particularly important as they correlate
with various pathologies. The main limitations associated with this type of pattern anal-
ysis remain its subjectivity and limited reproducibility. Moreover, the understanding and
exploitation of the mechanisms behind the genesis of vertical artifacts are just in their
beginnings.

In this context, the most diffused and utilized strategies in LUS analyses are the so-
called semi-quantitative techniques, which are based on the visual interpretation of LUS
patterns, where a score is assigned based on visual interpretation of LUS patterns, which
correlate with the state of lung. However, these techniques are strongly operator dependent.
To this end, the use of artificial intelligence (AI) to automatically score LUS data could
be instrumental to reduce the subjectivity in the evaluation of LUS patterns. For this
reason, as a first novel contribution, we proposed a technique to automatically classify
LUS videos by means of an aggregation strategy based on a deep learning (DL) frame-
based classification. However, given the strong subjectivity of the task, it is not reliable to
expect levels of agreement between AI and human operators at video or frame level around
90-100%. Indeed, the use of AI algorithms could lead to more reproducible analyses but
cannot completely avoid subjectivity, as AI training remains based on the subjective labeling
performed by clinicians.

Another important aspect to be considered in semi-quantitative techniques is the proper
definition and standardization of acquisition protocols. As an example, the number and
spatial distribution of areas of the chest to be scanned are often defined arbitrarily and not
following an evidence-based approach. For this reason, after having proposed (in a study
of March 2020 I coauthored) a standardized imaging protocol specifically designed for the
coronavirus disease 2019 (COVID-19) patients based on 14 scanning areas, we evaluated
the impact of changing the scanning areas on the evaluation of COVID-19 (second novel
contribution) and post-COVID-19 (third novel contribution) patients.

In addition, to properly define the imaging settings to be used in a LUS examination
and, in parallel, to develop quantitative LUS techniques specifically designed for lung, the
mechanisms behind the genesis of vertical artifacts (whose comprehension is just in its
beginnings) should be deeply understood. To better understand the dependence of vertical
artifacts on imaging parameters, we performed two experimental studies (fourth and fifth
novel contributions), where we assessed the dependence of vertical artifacts’ intensity on
different imaging parameters. On one hand, the presented results showed how there exist
different confounding factors (e.g., focal point and angle of incidence of ultrasound beam)
that should be reduced when developing a LUS approach. On the other hand, the results
showed how a frequency characterization of vertical artifacts could be exploited to develop
a LUS quantitative approach, as these artifacts seemed to be associated with specific reso-



nance phenomena. Specifically, the acoustic traps’ theory suggested that vertical artifacts
originate from multiple reflections of ultrasound waves trapped within channels that can
form between alveoli when lung tissue becomes pathological. By exploiting this concept, the
frequency characterization of these artifacts could be used to indirectly estimate the size
of acoustic channels (or traps).

To further evaluate the possibility to estimate these channels’ size with a multi-frequency
approach, we performed a numerical study with the k-wave MATLAB toolbox (sixth novel
contribution). The main advantage of in silico studies consists of the possibility to control
the disposition of alveoli, which can be located at precise distances between each other.
Therefore, with this kind of studies, it is possible to look for a correlation between the
vertical artifacts’ intensity as a function of frequency and the alveolar disposition.

In the final novel contribution of this thesis, we performed a clinical study in humans
showing the potentiality to exploit a quantitative multi-frequency approach to differentiate
patients affected by pulmonary fibrosis (PF) from patients with other lung pathologies.
Specifically, the frequency characterization of vertical artifacts along with their intensity
was able to differentiate patients with PF with a specificity and sensitivity of 92%.

In conclusion, quantitative approaches represent the future of LUS, as they could pro-
vide a physical metric able to characterize the lung surface by applying an acquisition
technique specifically designed for the lung. Nevertheless, to develop these techniques, the
genesis of vertical artifacts needs to be more deeply investigated and understood by means
of controlled in vitro and in silico studies. In the meantime, semi-quantitative approaches
based on image analysis techniques should be exploited to estimate the state of lungs by
detecting and recognizing specific LUS patterns that do signal different levels of aeration.
However, to reduce the impact of confounding factors, the standardization of the imaging
protocols and scoring systems is essential.



Acknowledgements

Three years have passed from the beginning of this experience and, even though several
things happened during these years, time seems to be flown. Only four months after the
beginning of this new adventure the outbreak of COVID-19 pandemic has forced many
people at home, thus completely changing our habits.

This event coincided with moving house together with my girlfriend Chiara, who was
able to bear me during all these two and a half years lived at home with me and, obviously,
also the previous seven years spent together. I would like to thank you to having helped
me during these years and to continue to help me. For your patience and your kindness
that you show to all the people, thank you. I would also thank you to share with me this
new huge experience to be parents of our son, Cesare, I love you.

I would like also to thank my mother Edda, my father Francesco, and my brother
Andrea to always support me during these years at the university, thank you.

I would like to thank my girlfriend’s family, which has always made me feel included,
thank you.

I would like to thank my three historical friends Mauro, Satu and Son. Even though
we did not meet too often during these three years, we have always been for each other,
thanks guys.

I would like also to thank all my colleagues met during all the years spent at the
university, both at the bachelor, the master and the PhD, thank you all.

I would like to thank all the members of ULTRa lab, who always made me feel part
of team, thank you all.

Last but not least, a special thank to Libertario, who has been always here to teach
me something new. We faced many stuff in the last years: crazy work at home during the
pandemic, especially the first months, journals’ special issues, editors, reviewers, discus-
sions, and many publications. Thank you for your support as a supervisor and, especially,
as a person.

A lot of stuff happened these years and we will see how many other things will happen
the following ones.

So far, it was nice, see you tomorrow.

Federico





Contents

List of Tables v

List of Figures vii

List of Abbreviations xi

List of Symbols xiii

1 Preamble 1

2 Introduction and review of the LUS literature 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Model based techniques . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Deep learning techniques . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Investigation of artifact genesis and quantitative studies . . . . . . . . . . . 18
2.3.1 In vitro and animal studies . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 In silico studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Quantitative LUS imaging, human clinical studies . . . . . . . . . . 22

3 Deep learning applied to lung ultrasound videos for scoring COVID-19
patients: A multicenter study 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Data labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Video-level score aggregating labeled frames . . . . . . . . . . . . . 28
3.2.4 Video-level score aggregating labeled and segmented frames . . . . 29

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Video-level score aggregating labeled frames . . . . . . . . . . . . . 32
3.3.2 Video-level score aggregating labeled and segmented frames . . . . 34

3.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 On the Impact of Different Lung Ultrasound Imaging Protocols in the
Evaluation of Patients Affected by Coronavirus Disease 2019, How Many

i



Acquisitions Are Needed? 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Lung Ultrasound in COVID-19 and Post-COVID-19 Patients, an Evidence-
Based Approach 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Study Design and Population . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 LUS Acquisition Protocol . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Impact of Different Scanning Areas on Exam’s Evaluation . . . . . 50
5.2.4 Longitudinal Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.5 Prognostic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Impact of Different Scanning Areas on Exam’s Evaluation . . . . . 53
5.3.2 Longitudinal Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.3 Prognostic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 On the influence of imaging parameters on lung ultrasound B-line arti-
facts, in vitro study 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Lung-mimicking phantoms . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.3 Computation of the total intensity parameter to quantify the strength

of B-lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Dependence of lung ultrasound vertical artifacts on frequency, band-
width, focus and angle of incidence: An in vitro study 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.1 Materials and data acquisition . . . . . . . . . . . . . . . . . . . . . 76
7.2.2 Quantification of vertical artifacts’ strength . . . . . . . . . . . . . 79

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Numerical study on lung ultrasound B-line formation as a function of
imaging frequency and alveolar geometries 89
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



8.2.1 Imaging parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.2 Computational domains . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.3 B-lines’ intensity metrics . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Quantitative Lung Ultrasound Spectroscopy Applied to the Diagnosis
of Pulmonary Fibrosis: The First Clinical Study 103
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2.2 Quantification of B-Lines’ Intensity . . . . . . . . . . . . . . . . . . 108
9.2.3 Features and Statistical Analysis . . . . . . . . . . . . . . . . . . . 109
9.2.4 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3.1 B-Lines’ Initial Evaluation . . . . . . . . . . . . . . . . . . . . . . . 112
9.3.2 Classifiers’ Performance . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.3 Features’ Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 113

9.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10 Conclusion 117
10.1 Final Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

List of Publications 121

Bibliography 127

iii





List of Tables

2.1 Details on image analysis publications . . . . . . . . . . . . . . . . . . . . 18

6.1 The main parameters (number of transmitting elements, focus, and fre-
quency) set in the different acquisitions . . . . . . . . . . . . . . . . . . . . 65

7.1 The parameters set for each scanning area . . . . . . . . . . . . . . . . . . 77

8.1 Imaging array parameters, being the bandwidth computed at –6 dB from
the spectral peak. The array aperture can be computed as dx ·(Pitch·N -
Kerf), where dx is the grid size. . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Domain grid sizes (dx ) and time sampling intervals (dt) for each imaging
frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3 –12 dB lateral resolutions (LR) for each imaging frequency. . . . . . . . . . 92
8.4 Original parameters (D, s), digitally approximated counterparts (D’, s’ ),

and average channel spacing (s′) of four numerical domains . . . . . . . . . 94

v





List of Figures

2.1 Examples of LUS images acquired with convex and linear probes . . . . . . 7

3.1 Examples of frames labeled as scores 0, 1, 2, and 3 . . . . . . . . . . . . . . 28
3.2 The video-level agreement as a function of threshold (first algorithm) . . . 30
3.3 The video-level agreement and disagreement with the optimal threshold

(first algorithm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Boxplot showing the exam-level agreement as a function of the frame-level

threshold (first algorithm) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Exam-level agreement when the optimal threshold is applied to the first

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 The exam-based cumulative scores for each LUS exam (first algorithm) . . 33
3.7 The video-level agreement as a function of threshold (second algorithm) . . 34
3.8 The video-level agreement and disagreement with the optimal combination

of thresholds (second algorithm) . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Exam-level agreement when the optimal combination of thresholds is ap-

plied to the second algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10 The exam-based cumulative scores for each LUS exam (second algorithm) . 36
3.11 Video-level performance when the normalized distribution is analyzed . . . 37
3.12 Video-level performance when scores 0 and 1 are treated as a unique score

(score 0/1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The overall distribution of assigned scores divided per specific area, percent-
age of scores assigned for each area and patient, and the level of agreement
for all of the patients’ scanning . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 The overall distribution of score (four systems), level of agreement between
systems, distribution of each score in the posterior areas, and level of agree-
ment between the 3 modified versions of system 4 . . . . . . . . . . . . . . 44

5.1 Sankey diagram illustrating the distribution of the dataset characteristics . 47
5.2 Typical LUS image associated with each level of the scoring system . . . . 48
5.3 Graphs referring to LUS exams performed on COVID-19 patients and post-

COVID-19 patients (distribution of scores) . . . . . . . . . . . . . . . . . . 51
5.4 The overall distributions of scores, divided per specific area and per each

subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Graphs referring to LUS exams performed on COVID-19 patients and post-

COVID-19 patients (distributions considering the four systems) . . . . . . 54

vii



5.6 The values of ∆ for each scanning area and for each patient . . . . . . . . 55

5.7 The exam-based sum of scores for each LUS exam . . . . . . . . . . . . . . 56

6.1 Microbubble microscope image, a phantom representation, and a top view
picture of a lung-mimicking phantom . . . . . . . . . . . . . . . . . . . . . 64

6.2 Picture of the acquisition system . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 The main elements in the reconstructed image . . . . . . . . . . . . . . . . 67

6.4 Schema of the procedure applied to the final (averaged) images to compute
the total intensity of each main B-line . . . . . . . . . . . . . . . . . . . . . 68

6.5 Multi-frequency images of phantom 2 (B-line IV) with the focus at 15 mm
and 17.5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 Multi-frequency images of phantom 1 (B-line I) and phantom 2 (B-line III) 70

6.7 The normalized ITOT of phantom 1 (B-line I) as a function of frequency . . 71

6.8 The normalized ITOT of phantom 2 (B-line III) as a function of frequency
and the -12 dB lateral resolution . . . . . . . . . . . . . . . . . . . . . . . . 72

6.9 Boxplot showing the ITOT variations caused by frequency, focus, and num-
ber of transmitting elements . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 The utilized phantom, probe, positioning system, rotation system, metallic
plate, water tank, and the three directions (x, y, and z ) . . . . . . . . . . . 77

7.2 The main elements visualizable in the reconstructed image . . . . . . . . . 78

7.3 The normalized ITOT of the vertical artifact observed in the Area 1 as a
function of center frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 The normalized ITOT of the vertical artifact observed in the Area 1 as a
function of angle of incidence . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5 The normalized ITOT of the vertical artifact observed in the Area 1 as a
function of bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.6 The normalized ITOT of the vertical artifact observed in the Area 1 as a
function of focal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.7 The normalized ITOT of all the nine vertical artifacts, acquired from the
eight scanning areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.8 Boxplot showing the ITOT variations . . . . . . . . . . . . . . . . . . . . . 86

8.1 Example of numerical domain, complete view (top) and enlargement (bottom) 93

8.2 Example of reconstructed image (top) and corresponding central line (bot-
tom), indicated in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 INtot as a function of alveolar diameter and imaging frequency, referring to
the alveolar spacing s = 20 µm. . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 INtot as a function of alveolar diameter and imaging frequency, referring to
the alveolar spacing s = 100 µm. . . . . . . . . . . . . . . . . . . . . . . . 96

8.5 INtot as a function of alveolar diameter and imaging frequency, referring to
the alveolar spacing s = 198 µm. . . . . . . . . . . . . . . . . . . . . . . . 97

8.6 INtot as a function of alveolar diameter and imaging frequency, referring to
the alveolar spacing s = 263 µm. . . . . . . . . . . . . . . . . . . . . . . . 98

viii



8.7 INtot as a function of alveolar diameter and imaging frequency, referring to
the alveolar spacing s = 395 µm. . . . . . . . . . . . . . . . . . . . . . . . 98

8.8 Reconstructed images at 1, 2, 3, 4, and 5 MHz, referring to the numerical
domain made of alveoli having diameter D = 300 µm and spacing s = 263
µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.9 INtot as a function of muscle percentage below the lung surface p . . . . . . 100

9.1 Procedure applied to the ultrasound data to compute the total intensity of
B-lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.2 Number of B-lines for each patient . . . . . . . . . . . . . . . . . . . . . . 108
9.3 Gaussian distributions and 2-D plot representing the patients . . . . . . . . 110
9.4 Multi-frequency images of a fibrotic patient and a nonfibrotic patient . . . 111
9.5 Histograms of ITOT and 2-D plot (after application of a 1.6-dB threshold

to the mean ITOT ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.6 Performance of the selected SVM and decision tree . . . . . . . . . . . . . 114

ix





List of Abbreviations

2-D two-dimensional
3-D three-dimensional
AI artificial intelligence
ANOVA analysis of variance
AOI angle of incidence
AR axial resolution
ARDS acute respiratory distress syndrome
AUC area under the curve
BW bandwidth
CF center frequency
CI confidence interval
CNC computer numerical control
CNN convolutional neural network
COVID-19 coronavirus disease 2019
CPE cardiogenic pulmonary edema
CT computed tomography
DB Daubechies
DL deep learning
DNN deep neural network
ELU exponential linear unit
FEV1 forced expiratory volume
FP focal point
FVC forced vital capacity
GBDT gradient boosting decision tree
GLCM gray-level co-occurance matrix
grad-CAM gradient-weighted class activation map
HRCT high resolution computed tomography
ICC intra-class correlation
ICLUS-DB Italian COVID-19 LUS Database
ILD interstitial lung disease
IoT Internet of Things
IPF idiopathic pulmonary fibrosis
LR lateral resolution
LSTM long short-term memory
LUS lung ultrasound

xi



LUSWE LUS surface wave elastography
MD medical doctor
MI mechanical index
ML machine learning
MSE mean-square error
NN neural network
PAS peripheral airspace
PCA principal component analysis
PF pulmonary fibrosis
PFT pulmonary function testing
POCUS point-of-care ultrasound
PPP peak positive pressure
PRF pulse repetition frequency
PVC polyvinyl chloride
RBE recursive backward elimination
ReLU rectified linear unit
RF radio frequency
ROI region of interest
RT-PCR reverse transcription polymerase chain reaction
SAAB subspace approximation with adjusted bias
SNR signal-to-noise ratio
SOFT simplified optical flow transform
SSC systemic sclerosis
SSD Single Shot Detection
STN spatial transformer network
SVM support vector machine
SYM Symlet
TGC time gain compensation
ULA-OP ultrasound advanced open platform
WHO World Health Organization

xii



List of Symbols

Apix pixel area
cmedium speed of sound in the medium
D actual alveolar diameter
D′ digitally approximated alveolar diameter
DLex deep learning algorithm exam-based score
DLSC deep learning algorithm video-level score
dt sampling interval
dx domain grid size
Eagr exam-level agreement
f0 center frequency
Itot(i) non-normalized total intensity of the ith image
Imax
tot maximum value of total intensity in the whole simulation set
INtot(i) normalized total intensity of the ith image
Itot or ITOT total intensity
Ktot total number of spacing within an acoustic channel
MDex medical doctor exam-based score
MDSC medical doctor video-level score
p sub-pleural muscle percentage
ROIB vertical artifact’s region of interest
ρmedium volumetric mass density of the medium
s actual spacing
s′ digital approximated spacing
s′ average alveolar spacing
THsegm

OPT frame-level segmentation optimal threshold
THsegm

i frame-level segmentation threshold
THOPT frame-level labeling optimal threshold
THi frame-level threshold
V all
agr overall percentage of agreement at video-level

xiii





Chapter 1

Preamble

In this first part, the main objectives of the thesis will be summarized to provide the
reader with fundamental information about the research problem faced during the PhD.

Important potentials for the application of ultrasound to diagnose and monitor lung
pathologies exist. However, there are limitations caused by the absence of standardized
methodologies to acquire and analyze lung ultrasound (LUS) data. Moreover, the impact
of several technical parameters (i.e., transmitted frequency and focal point) have not been
considered. These limitations strongly affect the reproducibility of LUS.

The main objectives of the research presented in this thesis consist in providing solu-
tions for the aforementioned problem, to improve both the LUS reproducibility and the
quality of diagnostic value that can be extracted from LUS analyses. Therefore, design-
ing quantitative LUS methodologies, adding specificity to LUS analysis, and improving
reproducibility represent the main targets of this thesis.

These objectives can be achieved by

1. working with clinical data acquired with the currently available scanners (semi-
quantitative application based on image analysis);

2. designing new LUS methodologies to insonify lungs and new processing algorithms
to analyze the acquired data (quantitative application based on the analysis of raw
radio frequency data).

In the first case, it is not possible to improve specificity as LUS patterns are not specific
(i.e., the same patterns can be observed in different lung pathologies), but it is possible
to improve LUS reproducibility. This can be done by

1.1 standardizing the acquisition procedure also to reduce confounding factors linked to
the impact of imaging parameters (e.g., probes and frequencies);

1.2 adding to the semi-quantitative scoring systems (i.e., systems where scores are as-
signed based on visual interpretation of LUS patterns) the current knowledge of the
phenomena observable during a LUS acquisition (e.g., not to count vertical artifacts
but simply evaluate the presence or absence of specific patterns in LUS images);

1.3 utilizing automatic techniques to evaluate LUS data (baseline evaluation common
to all clinicians).

1



In the second case, the aim is to redesign transmission and reception schemes as well
as the processing of LUS data. Even though this is more complex to achieve than the first
case, there exists potential of applying quantitative techniques and adding specificity to
the analysis. This can be done by performing

2.1 in silico studies, which provide a highly controllable environment but simplified;

2.2 in vitro experimental studies, which provide a controllable environment and more
similar to the clinical studies (as the same instrumentation of clinical studies is
utilized, e.g., probes);

2.3 in vivo clinical studies.

On one hand, this thesis contributes to the development of semi-quantitative tech-
niques as follows.

• After having proposed (in a study of March 2020 I coauthored) a standardized
imaging protocol and scoring system specifically designed for COVID-19 patients
(based on 14 scanning areas) [1], the impact of changing the number and location of
scanning areas on the evaluation of COVID-19 (Chapters 4 and 5) and post-COVID-
19 (Chapter 5) patients has been evaluated. This was done to better define the
optimal trade-off between a time-efficient and accurate LUS examination procedure.

• After having proposed (in a study of May 2020 I coauthored) an automatic frame-
based scoring system [2], an automatic aggregation technique has been developed
(Chapter 3) and tested (Chapter 5). The aim of this technique was to pass from
a frame-level classification to a video-level classification, which is the kind of eval-
uation needed by clinicians. The results showed how LUS data acquired with the
currently-available scanners can be used to support diagnosis of lung pathologies.
Specifically, the presented method can be effectively used for an automatic stratifica-
tion of COVID-19 patients. However, some limitations linked to the reproducibility
of results remain. Indeed, as demonstrated in a recent publication I coauthored [3],
even if it is possible to design automatic techniques performing as a clinician, it is not
possible to exceed a given level of agreement, as the application remain operator-
dependent. Nevertheless, the variability of the interobserver agreement evaluated
among clinicians is higher compared to the variability evaluated between clinicians
and automatic algorithms [3]. This confirmed how both the reproducibility and
reliability of the method improves when using automatic algorithms.

On the other hand, this thesis contributes to the development of quantitative tech-
niques as follows.

• The main progress regards the understanding of vertical artifacts. Specifically, both
from the in vitro (Chapters 6 and 7) and in silico (Chapter 8) studies, the mecha-
nisms behind the genesis of vertical artifacts seem to be related to specific resonance
phenomena, rather than reverberations.

• As follows from the previous point, if these phenomena are linked to a resonance, it
is possible to indirectly estimate the spatial distribution of alveoli. Therefore, this
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is functional to the improvement of specificity. This is shown in Chapter 9, where
the potential of exploiting the frequency characterization of vertical artifacts for the
differential diagnosis of pulmonary fibrosis has been proven in a clinical study.

To further summarize the content of this thesis, in Chapter 2, a review of the LUS
literature will be provided, also briefly presenting the novel contributions that represent
the main part of this PhD thesis. The remaining parts of the thesis are organized as
follows. Chapters 3, 4, and 5 will present three contributions on LUS semi-quantitative
approaches. While Chapter 3 will be mainly dedicated to the description of an automatic
semi-quantitative approach, Chapters 4 and 5 will be mainly focused on the evaluation
of a new LUS acquisition protocol and scoring system. Starting from Chapter 6, four
contributions on novel quantitative approaches will be presented. Specifically, Chapters
6 and 7 will describe two in vitro experimental studies, whereas Chapters 8 and 9 will be
focused on an in silico and a clinical study on humans, respectively.

Then, after the description of these seven contributions, the conclusions of this thesis
will be drawn jointly with an overall discussion of the current LUS literature (Section
10.1).
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Chapter 2

Introduction and review of the LUS
literature

This Chapter1 aims at introducing the reader to lung ultrasound (LUS) by describing the
main LUS studies, starting from the first ones, which date back the 60’s. This introductory
part will hence revise the main technical studies in LUS literature, also including the
articles that I authored (novel contributions of this PhD thesis), allowing the reader to
better understand the context within which these articles have been published. Then, in the
following chapters (Chapters 3, 4, 5, 6, 7, 8, 9), these articles will be entirely reported.

2.1 Background

The ability of ultrasound waves to penetrate media having similar acoustic impedances
(e.g., soft tissue) makes them particularly suitable for medical imaging. Moreover, the
presence of similar speeds of sound in human body is fundamental to reconstruct the
anatomy with ultrasound imaging. Specifically, these two characteristics allow clinicians
to anatomically investigate the internal parts of human body in real time without ex-
posing patients to ionizing radiations. However, the anatomical investigation of aerated
organs is not possible as the standard ultrasound imaging assumptions of similar acoustic
impedances and quasi-homogeneous speed of sound in the volume of interest are unmet
because of the presence of air. Indeed, the acoustic impedance of air significantly differs
from that of soft-tissues, causing ultrasound waves to be almost completely reflected when
encountering an acoustic interface formed by these two media. This is extremely relevant
in lungs, as they consist of millions of air-filled alveoli.

The first studies on the use of ultrasound imaging for lung investigation were conducted
by Dunn and Fry in 1961, in which they attempted to estimate ultrasound absorption
and reflection in lung tissue [4]. Similar studies focused on the acoustical characterization
of lung tissue were performed in the following years both in vitro [5–10] and in vivo

1This Chapter appears in:
[J0] F. Mento, U. Khan, F. Faita, A. Smargiassi, R. Inchingolo, T. Perrone, and L. Demi, ”State of The Art in
Lung Ultrasound, Shifting From Qualitative To Quantitative Analyses,” in Ultrasound in Medicine and Biology,
in press, 2022.
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[11]. However, these studies did not spread to clinical practice because of the difficulty in
achieving reproducible estimations.

On the other hand, the first clinical applications of lung ultrasound (LUS) date back
to 1967, when Joyner et al. reported the possible existence of characteristic ultrasound
patterns in patients with pulmonary embolism and pleural effusion [12, 13]. Fifteen years
later, Ziskin et al. observed the so-called ”comet tail artifact” in a patient with a shot-
gun wound in the abdomen [14]. These artifacts were described as ”dense horizontal
reverberation echoes likely caused by the strong reflection of objects having significantly
different acoustic impedances with the background medium” [14]. However, given their
vertical extent, these artifacts are generally referred to as vertical artifacts or comet tail
artifacts. The ”comet tail artifact” was indeed detected by the authors also in canine liver
in correspondence of lead pellets and by imaging glass and metallic rods in a water tank
[14]. The clinical relevance of these artifacts was then highlighted in 1983, when Thick-
man et al. observed them in several tissue-gas interfaces (e.g., diagphram/aerated lung
interface) [15]. A similar artifact, called ”ring-down”, was reproduced in vitro by Avruch
and Cooperberg, who observed these vertical artifacts when a bubble tetrahedron formed
by two layers of soapy bubbles (diameter from 1 to 7 mm) was imaged by an ultrasound
transducer [16]. However, only in the 1990s the clinical use of these vertical artifacts (first
called ”comet tail”) started to rapidly increase thanks to Lichtenstein et al., who observed
a correlation between this artifact and the presence of alveolar-interstitial syndrome [17].
We should also mention an important previous study that compared the sonographic
appearance of pulmonary infarctions with their pathological reports [18]. However, con-
trary to Lichtenstein et al., who compared in vivo the sonographic signs with computed
tomography (CT) anatomical images of patients [17], this study was performed ex vivo
[18].

Following the work of Lichtenstein et al. [17], the use of LUS techniques based on visual
interpretations of imaging artifacts spread rapidly in the clinical world. For example, LUS
vertical artifacts (called ”comets” or ”B-lines”) were exploited to assess extravascular
lung water [19, 20] and differentiate acute cardiogenic pulmonary edema (CPE) from
acute respiratory distress syndrome (ARDS) [21].

In addition to the presence of artifacts, ultrasound can be also used to detect subpleural
consolidations, which consist of anatomical findings that could be imaged at the lung
surface [22]. Specifically, consolidations are areas where lung tissue is substantially de-
aerated, thus making the lung significantly dense. Indeed, in these cases, lung is partially
characterized by acoustical properties similar to those of soft tissues, and can thus be
anatomically imaged.

In clinical practice, the common approach adopted by clinicians consists of visually in-
specting LUS videos to detect the above-mentioned patterns. These qualitative techniques
were reviewed and included in an international consensus on LUS, which is currently the
only consensus publication on LUS [23].

These approaches form the basis of the so-called semi-quantitative techniques, which
nowadays represent the most diffused and utilized strategies in LUS analyses. These
techniques are indeed based on the visual interpretation of LUS patterns, where a score is
assigned depending on the observed patterns, which correlate with the state of lung. As
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an example, the lowest score of a scoring system is generally associated with a continuous
pleural line (i.e., the image representation of the acoustic interface formed by intercostal
tissues and air within lungs) with associated horizontal artifacts (also known as A-lines),
which generally correlate with a healthy lung [1]. Horizontal artifacts represent equally
spaced horizontal repetitions of the pleural line, and their genesis is linked to the presence
of two strong reflectors (the probe and the pleural line), which causes ultrasound waves
to bounce between these two interfaces [24]. As a healthy lung is characterized by a
high level of aeration, with alveoli close to each other, the pleural line forms an acoustic
interface having a reflection coefficient of about 1, thus generating horizontal artifacts in
the image [24]. Figure 2.1 contains examples of horizontal and vertical artifacts, as well
as consolidations.

As the widespread use of these approaches accelerated with the recent outbreak of
the coronavirus disease 2019 (COVID-19) pandemic, a significant part of the literature on
semi-quantitative LUS is related to COVID-19 applications [1, 25–41]. Nevertheless, these
techniques are generally heterogeneous and are influenced by confounding factors, such
as imaging frequency, focal depth, and utilized probes, which are generally not mentioned
in the publications [42]. As a consequence, findings obtained using different approaches
are extremely difficult to compare [42]. Another main problem is related to the strong
operator dependence in the evaluation of LUS patterns and, thus, to the assigned score.

These limitations could be mitigated by adopting a standardized imaging protocol
and scoring system, including technical aspects such as imaging parameters [1]. Moreover,

Figure 2.1: Examples of LUS images acquired with convex (top) and linear (bottom) probes are
shown. Pleural lines, horizontal artifacts, vertical artifacts, and consolidations are indicated in
blue, orange, red, and green, respectively.
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artificial intelligence (AI) algorithms could be exploited to automatically classify LUS data
based on scores, resulting in a more robust and reproducible semi-quantitative method
[2, 43–48].

Because the necessity to develop acquisition strategies specifically designed for lung
has been highlighted not only by clinicians, but also by researchers with technical back-
grounds, the development of quantitative approaches could represent the future of LUS
[49]. The evaluation of correlations between anatomical findings observed with stan-
dard imaging modalities (e.g., chest x-rays and CT), which are linked to histological
observations, and LUS patterns [50–53] should represent an important starting point for
developing ultrasound approaches specifically dedicated to lungs. This comparison could
indeed allow researchers to study the link between the air spaces’ (alveoli) resizing and
spatial reorganization, as caused by different pathologies, and the quantifiable features
of LUS artifacts [24, 54]. Then, these studies could be exploited to better comprehend
LUS artifact genesis, allowing the development of quantitative LUS techniques aimed at
estimating physical properties of lung surface [55–61].

However, the development of quantitative approaches requires the study and analysis
of radiofrequency (RF) data; thus, these solutions are not yet available with clinical
ultrasound imaging scanners [49].

In this introductory part of the thesis we will discuss the main technical publications
on LUS, from semi-quantitative image analysis techniques (Section 2.2) to quantitative
studies (in vitro, in silico, and in vivo; Section 2.3).

2.2 Image Analysis

In this section we will analyze the main contributions on LUS image analysis techniques.
Specifically, model based techniques will be presented in subsection 2.2.1, and DL ap-
proaches in subsection 2.2.2.

2.2.1 Model based techniques

Contreras-Ojeda et al. proposed an approach to distinguish muscular tissues (above
pleural line) from the artifactual structures below the pleural line in ultrasound im-
ages of healthy lung tissues of 13 pediatric patients [62]. Symlet (SYM) and Daubechies
(DB) wavelet-based feature extraction, principal component analysis (PCA) and recursive
backward elimination (RBE) were employed for feature selection, followed by K-nearest-
neighbor based classification. This approach was able to achieve 97.5% of accuracy in
discriminating muscular tissues from artifactual structures. Even though the results seem
promising, the computational cost of the feature extraction phase could represent a rel-
evant drawback for this application. This limitation could indeed strongly affect the
advantage of real-time imaging of LUS.

Beyond that, various pathologies can be assessed by examining the pleural line, the
subpleural regions and presence or absence of horizontal or vertical artifacts. To this end
various techniques have been proposed.

In this regard, work has been done to automate the detection and localization of the
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pleural line [43]. The authors proposed an unsupervised method based on the hidden
Markov model and Viterbi algorithm. Furthermore, Support Vector Machines (SVM)-
based classification was used to evaluate the characteristics of the pleural line, and the
score value for each frame of a given LUS acquisition was assessed based on severity of
the pathology. The proposed method was tested on a subset of the Italian COVID-19
LUS Database (ICLUS-DB), acquired from multiple clinical centers. Results revealed
high image-based accuracy for both unsupervised detection of the pleural line and the
classification performance. This study indicated the potential for real-time implementa-
tion, as the algorithms needed a total of 4 seconds (per image) to detect the pleural line
and assign a score.

Anantrasirichai et al. described a method for restoration of lines in speckle images,
followed by the automatic identification of vertical artifacts [63]. To that purpose, deblur-
ring was performed in radon domain using a total variation blind deconvolution method.
On the other hand, a local maxima technique in the Radon transform domain was used
to identify the vertical artifacts. To evaluate line restoration and detection, 50 simulated
images with varying image size were used. It was found that, for smaller regularization
norms, noise from most of the lines was removed. Detection of vertical artifacts was
evaluated using bedside data from 23 children. Although the approach showed promis-
ing results, it presents a high computational cost (45.75 seconds per image), making it
infeasible for practical application. Moshavegh et al. presented a multistep study for au-
tomatic detection and visualization of vertical artifacts in LUS scans [64]. They identified
the vertical artifacts as connected regions below the pleural line to the bottom end of
the scan. Evaluation of 3,200 frames from healthy subjects and patients with pulmonary
edema revealed that the average number of vertical artifacts was significantly higher in
the patients than the healthy participants. Similarly, another method was presented
by Karakus et al. [65]. This approach was formulated as a non-convex regularization
problem involving a sparsity-enforcing Cauchy-based penalty function and the use of an
inverse radon transform. The proposed method was validated in both radon and image
domains, over examination of six male and three female patients. Results showed promis-
ing detection accuracy with improved identification performance of vertical artifacts when
compared with the method of Anantrasirichai et al. [63]. However, this approach requires
a processing time for a single frame of about 11–13 seconds, thus not allowing real-time
imaging.

When discussing vertical artifacts, it is important to highlight how, given the strong
dependence of vertical artifacts on imaging parameters [60, 66, 67], the count of vertical
artifacts represents a qualitative application, which does not offer high reproducibility.

Moving from the analysis of vertical artifacts to examination of the pleural and sub-
pleural space, a gray-level co-occurance matrix (GLCM) with second-order statistical
textural-based digital analysis of pleural and subpleural space was proposed by Brusasco
et al. [68]. They investigated the discriminating characteristics of a GLCM for differ-
entiating ARDS from acute CPE. The analysis was performed on 47 participants (16
diagnosed with CPE and 8 with ARDS, and 23 declared as healthy). Results revealed
statistical significance for 9 of 11 GLCM features on comparison of ARDS and CPE pa-
tient subgroups with the healthy participants. Similar statistical significance was reported
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on comparison of ARDS with CPE. Conclusively, the proposed method showed potential
in differentiating those with ARDS and CPE from healthy participants along with dif-
ferentiating between patients with ARDS and CPE. Conclusively, it is again important
to highlight how LUS analysis is highly subjective and that several confounding factors
(e.g., imaging parameters and types of scanners) influence the appearance of the relevant
imaging patterns. This leads to high variability among the generated images, affecting the
reproducibility of these results. Moreover, the ground truth used to train AI algorithms
remains based on subjective labeling of clinicians.

2.2.2 Deep learning techniques

Deep Learning (DL)-based analysis of LUS patterns can be applied to assess different
pulmonary diseases and pathologies.

Kulhare et al. developed a convolutional neural network (CNN)-based algorithm to
identify some of the lung features linked to pathological lung conditions. These features
were defined as vertical artifacts, merged vertical artifacts, lack of lung sliding, consoli-
dation and pleural effusion [69]. Ultrasound data from swine lung pathology models were
captured for both normal and abnormal lungs in the form of 100 exams with 2,200 videos
collected in total. The single-shot detection (SSD) framework was applicable to all LUS
features, achieving at least 85% in sensitivity and specificity for all features. Lung fea-
tures critical for diagnosing abnormal lung conditions were detected with greater than
85% accuracy.

To detect and localize the presence of vertical artifacts, Van Sloun and Demi presented
a DL-based method for automatic detection and localization of vertical artifacts in an ul-
trasound scan [70]. A fully CNN was trained to perform this task on B-mode images of
dedicated ultrasound phantoms in vitro and on patients in vivo. The in vitro study in-
cluded 3,162 frames from 10 tissue-mimicking phantoms, while the in vivo study included
5,370 frames from 10 patients. Both showed high classification performance in localizing
vertical artifacts. A gradient-weighted class activation map (grad-CAM) approach was
used to guarantee a minimum level of explainability. Conclusively the method enabled
detection and localization of vertical artifacts in real time.

Another method proposed by Kerdegari et al. was also aimed at automatically de-
tecting and localizing vertical artifacts in LUS videos using DL networks trained with
weak labels [71]. CNN combined with a long short-term memory (LSTM) network and
a temporal attention mechanism was evaluated on LUS scans from 60 patients, totaling
298 examinations. These architectures varied in terms of convolutional networks (2-D or
3-D), presence and absence of temporal attention module along with the LSTM networks.
The 2-D convolutional network with LSTM and attention module outperformed the other
models, allowing the capture of features from both spatial and temporal dimensions. The
model was able to achieve a classification F1-score of 0.81 with a localization accuracy of
67.1% within frames with vertical artifacts.

Baloescu et al. developed and tested a DL algorithm to assess the presence and absence
of vertical artifacts in LUS [72]. A total of 400 consecutive thoracic ultrasound clips, each
from a unique patient, were used. Each of the 400 clips was split into several 2,415 subclips,
rated by two emergency physician point-of-care ultrasound (POCUS) experts. Rating
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was based on a pre-determined ordinal scale from 0 (none) to 4 (severe), representing the
number of vertical artifacts. When compared with expert interpretation for the presence
or absence of vertical artifacts, the model for binary classification produced promising
results with weighted kappa of 0.88 with 95% confidence interval (CI) between 0.79-
0.97. Similar performance was also observed in the severity assessment using multiclass
classification.

DL-based techniques have also been used to count the vertical artifacts present in
the LUS scan. In this regard, Wang et al. proposed a study using a CNN to count
vertical artifacts on a 4,864-image LUS dataset labeled by clinicians [73]. Furthermore,
correlation between the automated count and the clinical parameters was examined. The
clinical dataset was composed of 152 LUS videos corresponding to a total of 4,864 images.
The available labels for each image ranged between 0 and 6, corresponding to the number
of vertical artifacts in the image. The neural network (NN) agreed with the observer (“true
value”) in 43.4% of the images, with an additional 40.8% in images with a deviation of 1.
The intra-class correlation (ICC) for observer difference also revealed that the agreement
between the human count and the output of the NN is high (ICC = 0.791).

Lung sliding is the respirophasic back-and-forth movement of the visceral and parietal
pleural surface. Its presence indicates complete aeration of the lung at the site of probe
placement on the chest wall, while its absence indicates the possibility of pneumothorax.
DL-based techniques have been developed to automatically identify the presence or ab-
sence of lung sliding. In this regard, Mehanian et al. developed and compared several DL
methods for identifying pneumothoraces in 3-second ultrasound videos collected with a
handheld ultrasound system [74]. The first group of methods were based on CNNs paired
with time-mapping pre-processing algorithms, including reconstructed M-mode and the
proposed simplified optical flow transform (SOFT). The second class of algorithm used
a DL architecture that combined CNN for processing spatial information (Inception V3)
with a recurrent network (LSTM) for temporal analysis. To evaluate the methods, a total
of four swine models were used, forming a total of 10 collection sessions per animal. As a
result, a total of 130 positive videos with absence of lung sliding caused by pneumothorax
and 122 negative videos with normal lung sliding were formed. The performance of the
four methods in identifying the absence of lung sliding in swine pulmonary ultrasound
videos was compared. All models learned informative representations of the data, all
achieving area under the curve (AUC) values larger than 0.83 on unseen data.

Similarly, Jaščur et al. presented a novel DL-based automated M-mode classification
method to detect the absence of lung sliding motion in LUS [75]. Automated M-mode
classification leveraged semantic segmentation to select 2-D slices across the temporal
dimension of the video recording. The dataset used to evaluate the study contained
recordings of patients after thoracic surgery and were divided by physicians into two
classes based on the presence and absence of lung sliding. They generated 17,338 frames.
All presented models were pre-trained on the ImageNet database and then fine-tuned for
a maximum of 15 epochs. The training and validation datasets followed the patient-wise
split, and the ratio between them was kept to 1.5/1. Balanced accuracy ranged from 62%
to 78%, with the best-performing model at 64 frames and the worst-performing model at
256 frames.
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Pleural effusion refers to the buildup of excess fluid between the pleural layers outside
the lungs. Tsai et al. aimed to develop an automated system for the interpretation of
LUS of pleural effusion [76]. The standardized protocol followed involved scanning of
six anatomical regions combined with a DL algorithm using a spatial transformer net-
work (STN) providing the basis for automatic pathology classification on an image-based
level. In this work, the DL model was trained using supervised and weakly supervised
approaches, which used frame and video-based ground truth labels, respectively. In total,
623 ultrasound videos were acquired resulting in 99,209 2-D ultrasound images. To per-
form cross-validation, 10 folds of training and test sets were created, in which each patient
appeared at least once in the test set. The video-based labeling approach reached 91.12%
mean accuracy in the test set over the 10-folds, while the frame-based labeling approach
reached 92.38%. In addition, a t-test on the accuracy of the two labeling approaches
revealed no statistically significant difference in performance between the video-based
and frame-based labeling approaches. This significantly reduced the input required from
clinical experts to provide ground-truth labels.

Interstitial lung disease (ILD), appearing as fibrotic and stiffened lung parenchyma,
may lead to symptoms, such as dyspnea, causing respiratory failure. Lung mass is not
uniformly distributed in the lung, and it increases with the degree of fibrosis. Zhou and
Zhang developed a method for analyzing lung mass density of superficial lung tissue using
a deep neural network (DNN) and synthetic data of wave speed measurements with LUS
surface wave elastography (LUSWE) [77]. Data were generated for fibrotic lung tissue,
pulmonary congestion and edema, resulting in a total of 792,000 data measurements con-
sisting of surface wave speed, excitation frequency, lung mass density, and viscoelasticity.
Analyzing the convergence of different optimizers in terms of the validation loss over the
epochs, the Adam optimizer had the highest validation accuracy, 0.992. When assess-
ing the performance of the DNN (trained with synthetic data) with a sponge phantom,
the predicted density from the DNN matched well the measured density of the sponge
phantom, yielding an accuracy of 92%.

Zhou et al. proposed another study to develop a method for analyzing lung mass
density of superficial lung tissue of patients with ILD and healthy participants using
a DNN and LUSWE [78]. Surface wave speeds at three frequencies, predicted forced
expiratory volume (FEV1% pre), ratio of forced expiratory volume to forced vital capacity
(FEV1%=FVC%), age and weight of patients and healthy participants were used as
features for training machine learning (ML) models. Random forest revealed that the
contribution of age and weight were not as high as those of other features and, hence,
these were not used in the training of the DNN model. As it was a retrospective study, 57
patients and 20 healthy participants underwent LUSWE. The evaluation of performance
of the model was based on a train/validation/test (80/10/10) scheme. For the ReLU
(rectified linear unit) and ELU (exponential linear unit), training and validation loss
significantly decreased as the number of training epochs increased. Accuracies came out
to be 84% and 89% for ReLU and ELU, respectively. Comparison of correlation coefficients
with different activation functions in the DNN and ML for the testing dataset revealed
that ELU in the DNN performed comparatively better.

As an extension to the previous study, Zhou et al. proposed in vivo prediction of
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lung mass density for patients with ILD using different gradient boosting decision tree
(GBDT) algorithms based on measurements from LUSWE and pulmonary function test-
ing (PFT) [79]. The study used data similar to those used by Zhou et al. [78]. A fivefold
cross-validation was conducted to assess the performance of different algorithms. Among
the XGBoost, CatBoost, and LightGBM, mean-square errors (MSE) and correlation co-
efficients of the test dataset of three algorithms revealed that XGBoost obtained the best
results.

DL models require high computational power and resources, making them unsuitable
for deployment over lightweight devices such as mobiles and the Internet of Things (IoT).
Furthermore, these models require efficient tuning of the hyperparameters. In the light of
these concerns, Almeida et al. explored computer-aided assessment of pneumonia semi-
ology based on light-weight NNs (MobileNets) [80]. Multitask learning was performed
from online available COVID-19 datasets, for which semiology (overall abnormality, ver-
tical artifacts, consolidations and pleural thickening) was annotated by two radiologists.
The dataset consisted of a total of 12,718 images extracted from different LUS videos.
A 75%/25%, train/test split at the image level was used for validation and testing. Mo-
bileNet outperformed the naive approach for all semiology indicators, with 95% accuracy
for all semiology cases. Furthermore, in classification accuracy of MobileNet trained with
labels provided by a senior radiologist, in comparison to labels independently provided
by the junior radiologist, a high level of inconsistency was detected for mild conditions,
with a mean accuracy of 77%.

On the other hand, Hou et al. proposed the use of an interpretable subspace ap-
proximation with adjusted bias (SAAB) multilayer network to screen the LUS images
[81]. They demonstrated the advantage of using SAAB subspace network to design a
low-complexity, low-cost, low-power-consumption solution for interpreting and visualiz-
ing features of LUS images to confirm the classifier recommendation. A dataset of 2,800
images was used for this study, consisting of 740 horizontal artifact images, 1,150 verti-
cal artifact images and 910 consolidation images. Five hundred sixty images were used
for testing, and 2,240 images were used for training. Greater than 96% accuracy over
the testing data was obtained. In comparison to the CNN models, SaabNet needed to
solve only 2,800 eigenvalues to yield an embedding vector of 1,183 elements and could be
employed on any low cost simple board computers.

Erfanian Ebadi et al. proposed a method for fast and reliable interpretation of LUS
images by use of DL, based on the Kinetics-I3D network [82]. The trained model could
classify an entire LUS scan obtained at point of care, without requiring the use of pre-
processing or a frame-by-frame analysis. The proposed video classifier was compared
with ground-truth classification annotations provided by a set of expert radiologists and
clinicians, which included horizontal artifacts, vertical artifacts, consolidation, and pleural
effusion. A total of 1,530 videos were acquired corresponding to 287,549 frames. The
models were trained and tested with fivefold cross-validation that creates training and
testing sets with 80% (1,225 videos) and 20% (305 videos), respectively, for each fold.
The model was able to produce a classification of an ultrasound video with 240 frames
in 220 ms with accuracy score of 90%. The model learned to classify the severe disease
cases (consolidation and/or pleural effusion) with a high F1-score.
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Shifting from reducing computational complexity of the network to that of the data,
Khan et al. proposed a method to analyze the impact of data compression on an auto-
mated scoring system [83]. The authors presented an automated scoring framework for
reduced LUS data acquired from 20 COVID-19 patients, corresponding to 91,277 frames.
LUS frames underwent spatial downsampling and reduced quantization levels by factors
of 2, 3, 4 and 2, 4, 8, respectively. It was found that the prognostic agreement between ex-
pert LUS clinicians and the employed automatic algorithm ranged from 72.35% to 82.35%
when reducing the data up to 32 times of its original size. This lays the foundation for
efficient automated scoring in resource-constrained environments.

Roy et al. presented a novel fully annotated dataset of LUS image collected from
several Italian hospitals, with labels indicating the degree of disease severity at the frame,
video and pixel levels (segmentation masks) [2]. To evaluate the dataset they introduced
several deep models that addressed relevant tasks for the automatic analysis of LUS
images. In particular, they used a novel deep network, derived from STN, which simul-
taneously predicts the disease severity score associated with an input frame and provides
localization of pathological artifacts in a weakly supervised manner. They also introduced
a new method based on uninorms for effective frame score aggregation at a video level.
The data were acquired from ICLUS-DB, which at the time included a total of 277 LUS
videos from 35 patients (17 COVID-19-positive patients, 4 COVID-19-suspected patients,
14 healthy participants), corresponding to 58,924 frames. Data were split between test
and train sets at the patient level; that is, the same patient was not included in both the
train and test data sets. On the entire test set, frame level F1-score was 70.3%.

To further improve the DL performance, Frank et al. proposed a framework for training
through integration of domain knowledge into DNNs by inputting anatomical features and
LUS artifacts in the form of additional channels containing pleural and vertical artifact
masks along with the raw LUS frames [47]. They used their framework to fine-tune
a ResNet-18 model to classify each frame in its annotated severity score. The trained
strategy and dataset were the same of Roy et al. [2]. The performance overcame the state
of the art with an F1-score of 75.2%, highlighting the potential of domain knowledge
integration to improve DL performance in LUS frame classification.

La Salvia et al. developed a system based on modern DL methodologies to automat-
ically classify patients based on a seven-level scoring system [84]. For this purpose, they
selected ResNet-18 and ResNet-50 architectures. Two thousand nine hundred and eight
frames were carefully selected from a total of 5,400 videos (consisting of 60,000 frames)
to train the models. The data were randomly split into training (75%), validation (15%)
and test (10%) sets. By considering this split strategy and the amount of data (less than
3,000 frames), an accuracy above 96% was achieved.

Mento et al. reported on the level of agreement between DL models and LUS experts,
when evaluating LUS videos [45]. As a result, they evaluated an empirical threshold ap-
proach to aggregate labeled frames to obtain a video-level score. The analyzed population
consists of 82 COVID-19-positive patients corresponding to 314,879 frames. The overall
video-level agreement reached its maximum value (51.61%) when a 1% frame-level thresh-
old was applied. This means that a video was classified with the highest score appearing
in at least 1% of frames in the video. A more relevant result was obtained when evaluating
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the percentage of agreement between experts and DL in the stratification between patients
at high risk of clinical worsening and patients at low risk. In particular, the approach
achieved 85.96% agreement, thus highlighting the possibility of using DL approaches to
automatically stratify COVID-19 patients. This aggregation strategy was later applied
to a larger cohort of patients, comprising 100 COVID-19-positive patients and 120 post-
COVID-19 patients (patients not positive at the time of LUS examination) [29]. Demi et
al.’s study illustrated how the prognostic agreement was 80.45% for COVID-19 patients
and 72.50% for post-COVID-19 patients [29]. The reduced performance on post-COVID-
19 patients could be associated with the presence of LUS patterns not fully compatible
with those obtained from healthy or acute patients [29]. Therefore, it is feasible that the
AI models, which were trained on LUS data from COVID-19-positive patients, were not
able to correctly recognize these patterns [29].

Xue et al. proposed a novel method for severity assessment of COVID-19 patients
from LUS and clinical information [46]. Specifically, the authors stratified the task into
three different steps. In the first step, they performed an LUS pattern segmentation at
frame level by using a Visual Geometry Group (VGG) encoder. Then, in the second step,
they classified LUS videos based on different features, including pattern segmentations
obtained from the first step. Finally, they used the LUS score obtained in the second
step and the patient’s clinical information to assess the overall patient condition. The
reported results showed how classification performance at the video level increased when
pattern segmentations provided in the first step were exploited as additional input fea-
tures. Furthermore, the performance at the patient level improved when video-level LUS
scores (provided in second step) were included as additional features.

Chen et al. developed a technique to automatically classify LUS frames based on a
scoring system [44]. A total of 45 patient were used to acquire 1,527 images assigned
with scores and included in the study. Two different split strategies were tested. In the
first, frames were randomly split between train and test sets, whereas, in the second,
data were split at the patient level. In other words, the split was made to avoid having
similar frames in the training and test datasets. The results showed how the performance
obtained with the first strategy was higher than that with the second. Therefore, these
results highlighted the importance of the splitting strategy when training an automatic
algorithm.

Roshankhah et al. proposed an automatic segmentation method using a CNN to au-
tomatically classify LUS images based on a scoring system [48]. The study was evaluated
by application of a randomly assigned and simple 90%/10% train set/test set split. Fur-
thermore, the impact of splitting the training/test data was analyzed by repeating the
process by performing the split between the train and test data at the patient level. The
accuracy of the whole model at frame level was 95% when data were randomly split. In
contrast, it was 68.7% when data were split at the patient level. These results, consis-
tent with the study of Chen et al. [44], highlighted the importance of reliable splitting
strategies when evaluating the performance of AI in classifying LUS data. Specifically, a
random split at the frame level strongly affects the performance of AI algorithms, leading
to overestimation of the capabilities of the automatic system.

The studies presented in this section are summarized in Table 2.1.
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Publication Study type Amount of data LUS patterns

[62] clinical
22 images,
NP videos,
13 patients

PL

[43] clinical
3,315 images,
58 videos,
29 patients

PL

[63] clinical

50 in silico, 100
clinical images,
NP videos,
23 patients

PL, HA, VA

[64] clinical
3,200 images,
64 videos,
8 patients

VA

[65] clinical
100 images,
NP videos,
9 patients

PL, VA

[68] clinical
564 images,
564 videos,
47 patients

PL

[69] animal
NP images,
2,200 videos,
NP models

PL, VA, CON,
LS

[70] in vitro, clinical

3,162 in vitro
and 5,770 clini-
cal images,
10 in vitro
and 27 clinical
videos,
10 models and
10 patients

VA

[71] clinical
NP images,
NP videos,
60 patients

VA

[72] clinical
28,980 images,
400 videos,
400 patients

VA

[73] clinical
4,864 images,
152 videos,
NP patients

VA

[74] animal
NP images,
252 videos,
4 models

LS
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[75] clinical
17,338 images,
48 videos,
48 patients

LS

[76] clinical
99,209 images,
623 videos,
70 patients

PE

[77]† in silico, in vitro

792,000 param-
eters in silico,
165 parameters
in vitro,
NP models in
silico, 1 model in
vitro

none

[78]† clinical
NP parameters,
77 patients

none

[79]† clinical
NP parameters,
77 patients

none

[80] clinical
12,718 images,
60 videos,
NP patients

VA, PT, CON

[81] clinical
2,800 images,
NP videos,
NP patients

HA, VA, CON

[82] clinical
287,549 images,
1,530 videos,
300 patients

HA, VA, CON,
PE

[83]∗ clinical
91,277 images,
448 videos,
20 patients

HA, VA, CON

[2] clinical
58,924 images,
277 videos,
35 patients

HA, VA, CON

[47] clinical
58,924 images,
277 videos,
35 patients

HA, VA, CON

[84] clinical
2,908 images,
5,400 videos,
450 patients

HA, VA, CON,
PL

[45]∗ clinical
314,879 images,
1,488 videos,
82 patients

HA, VA, CON
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[29]∗ clinical
772,780 images,
3,481 videos,
220 patients

HA, VA, CON

[46] clinical
6,926 images,
1,791 videos,
313 patients

HA, VA, CON,
PL

[44] clinical
1,527 images,
NP videos,
31 patients

PL, HA, VA

[48] clinical
1,863 images,
203 videos,
32 patients

HA, VA, CON,
PL

Table 2.1: Details on image analysis publications. The first column contains references to the
publications. The second column indicates the study type (clinical, in vitro, in silico, or on
animals). The third column reports the amount of data used in each study. If the amount of
images, videos, or patients (models for in vitro, in silico, and animal studies) was not provided
in the study, we use the acronym NP (not provided) in the table. The fourth column indicates
which LUS patterns are investigated (PL = pleural line, HA = horizontal artifacts, VA =
vertical artifacts, PE = pleural effusion, LS = lung sliding, PT = pleural thickening, CON =
consolidations). The asterisk ∗ indicates whether a clinical value exists in the study. For clinical
value we here refer to the existence of a proven relation between the investigated LUS patterns
and/or scores and the clinical state of the patient. The dagger † indicates a study concerning
the assessment of parameters rather than images.

2.3 Investigation of artifact genesis and quantitative studies

In this section we will present the main LUS publications focused on investigation of
vertical artifact genesis, and the main LUS quantitative studies. We will first discuss in
vitro and animal studies (subsection 2.3.1), followed by in silico studies (subsection 2.3.2),
and, finally, the quantitative LUS approaches tested in human clinical studies (subsection
2.3.3).

2.3.1 In vitro and animal studies

One of the first experimental in vitro studies was performed by Soldati et al. in 2011,
where the appearance of LUS vertical artifacts was correlated with the density of wet,
synthetic and partially aerated polyuretane sponges [85]. Specifically, the authors im-
mersed 10 sponges (phantoms) in water and scanned them with a linear probe in five
temporal phases during the drying process to visually observe the different LUS patterns
appearing in the image. The scans revealed a transition from the first phase (completely
wet sponge), characterized by a homogeneously echogenic field of view, also called ”white
lung”, to phases in which vertical artifacts appeared to be more spatially separated and,
thus, the field progressively less echogenic. Therefore, for these models, LUS vertical
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artifacts seem to be density correlated phenomena caused by modification of phantoms’
porosity, which leads to different acoustic permeabilities [85]. In particular, a lower poros-
ity (higher quantity of water filling air spaces) seems to induce greater acoustic permeabil-
ity and greater acoustic interactions with the aerated superficial structures [85]. Similar
results were obtained with ex vivo rabbit lungs, which were examined during mechanical
inflation [86, 87]. Specifically, ex vivo deflated lungs were imaged with an ultrasound
scanner at different levels of expansion, ranging from 87% (maximum lung expansion) to
40% (naturally collapsed lungs) of air content within lungs [86]. By decreasing the air
content, hence increasing acoustic permeability, the observed LUS imaging patterns pass
from a continuous pleural line with horizontal artifacts (associated to healthy lung) to the
progressive presence of multiple vertical artifacts and, finally, ”white lung” [86]. These
results seem to confirm how acoustic lung permeability is a density-related phenomenon
[86]. However, the authors believe that the investigation on vertical artifacts’ genesis
should be focused on the porosity in terms of shape and disposition, as altered density
of peripheral lung can be simply seen as an epiphenomenon of altered peripheral airspace
(PAS) geometry [87].

Following this hypothesis, Demi et al. designed an in vitro study to evaluate the pos-
sibility to characterize the lung structure (alveolar disposition and shape) by analyzing
frequency spectra of vertical artifacts [55]. Lung-phantoms were produced by trapping a
layer of monodisperse microbubbles in tissue-mimicking gel. Two different populations
of phantoms were produced, one with 80-µm-diameter microbubbles and the other with
170-µm-diameter microbubbles [55]. These sizes were selected to mimic the alveolar size
reduction (normal alveolar size equals 280 µm), which is typical of various pathologies
[55]. The phantoms were scanned with a research platform by using a multifrequency ap-
proach in which images were sequentially generated using orthogonal subbands centered
at different frequencies (3, 4, 5, ad 6 MHz with 1-MHz bandwidth) [55]. Vertical arti-
facts appeared with significantly stronger amplitude in specific portions of the frequency
spectrum, highlighting the strong frequency dependence of these artifacts. This was also
confirmed by an analysis on raw RF data [55]. These results suggest exploitation of the
native frequency (i.e., the frequency at which the vertical artifact appears with stronger
intensity) to characterize the state of the lung surface, thus opening to the possibility of
developing a quantitative technique based on analysis of the artifact frequency spectrum
[55]. To design such a quantitative technique, the dependence of vertical artifacts on
different transmission parameters should be quantitatively evaluated. This was the aim
of two recent quantitative studies, in which the dependence of these artifacts’ intensity
on different parameters was assessed in microbubble [60] and thorax [67] phantoms. The
study on microbubble phantoms showed no correlation between the intensity of vertical
artifacts and beam size, thus highlighting how changes in the lateral resolution do not af-
fect the intensity of vertical artifacts [60]. Moreover, the center frequency was found to be
the most impactful parameter in vertical artifact characterization, followed by focal point
position and number of transmitting elements [60]. These results were confirmed by the
second study, which also highlighted the importance of considering the impact of band-
width and ultrasound beam angle of incidence when evaluating the artifact intensity [67].
These parameters indeed represent a significant source of variability in artifact evaluation
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and, thus, should be carefully considered when implementing a quantitative approach
[60, 67]. On one hand, center frequency could be used to characterize the state of lung
surface, whereas, on the other hand, the other imaging parameters should be carefully set
to prevent them from causing strong variations in the artifact intensity [60, 67].

A completely different quantitative approach was proposed by Mohanty et al.-a tech-
nique based on ultrasound multiple scattering that exploits the complex propagation of
sound waves in the lung structure [56]. This approach is a near-field method based on
assessment of the growth of a diffusive halo [56, 88]. Specifically, it aims at estimating
diffusion constant and transport mean free path (L*) of lung parenchyma by using an
acquisition approach in which the elements of an array were fired one by one [56]. Then,
for each transmitted pulse, the received signals were collected on all the elements and
these two parameters estimated [56]. This technique was tested in vitro with a sponge
phantom with varying air volume fractions and both in vivo and ex vivo in rat lungs with
induced pulmonary edema [56]. The results highlighted how a change of 10% of the air
volume fraction corresponded to significant variation of L*. Indeed, when the quantity of
fluid increases, the mean distance between scatterers increases, thus increasing L* [56].
In the following years, similar techniques were experimentally tested to differentiate rat
lungs with pulmonary fibrosis (PF) from healthy lungs [89], detect pulmonary nodules
(regions inside lungs containing no scatterers) [90] and differentiate rat lungs affected by
PF (or edema) from healthy lungs of control rats [91].

In 2017 another group developed a quantitative approach based on LUSWE [57], which
was then tested in vitro with a cellulose sponge filled with water in specific locations [92].
Specifically, water was injected at three locations of the phantom, and a shaker was
placed in contact with its surface to generate harmonic vibrations at different frequencies
(100, 150, and 200 Hz) [92]. An ultrasound probe was then placed at 0.5 cm from the
shaker to detect and measure the waves propagating on the phantom surface [92]. The
measurements were taken at six different stages: dry phantom and phantom injected
with volumes of water from 3 to 15 mL (in 3-mL steps) [92]. The results indicated
how surface wave speeds were generally higher when higher shaker frequencies were used,
resulting in a behaviour similar to that observed in LUSWE measurements on human
lung [92]. Nevertheless, by considering the six stages, the surface wave speeds appeared
to be similar, highlighting the difficulty of assessing the quantity of water by means of
the LUSWE technique [92].

As discussed in the preceding paragraphs, the design of lung phantoms represents an
important step in the development of new LUS quantitative techniques and the investiga-
tion of vertical artifact genesis in a controlled environment. This was the main aim of a
recent work in which different devices (phantoms) were fabricated by using agar cylinders
(or disks), computer numerical control (CNC) milling machines and polyvinyl chloride
(PVC) containers [93]. If imaged by an ultrasound probe, these phantoms were able to
in vitro reproduce vertical artifacts, which changed their visual appearance when selected
imaging parameters were differently set (e.g., pulse amplitude and center frequency) [93].
In a similar study, Kameda et al. produced simple experimental models able to generate
vertical artifacts [66, 94]. Two different models were fabricated: the first consisted of
different materials (i.e., a drop of ultrasound gel, a spindle-shaped juice sac of a mandarin
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orange and a string shaped glucomannan gel) placed on a polypropylene sheet (simulating
pleural line), and the second was made by placing glass beads and plates of different sizes
on the sheet [66, 94]. The authors then imaged these phantoms by evaluating the visual
effect of spatial compound imaging, focal point, center frequency, and probe type (convex
vs linear) on the appearance of vertical artifacts [66, 94]. They qualitatively illustrated
how the impact of these ultrasound machine settings on the vertical artifact morphology
cannot be considered negligible [66, 94].

As mentioned above, the reproduction of LUS patterns in experimental phantoms
has been proven to be an effective strategy to investigate their genesis. However, these
artificial models could significantly differ from human lungs. Therefore, the use of a
large animal model to reproduce LUS imaging patterns could represent an important
tool to mimic the behaviour of human lungs. This was the scope of a recent study that
assessed the usability of a pig model to reproduce LUS patterns of viral pneumonia [95].
Specifically, after anesthetization and intubation, six pigs were mechanically ventilated
and a saline liquid was progressively instilled within their lungs using the one-lung flooding
technique [95]. Then, the lungs were re-ventilated, imaged with an ultrasound scanner,
and the acquired videos were classified based on a scoring system [95]. The LUS score
increases (higher score corresponds to a worse state of lung) as the instilled saline fraction
increases. Moreover, different LUS patterns associated to ARDS-related pneumonia (e.g.,
COVID-19 pneumonia) were observed [95]. Given the obtained results and the easy
implementation of the model, it could represent an important instrument for LUS research,
as it provides, in a more controlled environment, a model similar to humans.

2.3.2 In silico studies

Only recently researchers have started to perform studies on LUS in silico. The first
study investigated the dependence of vertical artifacts on alveolar diameter and spacing
(i.e., distance between alveoli) [96]. The numerical simulations were performed using the
k-Wave MATLAB toolbox [97], which was used to replicate a simplified lung structure.
Specifically, the first 2 centimeters of depth were composed of muscle tissue, whereas
air inclusions (alveoli) were introduced beyond 2 centimeters [96]. These alveoli were
periodically arranged to maintain the same distance between each other, both in the axial
and lateral directions. The spacing and diameter of these air inclusions were then varied,
and the volume of interest was imaged at different center frequencies (from 1 to 5 MHz
with 1-MHz step size and 1-MHz pulse bandwidth) [96]. In particular, the spacing was set
to 198, 263, and 395 µm, which correspond to half of the wavelength in muscle tissue at
4, 3, and 2 MHz, respectively. The quantitative results showed how the relation between
artifact intensity and imaging frequency depends on the complex interaction between
wavelength and alveolar geometries. By evaluation of the intensity when spacing was set
to half of the wavelength, a possible correlation between artifact strength and the ratio
between wavelength and spacing was found [96]. Moreover, as also proven by studies on
rabbit lungs [86, 87], a higher density of lung (percentage of muscle in the air inclusion
area) correlated with more intense vertical artifacts [96].

The second study aimed at reproducing in silico primary LUS patterns, such as hori-
zontal and vertical artifacts [98]. The authors used a custom Fullwave numerical simulator
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to model different acoustic traps, which were able to simulate different fluid portions in
an affected lung region [98]. The area above the simulated lung consisted of simulated
intercostal tissues, extracted by an optical human dataset [98]. The volume of interest
was imaged with a simulated clinical phased array transducer. The results showed how
these simulations were able to reproduce horizontal and vertical artifacts in silico [98].
Furthermore, consistent with other ex vivo [86, 87] and in silico [96] studies, the authors
found a correlation between the density of lung (in terms of fluid portions in the alveoli)
and vertical artifact appearance. Specifically, a 55% fluid portion is needed to detect
vertical artifacts in these simulations [98].

2.3.3 Quantitative LUS imaging, human clinical studies

There have been few LUS clinical studies in humans aimed at testing or developing quan-
titative techniques. Indeed, only few researchers have recently moved in this direction.
The first quantitative studies in humans were performed by Zhang et al., who developed
and applied LUSWE to estimate superficial lung tissue elastic properties [57]. Specifi-
cally, they aimed at differentiating patients with ILD and healthy participants by using
LUSWE [57]. The implemented technique was the same at that applied by Zhou and
Zhang for the in vitro study, in which a handheld shaker was used to generate a 0.1-s
harmonic vibration on the phantom surface [92]. During the clinical study the measure-
ments were taken on both lungs of 10 ILD patients and 10 healthy participants, who were
examined through six intercostal spaces [57]. The lung surface wave speed was measured
three times for each location, i.e., once for each frequency (100, 150, 200 Hz). The results
showed significant differences on the surface wave speed between healthy participants and
patients with ILD [57]. A similar study was conducted in 2019, in which the authors tried
to use LUSWE for assessing ILD patients and systemic sclerosis (SSC) [99]. The tech-
nique was tested on 91 ILD patients (41 with SSC and 50 without SSC) and 30 healthy
participants. As the previous study, the surface wave speeds of patient lungs were signif-
icantly higher than those of control participants. Nevertheless, no significant differences
were reported between ILD patients with SSC and ILD patients without SSC [99]. The
same group applied the LUSWE technique to perform two follow-up studies, aimed at
assessing disease progression in patients with ILD [100] and pulmonary edema [61]. In
both studies correlations between changes in lung surface speed and clinical assessments
were found, highlighting the possibility of using LUSWE for quantitative assessment of
ILD and edema progression [61, 100].

The other LUS quantitative approach that was tested in human clinical studies is
based on LUS spectroscopy [58, 59], and was developed following the findings of a pre-
vious in vitro study [55]. Specifically, the theory underlying these studies consists of
hypothesizing that vertical artifacts originate from the interaction between ultrasound
waves and acoustic traps (or channels) formed at the lung surface when the lung becomes
pathological [58]. The genesis of vertical artifacts seems indeed to be related to the for-
mation of channels consisting of media that can be penetrated by ultrasound, such as
blood, water and tissue [24, 54, 101]. When a sufficient quantity of energy enters these
channels, it can be trapped and progressively irradiated toward the probe with a peri-
odicity depending on the channel’s size and the ultrasound pulse’s frequency [58, 101].
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Estimation of the sizes of these traps could be relevant in discriminating different patholo-
gies, which are characterized by completely different alveolar dispositions and, thus, trap
geometries. Specifically, the native frequency and bandwidth of vertical artifacts could
carry information on, respectively, the size and geometry of the acoustic traps [58, 101].
By exploiting these concepts, Demi et al. presented an image formation protocol able to
capture the frequency dependence of LUS vertical artifacts and visualize it in real time
[58]. The final aim consisted of providing a quantitative evaluation of signals received
from lung. Ten patients with various lung diseases (e.g., PF, pneumonia and adenocarci-
noma) were enrolled, and RF data were acquired by means of a research platform. The
acquisition strategy was based on a multifrequency approach in which four ultrasound
images were formed with pulses having different center frequencies (3, 4, 5 and 6 MHz)
[58]. The pulse repetition frequency (PRF) was fixed at 4 kHz to guarantee that the vol-
ume of interest did not significantly change when considering four images acquired with
different center frequencies. Moreover, to evaluate more precisely the change in vertical
artifacts along the frequency spectrum, a narrow bandwidth (1 MHz) was employed for
each center frequency [58]. The results showed how the appearance of vertical artifacts
significantly varied from patient to patient, and different native frequencies and band-
widths of these artifacts were estimated [58]. The multifrequency approach of Demi et al.
[58] was later proposed by Mento et al. to differentiate PF from other lung pathologies
[59]. Specifically, 26 patients were enrolled; half had idiopathic PF (IPF) and the other
half were affected by different lung diseases (e.g., emphysema, pulmonary hypertension
and asthma). The patients were examined by following the same procedure presented by
Demi et al. [58], and RF data were acquired and analyzed [59]. One thousand twenty-nine
vertical artifacts were detected and their main features (native frequency, bandwidth, and
total intensity) were analyzed [59]. Results revealed how these three parameters could
be exploited to discriminate patients with PF from patients with other lung diseases.
In particular, when all three parameters were considered, an empirically defined binary
classifier was able to achieve 92% specificity and sensitivity. Moreover, statistical analysis
showed that native frequency and total intensity were significant in discriminating PF
from other lung pathologies, wheareas the bandwidth was not [59]. The results obtained
in statistical analysis were consistent with the results achieved when standard classifiers
receiving these three features as input were employed to differentiate patients [59]. In con-
clusion, this study illustrated the potential to discriminate fibrotic patients by exploiting
a quantitative approach based on the frequency and intensity analysis of vertical artifacts
[59].
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Chapter 3

Deep learning applied to lung
ultrasound videos for scoring
COVID-19 patients: A multicenter
study

This Chapter2 presents an automatic semi-quantitative approach for the classification of
LUS videos. Specifically, starting from the frame-based classification of LUS images pro-
vided by pre-trained DL algorithms, we developed an empirical threshold approach to clas-
sify LUS videos. Indeed, even though these DL algorithms are able to automatically assign
a score to each frame composing a video, clinicians need a video-level classification to eval-
uate the state of the patient. Therefore, we developed and tested an automatic threshold
approach to pass from a frame-level classification to a video-level classification. In partic-
ular, the results on a population of 82 COVID-19 positive patients, examined according to
a standardized imaging protocol and consisting of 1,488 videos (314,879 frames), showed
how this approach, based on the output of DL models, can achieve high performance for
the automatic scoring of LUS data.

3.1 Introduction

As of today, February 15, 2021, a total of 108,484,802 coronavirus disease 2019 (COVID-
19) confirmed cases and 2,394,323 deaths have been reported worldwide according to the
World Health Organization WHO [102]. The Americas and Europe are the most hit
WHO regions, with 48,401,821 and 36,573,613 confirmed cases and 1,143,432 and 812,370
deaths, respectively.

COVID-19 causes important complications to the respiratory system, and its symp-
tomatology varies from patient to patient. Even though about 80% of patients show mild

2This Chapter appears in:
[J1] F. Mento, T. Perrone, A. Fiengo, A. Smargiassi, R. Inchingolo, G. Soldati, L. Demi, ”Deep learning applied
to lung ultrasound videos for scoring COVID-19 patients: A multicenter study,” in The Journal of Acoustical
Society of America, vol. 149, no. 5, pp. 3626–3634, May 2021.
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symptoms, the other 20% shows serious complications that need hospital treatments [103].
In this context, both the monitoring of patients and a timely and correct diagnosis are
needed [104]. The most currently used diagnostic tool is the reverse transcription poly-
merase chain reaction (RT-PCR) testing, which is performed by nasopharyngeal swab
[105]. Nevertheless, this test shows a high false negative rate [106]. Another diagnostic
tool is represented by chest computed tomography (CT), which has reported sensitivity
between 61% and 99% and specificity between 25% and 33% [107]. Moreover, chest CT is
not portable, uses ionizing radiations, and needs the patients to be moved within hospi-
tals, thus increasing the contamination risk. In this context, lung ultrasound (LUS) has
been proven to be an important ally for clinicians dealing with COVID-19 patients [32].
Thanks to its main characteristics (real-time imaging, portability, and wide availability),
LUS nowadays represents an important imaging solution that can be applied for triage of
symptomatic patients and patients’ monitoring [32].

However, LUS is yet mainly based on the visual interpretation of imaging artifacts, i.e.,
the horizontal artifacts and the vertical artifacts, thus leading to qualitative and subjective
diagnoses [24]. While the horizontal artifacts are characteristic of a healthy lung (which
forms an acoustic interface named pleural line, which is highly reflective) [24], the vertical
artifacts correlate with several pathologies affecting the lung parenchyma [21, 24, 50, 108].
The appearance of these vertical artifacts is likely caused by the replacement of the volume
previously occupied by air with media acoustically similar to the intercostal tissues (e.g.,
tissue, water, or blood), which allows ultrasound waves to propagate beyond the pleural
line [54]. Although there exist studies that aim at quantitatively evaluating the state of
the lung parenchyma by means of ultrasound technology [55–60], these approaches are
preliminary and not yet suitable for such an emergency context.

Nevertheless, even though a completely objective and quantitative analysis by means
of LUS is not yet available, a proposal for the standardization of LUS in the COVID-19
context has recently emerged [1]. Specifically, a standardized imaging protocol and scoring
system have been proposed, which enable the grading of the lung condition through a
four level scoring system [1]. Different approaches, deep learning (DL) based [2] or signal
processing based [43], have been recently developed to classify LUS frames according
to this four level scoring system [1]. DL based algorithms have been developed on the
basis of the above-introduced imaging protocol and scoring system [2], and are currently
freely available to clinicians worldwide through a web-application [109]. These algorithms
perform automatic scoring and semantic segmentation for each frame of a given LUS video,
which normally contains hundreds of frames. However, clinicians in their practice evaluate
LUS data, not at the frame level, but at the video-level. As an example, studies reporting
the impact of different acquisition protocols can be mentioned [28, 30]. Moreover, a recent
publication has demonstrated the prognostic value of the aforementioned imaging protocol
and scoring system once evaluating the cumulative score, as obtained by adding the single
scores on each of the 14 measurement points [38].

In this paper, expanding on the work on automatic frame-based evaluation, we thus
evaluate the performance of the algorithms previously introduced when evaluating LUS
data at the video and exam level (i.e., looking at the cumulative score on the 14 mea-
surement points). Specifically, DL algorithms derived from Spatial Transformer Networks
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(labeling algorithm) and from U-Nets and DeepLab v3+ (segmentation algorithm) [2]
have been utilized to evaluate LUS data and the obtained results have been compared
with the evaluation performed by expert clinicians (T.P. and A.S.). A total of 314 879
frames have been evaluated, corresponding to 1488 lung ultrasound videos acquired from
82 patients. All patients were COVID-19 positive as confirmed by RT-PCR swab test.

The paper is organized as follows. Both the data acquisition method and the studied
population will be described in Section 3.2.1. Section 3.2.2 will be dedicated to the labeling
procedure, whereas Secs. 3.2.3 and 3.2.4 will present the methods to obtain video-level
scores from frame-level scores. Finally, the results will be presented in Section 3.3, and
the conclusions, together with the discussion, will be summarized in Section 3.4.

3.2 Materials and Methods

3.2.1 Data acquisition

The analyzed population consists of 82 patients (43 male and 39 female, with ages ranging
from 23 to 95 years, and average age equal to 61.1 years) with a diagnosis of COVID-19
positivity by a RT-PCR swab test. Of the 82 patients, 18 (8 male and 10 female, with ages
ranging from 23 to 95 years, and average age equal to 52.1 years) were examined within
the Fondazione Policlinico Universitario Agostino Gemelli (Rome, Italy), and 64 (35 male
and 29 female, with ages ranging from 26 to 92 years, and average age equal to 63.7 years)
within the Fondazione Policlinico San Matteo (Pavia, Italy). The patients were examined
following the acquisition protocol presented by Soldati et al. [1] based on 14 scanning
areas. As a subgroup of patients was examined multiple times (on different dates), a
total of 114 LUS exams were performed (19 at Rome and 95 at Pavia), and 1,488 videos
acquired (237 from Rome and 1,251 from Pavia), consisting of 314,879 frames (28,914
from Rome and 285,965 from Pavia). The data from Pavia have been all acquired using
a convex probe with an Esaote MyLab Twice scanner, and an Esaote MyLab 50, setting
an imaging depth from 8 to 12 cm (depending on the patient) and an imaging frequency
from 5.0 to 6.6 MHz (depending on the scanner). The data from Rome have been all
acquired using a convex probe with an Esaote MyLab 50, an Esaote MyLab Alpha, and a
Philips IU22, setting an imaging depth from 8 to 12 cm (depending on the patient), and an
imaging frequency from 3.5 to 6.6 MHz (depending on the scanner). This study was part of
a registered protocol (NCT04322487) and received approval from the Ethical Committee
of the Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura
a Carattere Scientifico (protocol 0015884/20 ID 3117), and the Fondazione Policlinico
Universitario San Matteo (protocol 20200063198). All patients gave informed consent.

3.2.2 Data labeling

All the 1488 acquired videos were evaluated by expert clinicians (T.P. and A.S.), who
assigned a score ranging from 0 to 3 to each video [1]. We referred to this evaluation
as “Medical Doctor (MD) score”. Moreover, we fed the videos to the DL algorithms
presented by Roy et al. [2] to obtain frame-level scores. As aforementioned in Section
3.1, we exploited two different DL algorithms: the first labeled each frame with a score
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(we referred to these frames as “labeled frames”), and the second provided semantic
segmentation, assigning one or more scores to each frame (we referred to these frames
as “segmented frames”) [2]. The employed DL algorithms have been trained with the
data set presented by Roy et al. [2], which is independent of the data set exploited in
this article. It is important to highlight that data were split at patient level to avoid the
presence of similar frames in train and test sets [2]. Figure 3.1 shows examples of frames
labeled as scores 0, 1, 2, and 3.

3.2.3 Video-level score aggregating labeled frames

To obtain a DL video-level score from the aggregation of the DL frame-level scores, two
strategies have been developed. While the first (presented in this section) is based only on
the labeled frames, the second (presented in Section 3.2.4) combines the labeled frames
with the segmented ones.

In particular, a threshold approach has been implemented and tested, which consists
of assigning to a video the highest score assigned at least at a given percentage of frames
(threshold) composing the video. Therefore, the target would consist in finding the opti-
mal threshold (THOPT ) able to maximize the overall percentage of agreement at video-
level (V all

agr(THi)) between the MD video-level scores (MDSC(p, a)) and DL video-level
scores (DLSC(THi, p, a)), computed as

V all
agr(THi) =

114∑
p=1

14∑
a=1

100 · Vagr(THi, p, a)

1488
, (3.1)

where the video-level agreement for a specific video (exam p and scanning area a) was
computed as

Vagr(THi, p, a) =

{
1, if DIFFSC(THi, p, a) = 0

0, otherwise
(3.2)

with

DIFFSC(THi, p, a) = MDSC(p, a)−DLSC(THi, p, a), (3.3)

Figure 3.1: Examples of frames labeled as scores 0, 1, 2, and 3.
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and THi being the frame-level threshold. It is noticeable how the total number of
videos [denominator in Eq. 3.1] is equal to 1488 rather than 114 × 14 = 1596. In
fact, during some exams it was not possible to scan all the 14 areas due to the patient’s
condition. To find THOPT , V

all
agr(THi) was thus evaluated as a function of THi, which was

varied from 0% to 100% with a 1% step size.
Then, THOPT only was applied to evaluate the performance of this aggregation tech-

nique in correctly scoring the LUS videos. It is clear how this simple approach implicitly
allows the assessment of DL algorithms’ performance [2] at video-level, starting from the
frame-based classification. Therefore, by analyzing the percentage of videos having a DL
video-level score different from the MD score, we implicitly evaluated what the most chal-
lenging scores are. For example, having a high percentage of videos labeled as score 0 by
DL and as 3 by MD would mean that DL algorithms tend to misclassify score 3 as score
0.

Moreover, as previously mentioned in Section 3.1, the prognostic value of the scoring
system [1] has been recently demonstrated [38]. Therefore, we statistically evaluated how
the DL algorithms perform when looking at the cumulative score (exam-based score) rang-
ing from 0 to 42. We indeed assessed the level of agreement between the MD exam based
scores (MDex(p)) and the exam-based scores assigned by DL when applying the afore-
mentioned aggregation technique (DLex(THi, p)), by computing the exam-level agreement
(Eagr(THi, p)) for a specific exam p as

Eagr(THi, p) = MDex(p)−DLex(THi, p), (3.4)

where MDex(p) and DLex(THi, p) are the exam-based scores of MD and DL for exam
p, respectively, computed as

MDex(p) =
14∑
a=1

MDSC(p, a)

DLex(THi, p) =
14∑
a=1

DLSC(THi, p, a). (3.5)

Specifically, we focused on the DL performance at exam-level when THOPT is applied
to each video.

3.2.4 Video-level score aggregating labeled and segmented frames

The aggregation strategy presented in this section is based on the combination of labeled
and segmented frames. Specifically, a further step was added to the threshold approach
based only on labeled frames (Section 3.2.3).

First, since the segmentation algorithm could provide multiple scores to each frame,
we considered each segmented frame labeled only with the highest score assigned by the
segmentation algorithm. We hence adopted a worst case strategy, as generally done in
clinical practice. Then, we applied the same approach as Section 3.2.3 to find THOPT

able to maximize the overall percentage of agreement at video-level. However, in this
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case, the videos scored as 0 or 2 by DL when evaluating only the labeled frames were
additionally processed by applying a threshold approach to the segmented frames. In

Figure 3.2: The video-level agreement as a function of threshold THi is shown (first algorithm,
Section 3.2.3). The overall percentage of agreement at video-level (V all

agr(THi)) is depicted with
a dashed black line and the overall video-level agreement with the optimal threshold THOPT =
1% (V all

agr(THOPT )) is represented by a red point. The video-level agreement for scores 0, 1, 2,
and 3 is indicated by light blue, light green, orange, and red lines, respectively.

Figure 3.3: The video-level agreement and disagreement with the optimal threshold THOPT =
1% is shown (first algorithm, Section 3.2.3). The overall video-level agreement (V all

agr(THOPT ))
is depicted in blue. The percentage of videos with disagreement between the MD scores and the
DL scores is represented with different colors. A level of disagreement of 1, 2, and 3 points is
represented by different tonalities of green, orange, and red, respectively.
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particular, a frame-level segmentation threshold (THsegm
i ), varied from 0% to 100% with

a 1% step size, was applied to these videos. We chose to test this approach in order
to refine the aggregation technique presented in Section 3.2.3 for those scores (0 and
2) that were confused most often by the DL (see Section 3.3.1). It should be added
that results showed us that only using the segmentation algorithm would have led to
worse overall results in terms of agreement when compared to the aggregation technique
presented in Section 3.2.3. Therefore, by using this second approach, we evaluated the
overall percentage of agreement at video-level (V all

agr(THi, TH
segm
i )) as a function of THi

and THsegm
i ), for a total number of 100 × 100 = 10 000 combinations of video-labeling.

Specifically, we analyzed the optimal combinations of THi and THsegm
i able to maximize

V all
agr(THi, TH

segm
i ). Therefore, for each value of THi, there is a corresponding value

of THsegm
i able to maximize V all

agr(THi, TH
segm
i ) for that specific THi. We referred to

this frame-level segmentation threshold as THsegm
OPTi

. Once the optimal combination of
thresholds (THOPT , TH

segm
OPT ) was found, it was applied to each video to evaluate the

performance at video-level and exam-level as done in Section 3.2.3.
Moreover, an analysis has been added by changing the number of analyzed videos.

Specifically, the number of MD scores in the data set are not equally distributed, as
the percentage of videos scored as 0, 1, 2, and 3 is about 21.44% (319 videos), 20.09%
(299 videos), 33.94% (505 videos), and 24.53% (365 videos), respectively. Therefore,
we normalized the distribution to have an equal number of videos scored by MD with

Figure 3.4: Boxplot showing the exam-level agreement (Eagr(THi)) as a function of the frame-
level threshold THi, ranging from 0% to 50% with a 1% step size (first algorithm, Section 3.2.3).
The median values are depicted with horizontal red lines, and the outliers are represented by
red crosses. The lower and upper bounds of the boxes represent the 25th and 75th percentiles,
respectively, whereas the maxima and the minima are represented by horizontal black lines.
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each score (25% percentage of videos labeled by MD as scores 0, 1, 2, and 3). As a
consequence, we selected all the videos scored as 1 by MD (i.e., the less frequent score),
and then we randomly selected an equal number of videos (299) scored by MD as 0, 2,
and 3, for a total number of 1196 analyzed videos. We hence assessed the performance of
the DL aggregation technique at video-level by setting the previously-obtained optimal
combination of thresholds (THOPT , TH

segm
OPT ). This analysis allowed us to evaluate how the

selected thresholds perform when considering a different number of videos, which have a
normalized distribution of scores, and thus implicitly assessing the thresholds’ reliability.

As final analysis, we evaluated the video-level performance of this aggregation tech-
nique (applying the optimal combination of thresholds (THOPT , TH

segm
OPT ) when consider-

ing score 0 and score 1 as the same score, called “score 0/1”. In fact, score 1 represents a
transition score (between a healthy lung and pathological lung with consolidations) that
is characterized only by small alterations of the pleural line and is therefore challenging
to be detected by DL algorithms. As a consequence, this analysis allowed us to assess
the DL video-level performance in distinguishing a healthy or slightly altered lung (score
0/1) from a lung with advanced pathological conditions (score 2 and score 3).

3.3 Results

3.3.1 Video-level score aggregating labeled frames

Figure 3.2 shows the video-level agreement as a function of threshold THi. The overall
video-level agreement V all

agr(THi) reaches its maximum value (51.61%) when a 1% frame-
level threshold (THi = THOPT = 1%) is applied, whereas its minimum value (24%) is

Figure 3.5: Exam-level agreement (Eagr(THOPT )) when the optimal threshold is applied to the
first algorithm (Section 3.2.3). The different colors represent the percentage of exams having a
disagreement within a specific interval.

32



found when applying a 100% frame-level threshold. Moreover, V all
agr(THi) has a decreasing

trend when evaluating values of THi from 1% to 100%. In contrast, when THi is set to
0%, the overall video-level agreement is low (24.53%), and corresponds to the percentage
of videos scored as 3 by MD. In fact, when THi is set to 0%, all the videos are scored
as 3 by DL, leading to a 100% video-level agreement for score 3, and a 0% video-level
agreement for the other scores. Furthermore, the video-level agreement for score 0 has
an increasing trend, whereas, in contrast, score 3 has a decreasing trend of video-level
agreement. These behaviors were expected as, by increasing THi, a higher percentage
of frames scored as 3 by DL are needed to score the video as 3. For this reason, also
the video-level agreement of score 2 has a decreasing trend for values of THi from 1%
to 100%. However, the score 2 video-level agreement is always higher (maximum value
about 83.56% at THOPT = 1%) than the score 3 video-level agreement in this range of THi

(maximum value about 36.16% at THOPT = 1%). The poorest performance is observed
when evaluating the score 1 video-level agreement, which ranges between 0% and 7.02%
(6.02% at THOPT = 1%).

Figure 3.3 shows a perfect agreement V all
agr(THOPT ) for 51.61% of the videos, which

increases to 86.96% when allowing a disagreement up to 1 point. However, for a significant
number of videos, DL tends to misclassify score 3 as score 2 (14.18% of videos), score 1
as score 2 (11.29% of videos), and score 0 as score 2 (7.12% of videos). In comparison,
applying the same procedure to the algorithm providing the semantic segmentation a
perfect agreement was obtained for 50.87% of the videos, which increases to 83.00% when
allowing a disagreement up to 1 point.

As regards the exam-based score, the level of agreement Eagr(THi) as a function of
THi is depicted in Fig. 3.4. In particular, it is observable how the boxes representing

Figure 3.6: The exam-based cumulative scores for each LUS exam p are depicted (first algorithm,
Section 3.2.3, applied with optimal threshold THOPT ). MD exam-based scores (MDex(p)) and
DL exam-based scores ((DLex(THOPT , p))) are depicted in blue and red bars, respectively. Each
exam is colored in blue, green, purple, and red, depending on the disagreement interval.

33



Eagr(THi) widen as THi increases when THi ranges from 1% to 50%. Therefore, the
variability of Eagr(THi) increases as THi increases, as well as its median values. When
considering the optimal threshold THOPT = 1%, the median value is close to 0 (i.e., 0.5),
whereas the 25th and 75th percentiles are -3 and 4, respectively. Adopting the optimal
threshold thus leads to an exam-level agreement of 33.33%, 64.03%, and 93.86% when
allowing a disagreement of 2, 5, and 10 points (Fig. 3.5).

The exam-based cumulative scores for each LUS exam p [MDex(p) and DLex(THOPT ,
p)] are depicted in Fig. 3.6. In the stratification between patients at high risk of clinical
worsening (exam-based cumulative score > 24 [38]) and patients at low risk (exam-based
cumulative score ≤ 24 [38]) the percentage of agreement between MD and DL is 85.96%.

3.3.2 Video-level score aggregating labeled and segmented frames

The video-level agreement as a function of a combination of thresholds (THi, TH
segm
OPTi

)

is shown in Fig. 3.7. The overall video-level agreement V all
agr(THi, TH

segm
OPTi

) is maxi-
mum (54.91%) when an 8% frame-level threshold and a 63% frame-level segmentation
threshold (THi = THOPT = 8%, THsegm

OPTi
= THsegm

OPT = 63%) are applied. Also in this

case, V all
agr(THi, TH

segm
OPTi

) has a decreasing trend when evaluating values of THi from 1% to

100%. However, differently from the first algorithm (Section 3.2.3), the V all
agr(THi, TH

segm
OPTi

)

Figure 3.7: The video-level agreement as a function of threshold THi and THsegm
i is

shown (second algorithm, Section 3.2.4). The overall percentage of agreement at video-level
(V all

agr(TH
segm
OPTi

)) is depicted with a dashed black line. The values of THsegm
OPTi

for each THi are
depicted with a purple dashed line. The overall video-level agreement with the optimal combi-
nation of thresholds (THOPT = 8%; THsegm

OPT = 63%) (V all
agr(THOPT , TH

segm
OPT )) is represented by

a red point. The video-level agreement for scores 0, 1, 2, and 3 is indicated by light blue, light
green, orange, and red lines, respectively.
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values do not significantly vary (between 50.74% and 54.91%). The video-level agreement

Figure 3.8: The video-level agreement and disagreement with the optimal combination of thresh-
olds (THOPT = 8%; THsegm

OPT = 63%) is shown (second algorithm, Section 3.2.4). The overall
video-level agreement (V all

agr(THOPT , TH
segm
OPT )) is depicted in blue. The percentage of videos

with disagreement between the MD scores and the DL scores is represented with different col-
ors. A level of disagreement of 1, 2, and 3 points is represented by different tonalities of green,
orange, and red, respectively.

Figure 3.9: Exam-level agreement (Eagr(THOPT , TH
segm
OPT )) when the optimal combination of

thresholds is applied to the second algorithm (Section 3.2.4). The different colors represent the
percentage of exams having a disagreement within a specific interval.
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of score 3 is higher (between 58.36% and 80.00%) than the one obtained with the first
algorithm (between 2.19% and 36.16%; see Fig. 3.2). In contrast, the video-level agree-
ment of score 0 is lower (between 56.11% and 75.86%) than the one obtained with the
first algorithm (between 61.44% and 99.37%; see Fig. 3.2). These different behaviors are
due to the additional step applied to the videos scored as 0 or 2 by DL when using only
the threshold on labeled frames (THi). Indeed, those videos are reprocessed by evaluating
the segmented frames, which are more sensitive to score 3, thus leading to an increased
number of frames labeled as 3 and a decreased number labeled as 0. The score 1 video-
level agreement remains poor (between 1.34% and 7.02%), whereas, when considering THi

ranging from 1% to 40%, the score 2 video-level agreement is lower (between 50.69% and
75.05%) than the one obtained with the first algorithm (between 51.68% and 83.56%).
Figure 3.7 also shows how a significant change of the video-level agreement of scores 0
and 3 happens at THi = 17%, i.e., when THsegm

OPTi
passes from 63% (at THi = 16%) to

18%.
Results in Fig. 3.8 show a perfect agreement for 54.91% of the videos, and this

percentage increases to 87.57% when allowing a disagreement up to 1 point. Nevertheless,
for a relevant number of videos, DL tends to misclassify score 1 as score 0 (9.41% of videos),
score 3 as score 2 (8.53% of videos), and score 1 as score 2 (8.27% of videos).

Figure 3.9 shows how an exam-level agreement of 38.60%, 71.06%, and 93.86% is
achieved when allowing a disagreement of 2, 5, and 10 points. The exam-based cumula-
tive scores for each LUS exam p (MDex(p)) and DL exam-based scores (DLex((THOPT ,
THsegm

OPT ), p)) are depicted in Fig. 3.10. It is clear from Fig. 3.10 how the second algorithm
(Section 3.2.4), contrary to the first (see Fig. 3.6), tends to assign higher scores, thus over-

Figure 3.10: The exam-based cumulative scores for each LUS exam p are depicted (second
algorithm, Section 3.2.4, applied with the optimal combination of thresholds (THOPT , TH

segm
OPT ).

MD exam-based scores (MDex(p)) and DL exam-based scores (DLex((THOPT , TH
segm
OPT ), p)) are

depicted in blue and red bars, respectively. Each exam is colored in blue, green, purple, and
red, depending on the disagreement interval.
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estimating the patient’s condition. In the stratification between patients at high risk of
clinical worsening and patients at low risk [38], the percentage of agreement between MD
and DL is 83.33%.

As shown in Fig. 3.11, the overall video-level agreement does not significantly change
when employing a different number of videos (normalized distribution of scores). In fact,
even though Fig. 3.11 shows a perfect agreement for a lower percentage of videos (52.51%
versus 54.91%), the percentage is very similar (87.81% versus 87.57%) when allowing a
disagreement up to 1 point. Also in this case, the DL tends to misclassify, for a significant
number of videos, score 1 as 0 (11.71% of videos), score 1 as 2 (10.28% of videos), and
score 3 as score 2 (8.70% of videos).

The performance at video-level significantly improves when considering score 0 and
score 1 as the same score (score 0/1). Specifically, as shown in Fig. 3.12, the overall
video-level agreement increases to 65.59% (+10.68% compared to the performance with
all four scores).

3.4 Discussion and Conclusions

Thanks to its main characteristics, i.e., safety, cost effectiveness, real-time imaging, and
portability, LUS is nowadays widely adopted by clinicians to extract important informa-

Figure 3.11: Video-level performance when the normalized distribution is analyzed (25% of
videos labeled by MD for each score). The video-level agreement and disagreement with the
optimal combination of thresholds (THOPT = 8%; THsegm

OPT = 63%) is shown (second algorithm,
Section 3.2.4). The overall video-level agreement (V all

a gr(THOPT , TH
segm
OPT )) is depicted in blue.

The percentage of videos with disagreement between the MD scores and the DL scores is rep-
resented with different colors. A level of disagreement of 1, 2, and 3 points is represented by
different tonalities of green, orange, and red, respectively.
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tion on the state of the lung. These characteristics make LUS extremely suitable for
emergency contexts [24], such as the COVID-19 pandemic [1, 32], where the monitoring
and stratification of patients are fundamental.

However, to make LUS a reliable instrument for the patients’ evaluation, a standard-
ized protocol is needed. In this sense, an acquisition protocol and a scoring system,
specifically designed for COVID-19 patients, have been recently proposed [1].

We acquired 1488 LUS videos from 82 patients following the above-mentioned protocol
[1], and fed all the 314 879 frames to pre-trained DL algorithms [2], which provided both
a frame-based classification and semantic segmentation, assigning a score from 0 to 3
[1] to each frame. Nevertheless, clinicians are interested in a video-level classification.
Therefore, we evaluated possible solutions to aggregate the labeled frames to obtain a
video-level score. In particular, we tested two threshold approaches (Secs. 3.2.3 and
3.2.4) and evaluate the video-level and exam-level agreement between expert clinicians
(which previously scored each video) and the DL (Section 3.3).

The results show how applying a threshold (THi) only on labeled frames slightly
outperforms an approach based only on segmented frames (perfect agreement for 51.61%
and 50.87% of videos, respectively). However, when the thresholds on labeled (THi) and
segmented (THsegm

i ) frames are combined, the video-level performance improves (perfect
agreement for 54.91% of the videos). As regards the exam-based evaluation, the exam-level
agreement is higher when applying the combined strategy (Section 3.3.2) and allowing a

Figure 3.12: Video-level performance when scores 0 and 1 are treated as a unique score (score
0/1). The video-level agreement and disagreement with the optimal combination of thresholds
(THOPT = 8%; THsegm

OPT = 63%) is shown (second algorithm, Section 3.2.4). The overall video-
level agreement ((V all

a gr(THOPT , TH
segm
OPT ))) is depicted in blue. The percentage of videos with

disagreement between the MD scores and the DL scores is represented with different colors. A
level of disagreement of 1 and 2 points is represented by different tonalities of green, and orange,
respectively.
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disagreement of 2 and 5 points (38.60% and 71.06% versus 33.33% and 64.03%), but is
equal when allowing a disagreement of 10 points (93.86%). Moreover, when evaluating
the percentage of agreement between MD and DL in the stratification between patients
at high risk of clinical worsening and patients at low risk [38], the approach based only
on labeled frames (Section 3.2.3) outperforms the combined approach (Section 3.2.4) of
about 2.63% (85.96% versus 83.33%).

In conclusion, the combined approach generally outperforms the first approach (Section
3.2.3). However, the improvement is not significant, and the first approach seems more
stable to threshold (THi) variations (see Fig. 3.2). Therefore, the first approach can be
considered as a self-standing strategy to classify LUS videos starting from a frame-based
classification. Nevertheless, the semantic segmentation remains essential for clinicians, as
it provides the explainability of the decision by highlighting the specific LUS patterns.

As for future work, we aim at expanding the existing database and training the DL
algorithms not on fame-based labeled data but on video-based labeled data, which is more
consistent with the approach followed by clinicians when evaluating LUS videos.
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Chapter 4

On the Impact of Different Lung
Ultrasound Imaging Protocols in the
Evaluation of Patients Affected by
Coronavirus Disease 2019, How
Many Acquisitions Are Needed?

This Chapter3 presents a preliminary study aiming at evaluating how many scanning areas
should be considered during a LUS examination of COVID-19 patients. It is indeed fun-
damental to find the optimal trade-off between the acquisition time and accuracy. Specif-
ically, to reduce the scanning time, a lower number of acquisition areas is preferred, but
this could lead to underestimations. In this study, the results obtained with the 14-areas
protocol we previously developed were compared with other protocols based on 4, 8, 10, and
12 areas. These results showed how the posterior areas are fundamental to capture the
most important findings in patients with COVID-19, and how a 12-areas protocol seemed
to be a better trade-off between acquisition time and accuracy.

4.1 Introduction

The use of lung ultrasound (LUS) has widely spread during the coronavirus disease 2019
(COVID-19) pandemic [32]. Thanks to its main characteristics (real-time imaging, safety,
portability, and availability), LUS can be used for stratification and monitoring of patients
with COVID-19, as well as for triage of symptomatic patients. Lung ultrasound had shown
its capability to detect alterations along the lung surface even before the COVID-19 pan-
demic. Nevertheless, being mainly based on the interpretation of imaging artifacts, e.g.,

3This Chapter appears in:
[J2] F. Mento, T. Perrone, V. N. Macioce, F. Tursi, D. Buonsenso, E. Torri, A. Smargiassi, R. Inchingolo,
G. Soldati, L. Demi, ”On the Impact of Different Lung Ultrasound Imaging Protocols in the Evaluation of
Patients Affected by Coronavirus Disease 2019: How Many Acquisitions Are Needed?,” in Journal of Ultrasound
in Medicine, vol. 40, no. 10, pp. 2235-2238, October 2021.
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horizontal (A-lines) and vertical (B-lines) artifacts, LUS leads to qualitative and subjec-
tive analyses [42]. Standardization is therefore a crucial aspect, especially for defining the
optimal imaging settings and the most suitable transducer. Moreover, it is fundamental
to favor the reproducibility and increase the accuracy of LUS findings. In this pandemic
context, a proposal for LUS standardization was recently presented, in which a 4-level
score was defined, together with the acquisition time, transducers, imaging settings, and
landmarks [1]. Other protocols and scanning procedures were proposed both during the
COVID-19 pandemic and previously [25]. Finding the optimal trade-off between the ac-
quisition time and accuracy represents one of the main challenges. Specifically, to reduce
the scanning time, a lower number of acquisition areas is preferred, but this could lead to
underestimations.

4.2 Materials and Methods

In this multicenter study, we investigated how investigating different scanning areas influ-
ences the evaluation of a patient. Specifically, we acquired LUS videos from 88 patients
by following the protocol of Soldati et al. [1] based on 14 scanning areas per patient.
A score ranging from 0 to 3 was assigned to each video, according to the 4-level scoring
system [1]. Successively, each patient was classified according to the highest score (from
0 to 3) assigned to his or her 14 videos. Finally, we considered different subgroups of
scanning areas to reevaluate the worst score of each patient and compared this value with
the worst score obtained by the reference protocol [1]. The percentage of agreement was
hence computed by summing the number of patients sharing the same worst score from
the reference protocol [1] and dividing it by the total number of patients. As done by
Smargiassi et al. [30], we first evaluated the level of agreement by separately considering
only the anterior (labeled 11, 12, 13, and 14 [1]), lateral (labeled 7, 8, 9, and 10 [1]), and
posterior (labeled 1, 2, 3, 4, 5, and 6 [1]) areas. Then we computed the level of agreement
for the 3 protocols based on 4, 8, and 12 scanning areas [25]. We named the analyzed sys-
tems system 1 (4 areas), system 2 (8 areas), system 3 (12 areas), and system 4 (14 areas).
To further investigate the specific impact of the posterior areas, we analyzed the level of
agreement for 3 modified versions of system 4 (with 10 areas instead of 14) obtained by
considering all of the anterior and lateral areas together with the basal posteriors (1 and
4), middle posteriors (2 and 5), or apical posteriors (3 and 6).

The patient population consisted of 88 patients with a diagnosis of COVID-19 posi-
tivity by a reverse transcription polymerase chain reaction swab test. Of the 88 patients
(48 male and 40 female), 9 were examined within the Lodi General Hospital (Lodi, Italy),
29 within the Fondazione Policlinico Universitario Agostino Gemelli (Rome, Italy), and
50 within the Fondazione Policlinico San Matteo (Pavia, Italy). This study was part of
a protocol that has been registered (NCT04322487) and received approval from the Eth-
ical Committee of the Fondazione Policlinico Universitario Agostino Gemelli, Istituto di
Ricovero e Cura a Carattere Scientifico (protocol 0015884/20 ID 3117), of Milano area 1,
the Azienda Socio-Sanitaria Territoriale Fatebenefratelli-Sacco (protocol N0031981), and
the Fondazione Policlinico Universitario San Matteo (protocol 20200063198). All patients
gave informed consent. The patients’ ages ranged from 26 to 95 years (average, 59.9
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years).

4.3 Results and Conclusions

Figure 4.1 shows the distributions of scores for anterior, lateral, and posterior areas. The
highest percentage of score 0 (35.23%) was observed in the anterior areas. In contrast,
posterior areas showed the highest percentage of score 3 (30.87%) compared to anterior
(10.80%) and lateral (16.76%) areas. Jointly considering score 2 and score 3, the overall
percentages for the anterior, lateral, and posterior areas were 38.35%, 54.26%, and 58.52%,
respectively. Therefore, the highest scores were focused on the lateral and posterior areas,
whereas the lowest scores were focused on the anterior area. As a consequence, the levels
of agreement with system 4 for just the anterior, lateral, and posterior areas were 40%,
58%, and 92% (Figure 4.1). These results were consistent with the results achieved by
Smargiassi et al. [30] and highlight the importance of the posterior areas.

Figure 4.2, top, shows how the distributions of scores vary with different systems: i.e.,
system 1 (scanned areas, 7, 9, 12, and 14 [1]), system 2 (scanned areas, 7–14 [1]), system
3 (scanned areas, 1, 3, 4, 6, and 7–14 [1]), and system 4 (scanned areas, 1–14 [1]). Of
particular interest is the distribution of score 3, whose percentage values were 14.78%,
14.20%, 19.90%, and 21.72% for systems 1, 2, 3, and 4, respectively. Consequently, the
levels of agreement with system 4 for systems 1, 2, and 3 were 57%, 70%, 99% (Figure 4.2,
top). This result suggests that the 12-areas scanning protocol [25] leads to performance
comparable with that of the reference protocol (14 areas) [1]. Figure 4.2, bottom, shows

Figure 4.1: The overall distribution of assigned scores divided per specific area (anterior, lateral,
and posterior) is depicted on the left side. The percentage of scores assigned for each area and
for each patient is depicted in the center. The level of agreement for all of the patients’ scanning
in the different areas is shown on the right side (For further details about the structure of
agreement graphs, see Smargiassi et al [30].) Each patient was classified according to the worst
score. The reference system is system 4.
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Figure 4.2: The overall distribution of score considering the 4 systems is depicted on the top
left. The level of agreement between systems 1, 2, and 3 with respect to system 4 is also shown
on the top. (For further details about the structure of agreement graphs, see Smargiassi et al
[30].) The distribution of each score in the posterior areas (basal, middle, and apical) is also
depicted on the bottom left. The level of agreement between the 3 modified versions of system 4
(10 zones instead of 14: i.e., all of the anterior and lateral areas together with apical posteriors,
middle posteriors, or basal posteriors) with respect to system 4 is also shown on the top.

the score distributions for the posterior areas. The highest percentage of score 0 (52.63%)
was observed when scanning the apical posterior areas, whereas the highest percentage of
score 3 (46.01%) was observed when scanning the basal posterior areas. Consequently, the
levels of agreement between system 4 and the modified systems [25] were 80%, 89%, and
95% when the scanned posterior areas were the apical, middle, and basal, respectively.
This highlights the importance of scanning basal posterior areas.

To conclude, the results show that the posterior areas are fundamental to capture
the most important findings in patients with COVID-19. Moreover, the 12-areas system
seems to be a better trade-off between the acquisition time and accuracy. However, the
10-areas system also seems to be sufficiently accurate, as long as the basal posteriors are
included.
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Chapter 5

Lung Ultrasound in COVID-19 and
Post-COVID-19 Patients, an
Evidence-Based Approach

This Chapter4 presents an extensive study analyzing the impact of different LUS imaging
protocols on the evaluation of COVID-19 and post-COVID-19 LUS data. Specifically, LUS
data from 220 patients were collected, 100 COVID-19 positive and 120 post-COVID-19.
A validated and standardized imaging protocol based on 14 scanning areas and a 4-level
scoring system was used. This dataset was exploited to compare the capability of 5 imaging
protocols, respectively based on 4, 8, 10, 12, and 14 scanning areas, to intercept the most
important LUS findings. This to evaluate the optimal trade-off between a time-efficient
imaging protocol and an accurate LUS examination. We also performed a longitudinal
study, aimed at investigating how to eventually simplify the protocol during follow-up.
Additionally, we present results on the agreement between AI models and LUS experts
with respect to LUS data evaluation. A 12-areas protocol emerges as the optimal trade-off,
for both COVID-19 and post-COVID-19 patients. For what concerns follow-up studies,
it appears not to be possible to reduce the number of scanning areas. Finally, COVID-19
and post-COVID-19 LUS data seem to show differences capable to confuse AI models that
were not trained on post-COVID-19 data, supporting the hypothesis of the existence of
LUS patterns specific to post-COVID-19 patients.

5.1 Introduction

During the recent coronavirus disease 2019 (COVID-19) pandemic, lung ultrasound (LUS)
has emerged as a powerful ally for clinicians. In fact, thanks to ultrasound technologies
portability, cost-effectiveness, and safety, LUS has been utilized extensively around the

4This Chapter appears in:
[J3] L. Demi, F. Mento, A. Di Sabatino, A. Fiengo, U. Sabatini, V. N. Macioce, M. Robol, F. Tursi, C. Sofia,
C. Di Cienzo, A. Smargiassi, R. Inchingolo, T. Perrone, ”Lung Ultrasound in COVID-19 and Post-COVID-19
Patients, an Evidence-Based Approach,” in Journal of Ultrasound in Medicine, Online ahead of print, December
2021.
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world to assess the condition of the lung in patients suspected or affected by COVID-19
[1, 32, 110–116]. Specifically, LUS has been utilized to intercept the presence of COVID-
19-associated interstitial pneumonia, and monitor its evolution. To this end, a variety of
imaging protocols and scoring systems have been proposed in the literature [25]. However,
fundamental aspects such as the amount and spatial distribution of areas of the chest to
be scanned are often defined arbitrarily and not following an evidence-based approach.
Defining the right amount and distribution of scanning areas is of significant importance
for LUS, given that ultrasound imaging can only provide local information on the status
of the lung surface. Consequently, reducing the scanning areas in order to simplify the
examination does impact directly on the extent of the inspected lung surface. This is
particularly relevant for COVID-19, given the patchy distribution of the relevant findings
[30, 117–121]. Moreover, extended studies on LUS findings on post-COVID-19 patients
are currently lacking. Therefore, in this multicenter study we investigate the impact of
the amount and distribution of scanning areas on the accuracy of the LUS examination.
To this end, we analyzed LUS data acquired on a population of 220 patients. Specifically,
a 14-areas acquisition protocol and a 4-level scoring system were utilized. The prognostic
value of this approach has been investigated through a study conducted at the Fondazione
Policlinico San Matteo (Pavia, Italy), and involving 52 patients [38]. Results showed how
patients showing a cumulative LUS score (the sum of the scores over the 14 areas scanned)
higher than 24 had an almost 6-fold increase in the odds of worsening. Moreover, we
investigated LUS findings variability with respect to the implemented imaging protocol.
Five imaging protocols were considered, respectively based on 4, 8, 10, 12, and 14 scanning
areas. This approach allows to define the optimal trade-off between a simple and time-
efficient LUS evaluation (which requires minimizing the number of areas to be scanned)
and an accurate LUS examination (which requires maximizing the areas to be scanned).

Of the 220 patients, 100 were COVID-19 positive at the time they were scanned, while
120 patients were post-COVID-19, that is, they were negative to reverse transcription
polymerase chain reaction (RT-PCR) test after being originally diagnosed with COVID-
19 by means of the same test.

To our knowledge an extensive study on LUS patterns on post-COVID-19 patients
represents by itself a significant novelty to the existing scientific literature. Additionally,
we report on results from a longitudinal study on a subgroup of 29 patients. These
results are important to investigate the evolution of the lung condition over time, and to
verify whether a simplified scanning procedure could be adopted during patients’ follow-
up. In conclusion, we also report on the level of prognostic agreement between LUS
experts and recently developed AI algorithms [2], which were trained at implementing the
previously introduced scoring system [1]. Specifically, we investigate the performance of
the AI, differentiating between COVID-19 and post-COVID-19 data. The AI algorithm
discussed in this manuscript was the first DL algorithm to be developed worldwide for
the analysis of LUS data from COVID-19 patients. A detailed technical description of
the algorithm can be found in a recently published article [2]. This algorithm was then
validated in a multicenter study involving 314,879 images from 82 patients. In that study,
the DL performance at scoring LUS videos was compared with that of clinical experts
[45]. To our knowledge, this is the only DL algorithm that has had a similar validation
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Figure 5.1: Sankey diagram illustrating the distribution of the dataset characteristics. Square
and round brackets are respectively utilized to indicate whether the interval includes or not the
endpoints. Data are grouped (from left to right) based on they being from COVID-19 or post-
COVID-19 patients, based on the hospital where the data have been collected, on the utilized
ultrasound scanner, on the imaging frequency and imaging depth. Frequencies are expressed in
Hertz (MHz = 106 Hz) and depths in meters (mm = 10−3 m).

(distinguishing frame-level, video-level, and exam-level performance) for the analysis of
LUS data from COVID-19 patients. Results from the multicenter study showed a level
of agreement between DL and clinical experts of 85.96% in the stratification between
patients at high risk of clinical worsening and patients at low risk. In this new work, we
have further extended this validation to data acquired from 220 patients, and distinguished
between the performance obtained for COVID-19 and post-COVID-19 patients.

The paper is organized as follows. Firstly, we present the study design and population,
then we describe the utilized LUS protocol. Successively, we present the methods used to
assess the impact of different scanning areas on the LUS exam’s evaluation, and describe
the design of the longitudinal study and the methods implemented for the analysis of
the prognostic agreement between LUS experts and AI. Next, the results are introduced.
Finally, we present the discussion and the conclusion.

5.2 Materials and Methods

5.2.1 Study Design and Population

The studied population consists of 220 patients (138 male, 82 female, with ages ranging
from 23 to 95 years, and average age equal to 63.0 years). Inclusion criteria were age
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18 years or older, confirmed COVID-19 infection based on the detection of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) on a reverse transcriptase polymerase
chain reaction from a nasopharyngeal swab or bronchoalveolar wash, and a collaborative
status allowing them to express informed consent. Patients were excluded if they were
not able to express their consent, if they were severely obese (body mass index [BMI] >
35 kg/m2), or if they were affected by heart failure or interstitial lung disease, such as
usual interstitial pneumonia or lung fibrosis secondary to rheumatologic disease. Patients’
enrolment was performed, for the acute COVID-19 patients, at the internal medicine ward
(converted in a sub-intensive COVID ward) for San Matteo and Lodi General Hospital,
while post-COVID-19 patients from San Matteo Hospital were outpatients. From Gemelli
Hospital, acute COVID-19 patients were enrolled when hospitalized in dedicated wards
converted in a sub-intensive COVID ward, while post-COVID-19 inpatients were enrolled
in the pulmonology ward.

Of the 220 patients, 100 were diagnosed as COVID-19 positive by a RT-PCR swab test,
and 120 are post-COVID-19 patients (mean days between last positive RT-PCR swab test
and LUS examination equal to 47.85 ± 12.82). Of the 100 COVID-19 patients, 63 (35
male, 28 female, with ages ranging from 26 to 92 years, and average age equal to 63.72
years) were examined within the Fondazione Policlinico San Matteo (Pavia, Italy), 19 (16

Figure 5.2: Typical LUS image associated with each level of the scoring system. A higher score
is associated with a higher level of deaeration of the lung surface explored by ultrasound. A
higher score is thus intended to signal a worsening of the status of the lung surface [1]. Relevant
patterns are indicated by color-coded arrows. The displayed images were acquired with a convex
probe.

48



male, 3 female, with ages ranging from 34 to 84 years, and average age equal to 63.95
years) within the Lodi General Hospital (Lodi, Italy), and 18 (8 male, 10 female, with ages
ranging from 23 to 95 years, and average age equal to 52.11 years) within the Fondazione
Policlinico Universitario Agostino Gemelli (Rome, Italy). Of the 120 post-COVID-19
patients, 109 (71 males, 38 females, with ages ranging from 36 to 87 years, and average
age equal to 63.20 years) were examined within the Fondazione Policlinico San Matteo,
and 11 (8 males, 3 females, with ages ranging from 52 to 89 years, and average age equal
to 73.64 years) within the Fondazione Policlinico Universitario Agostino Gemelli. It is
important to highlight how the post-COVID-19 patients examined at Pavia were scanned
during follow-up and were not hospitalized at the date of LUS exam, whereas the post-
COVID-19 patients examined at Rome were still hospitalized at the date of LUS exam.
As a subgroup of COVID-19 patients was examined multiple times (on different dates),
a total of 253 LUS exams were performed (COVID-19 positive: 94 at Pavia, 20 at Lodi,
19 at Rome; post-COVID-19: 109 at Pavia, 11 at Rome), and 3,481 LUS videos acquired
(COVID-19 positive: 1,291 from Pavia, 276 from Lodi, 242 from Rome; post-COVID-19:
1,526 from Pavia, 146 from Rome), consisting of 772,780 frames (COVID-19 positive:
293,194 from Pavia, 44,288 from Lodi, 29,070 from Rome; post-COVID-19: 371,168 from
Pavia, 35,060 from Rome). LUS data were acquired by LUS experts with more than
10 years of experience. Andrea Smargiassi, Riccardo Inchingolo, Tiziano Perrone and
Francesco Tursi respectively acquired the data collected at the Gemelli, San Matteo and
Lodi Hospital.

The data from Pavia have been acquired using a convex probe with an Esaote MyLab
Twice scanner, and an Esaote MyLab 50, setting an imaging depth from 5 to 13 cm
(depending on the patient) and an imaging frequency from 2.5 to 6.6 MHz (depending
on the scanner). The data from Lodi have been acquired using a convex probe with an
Esaote Mylab Sigma scanner, and a MindRay TE7, setting an imaging depth from 8 to
12 cm (depending on the patient) and an imaging frequency from 3.5 to 5.5 MHz. The
data from Rome have been acquired using both convex and linear probes with an Esaote
MyLab 50, an Esaote MyLab Alpha, a Philips IU22, and an ATL Cerbero, setting an
imaging depth from 5 to 30 cm (depending on the patient) and an imaging frequency
from 3.5 to 10 MHz (depending on the scanner).

Figure 5.1 shows a Sankey diagram where the distribution of the dataset characteristics
is illustrated in detail. As visible, the majority of the data have been acquired with an
imaging frequency ranging from 2.5 to 7.5 MHz and an imaging depth from 8 to 12 cm.

This study was part of a protocol that has been registered (NCT04322487) and re-
ceived approval from the Ethical Committee of the Fondazione Policlinico Universitario
San Matteo (protocol 20200063198), of the Fondazione Policlinico Universitario Agostino
Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (protocol 0015884/20 ID 3117),
of Milano area 1, the Azienda Socio-Sanitaria Territoriale Fatebenefratelli-Sacco (protocol
N0031981). All patients gave informed consent.

5.2.2 LUS Acquisition Protocol

All patients were examined following the standardized acquisition protocol presented by
Soldati et al. and based on 14 scanning areas [1]. According to this protocol, a score
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ranging from 0 to 3 was assigned to each video by LUS experts (TP, AS, and FT) [1].
Figure 5.2 shows an example of LUS image for each level of the scoring system. The
4 levels are defined based on the current understanding of ultrasound interaction with
lung tissue. Score 0 corresponds to a continuous pleural line with associated horizontal
artifacts. These artifacts are generally referred to as A-lines, and are due to the high
reflectivity of the non-pathological lung surface preventing ultrasound waves to propagate
beyond the pleural line. Ultrasound waves are thus scattered multiple times between
the lung surface and the probe, giving rise to this particular horizontal pattern. Score 1
signals instead the appearance of the first abnormalities. The pleural line is not continuous
anymore and vertical artifacts are visible. We prefer to adopt the general term vertical
artifact over a different term generally found in LUS literature (i.e., B-lines). This choice
is motivated as to avoid the ambiguity related to the definition of B-lines. Moreover, the
presence, and not the number, of vertical artifacts is considered. In fact, recent clinical
studies [58, 59] showed how the visualization of vertical artifacts is strongly influenced by
key imaging settings such as the imaging frequency and bandwidth. Moreover, it is also
very important to stress how vertical artifacts are not specific to COVID-19, and simply
signal the presence of local alterations along the lung surface. Their appearance during
an ultrasound exam is considered to be due to the formation, along the lung surface, of
channels accessible to ultrasound, which can indeed be generated in many pathological
states of the lung once volumes originally filled by air are occupied by media that are
acoustically much more similar to the intercostal tissue (e.g., water, blood, and tissue)
[58, 59]. Score 2 is associated with the appearance of small-to-large consolidated areas.
Differently that with horizontal and vertical artifacts, consolidations are not artifacts,
but anatomical findings that appear as hypoechoic areas (darker areas) along the lung
surface. The loss of echogenicity of the consolidated areas is a reflection of the loss of
aeration and signal the transition of these areas toward acoustic properties similar to
soft tissue. They thus signal deaeration. Below the consolidations, vertical artifacts are
generally found. The latter are most likely associated with the presence of areas not yet
fully deaerated. Ultimately, score 3 is associated with the presence of large, extended
(>50% of the pleural line) vertical artifacts (sometimes referred to White Lung in the
literature), with or without large consolidations.

5.2.3 Impact of Different Scanning Areas on Exam’s Evaluation

Consistently with a previous study [28], we classified each exam according to the highest
score (from 0 to 3) assigned to the corresponding 14 LUS videos. Then, different subgroups
of scanning areas were considered to reevaluate the worst score of each exam and compare
the obtained value with the worst score obtained by the reference protocol (14 scanning
areas) [1, 28]. Finally, we computed the percentage of agreement by summing the number
of exams sharing the same worst score from the reference protocol (named system 4) [1]
and dividing it by the total number of exams [28]. Given the presence of two significantly
different groups (i.e., COVID-19 patients and post-COVID-19 patients), this evaluation
was separately performed for each group.

Firstly, we analyzed the level of agreement by separately considering only the anterior
(named 11, 12, 13, 14 [1]), lateral (named 7, 8, 9, 10 [1]), and posterior (named 1, 2, 3,
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4, 5, and 6 [1]) areas [28, 30]. Secondly, we evaluated the level of agreement for three
different protocols based on 4 (named system 1), 8 (named system 2), and 12 (named
system 3) scanning areas [25, 28]. Specifically, system 1 is based on scanning areas 7, 9,
12, and 14, system 2 on scanning areas from 7 to 14, system 3 on scanning areas 1, 3, 4,
6 and from 7 to 14, whereas the reference system (system 4) is based on all the scanning
areas (from 1 to 14) [1, 28]. Moreover, given the impact of posterior areas in the exam’s

Figure 5.3: A, Graphs referring to LUS exams performed on COVID-19 patients; B, graphs
referring to LUS exams performed on post-COVID-19 patients. The overall distributions of
scores, divided per specific area (anterior, lateral, and posterior), are depicted on the left. The
percentage of scores assigned for each area and for each exam is depicted in the center. The
level of agreement is shown on the right. Each exam is represented by a beam of the polar plot.
The score is indicated by the length of a beam. The longer the beam, the higher the score. For
further details about the structure of agreement graphs see Smargiassi et al [30]. Each exam was
classified according to the worst score. The reference system is system 4 (14 scanning areas).
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evaluation [28, 30]., three modified versions of system 4 (based on 10 areas instead of
14) were evaluated [28]. In particular, these three modified versions were obtained by
considering all the anterior and lateral scanning areas (from 7 to 14) together with the
basal posteriors (1 and 4), middle posteriors (2 and 5), or apical posteriors (3 and 6) [28].

5.2.4 Longitudinal Study

We performed a longitudinal study with a subgroup of 29 COVID-19-positive patients (15
males, 14 females, with ages ranging from 39 to 92 years, and average age equal to 67.55
years) that underwent LUS exams twice (in different dates; days between the first and
second LUS exams equal to 6.93 ± 5.44), to evaluate how the score assigned to each area
of system 4 changes between the two exams. Specifically, we computed, for each patient,
the difference between the score assigned to each scanning area at the first LUS exam and
at the second LUS exam, which will be referred to as ∆. Therefore, the values of ∆ range
from -3 to 3, where a negative value represents a worsening of the patient in the considered
scanning area, whereas a positive value represents an improvement of the patient in that
scanning area. Then, we computed, for each patient, the mean value of ∆ by averaging
the ∆ values obtained for each scanning area, and the minimum and maximum values of
∆ (similarly obtained). Hence, we obtained an error bar for each patient, where its length
is given by the distance between the minimum ∆ value and the maximum ∆ value. A
long error bar with a mean value in the middle would represent a heterogeneous change
of ∆ with respect to the different scanning areas, thus highlighting the necessity to scan
all the 14 areas every time a new LUS exam is required. In contrast, a short error bar
would represent a homogeneous change of ∆ with respect to the different scanning areas,
thus suggesting the possibility to scan only a subgroup of areas and implicitly predict the
scores of the other areas.

Figure 5.4: The overall distributions of scores, divided per specific area (anterior, lateral, and
posterior) and per each subgroup (from left to the right: COVID-19 patients of Rome, Pavia,
and Lodi, and post-COVID-19 patients of Rome and Pavia).

52



5.2.5 Prognostic Evaluation

The prognostic value of the reference acquisition protocol and scoring system [1] has been
recently evaluated based on the cumulative score, that is, the sum of the scores on each
of the 14 scanning areas [38]. As the score for each LUS video ranges from 0 to 3, the
cumulative score ranges from 0 to 42. Specifically, when the exam-based cumulative score
(also called sum of scores) is greater than 24, the patient is considered at high risk of
clinical worsening, whereas, when the exam-based cumulative score is less than or equal
to 24, the patient is considered at low risk. This threshold follows from the results of a
study conducted at the Fondazione Policlinico San Matteo (Pavia, Italy), and involving
52 patients [38]. This strategy can therefore help the stratification between patients at
high risk of clinical worsening and patients at low risk [38].

In this part of the study, we assessed the capability of recently developed artificial
intelligence (AI) algorithms [2] of automatically stratifying patients at high risk of clinical
worsening from patients at low risk. We hence compared, for each LUS exam, the cumu-
lative score values obtained from the analysis of the data performed by LUS experts, with
that provided by the AI [45]. Specifically, we considered clinicians and AI in prognostic
agreement when both the cumulative scores are greater than 24 (high risk of worsening)
or less than or equal to 24 (low risk of worsening). To perform this comparison, we needed
to classify each video with a single score. However, the AI provided frame-level labeling.
Hence, we used an aggregation technique consisting of assigning to each video the highest
score assigned at least at a given percentage of frames (threshold) composing the video
[45]. In this work we applied the optimal threshold (1%) [45]. This threshold was derived
from the analysis of a dataset obtained within a multicenter study, and involving 314,879
images from 82 patients. The technical details of the implementation are described in a
previous publication [45].

5.3 Results

5.3.1 Impact of Different Scanning Areas on Exam’s Evaluation

Figure 5.3 shows the score distributions for anterior, lateral, and posterior areas, for
LUS exams performed on COVID-19 patients (Figure 5.3a) and post-COVID-19 patients
(Figure 5.3b). Considering COVID-19 patients (Figure 5.3a), the highest percentage of
score 0 (28.01%) was observed in the anterior areas, whereas posterior areas show the
highest percentage of score 3 (33.71%). Jointly considering score 2 and 3, the percentages
for the anterior, lateral, and posterior areas are 42.11, 58.65, and 62.91%, respectively.
This result highlights how the highest scores are focused on the lateral and posterior
areas. Consequently, the levels of agreement with system 4 for just the anterior, lateral,
and posterior areas are 48, 62, and 89%, respectively (Figure 5.3a). All these results
on COVID-19 patients are consistent with the results achieved by Mento et al [28]. On
the other hand, Figure 5.3b shows how the distributions of scores are different in post-
COVID-19 patients. Specifically, score 0 is significantly more present (71.46, 54.37, and
68.19% for anterior, lateral, and posterior areas), whereas score 3 is the less frequent (2.50,
4.17, and 5.83% for anterior, lateral, and posterior areas). Given the almost homogeneous
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Figure 5.5: A, Graphs referring to LUS exams performed on COVID-19 patients; B, graphs
referring to LUS exams performed on post-COVID-19 patients. On the top left of (A) and (B)
the overall distributions of scores considering the four systems are shown, and, on the top right
of (A) and (B), the level of agreement between systems 1, 2, and 3 with respect to system 4
is depicted. Each exam is represented by a beam of the polar plot. The score is indicated by
the length of a beam. The longer the beam, the higher the score. For further details about the
structure of agreement graphs see Smargiassi et al [30]. On the bottom left of (A) and (B) the
distributions of each score in the posterior areas (basal, middle, and apical) are shown, and, on
the bottom right, the level of agreement between the 3 modified versions of system 4 (10 zones
instead of 14: i.e., all of the anterior and lateral areas together with apical posteriors, middle
posteriors, or basal posteriors) with respect to system 4 is shown.

distribution of the worst scores (i.e., scores 2 and 3), for post-COVID-19 patients, the
levels of agreement with system 4 for just the anterior, lateral, and posterior areas are 52,
68, and 69%, respectively (Figure 5.3b).
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Figure 5.4 shows the overall distributions of scores divided per specific area and per
each subgroup (i.e., acquisition center and kind of patients). It is interesting how the
distributions of score 0 and score 3 in COVID-19 patients are consistent among the three
acquisition centers. Moreover, it is clear how in post-COVID-19 patients the percentage
of worst scores (i.e., scores 2 and 3) is significantly higher when comparing patients that
were still hospitalized at the date of LUS exam (Rome) with patients that were not (Pavia)
(57.57% vs 10.24% in the posterior areas).

Figure 5.5 shows how the distributions of scores vary with different systems, for both
COVID-19 (Figure 5.5-a) and post-COVID-19 (Figure 5.5b) patients. As introduced in
section 5.2, five systems have been investigated, that is, system 1 (scanned areas, 7, 9,
12, and 14), system 2 (scanned areas, 7–14), system 3 (scanned areas, 1, 3, 4, 6, and
7–14), system 4 (scanned areas, 1–14), and a system based on 10 scanning areas (scanned
areas 7–14 plus 2 posterior areas). Figure 5.5 shows how the trend of score distributions
and percentage of agreement is similar when evaluating COVID-19 patients (Figure 5.5a)
and post-COVID-19 patients (Figure 5.5b). In fact, even though the score distributions
of these two groups are significantly different, the levels of agreement with system 4 for
systems 1, 2, and 3 are 65, 76, and 98% for COVID-19 patients (Figure 5.5a, top right),

Figure 5.6: The values of ∆ for each scanning area (x-axis) and for each patient (y-axis) that
was scanned twice (on different dates) are depicted on the left. The 29 patients involved in this
longitudinal study are numbered on the y-axis from 1 to 29. The white squares indicate the
absence of the measurement. On the right side, the mean value of ∆ for each patient is depicted
with a red point, whereas the lower and upper bounds of each error bar represent the minimum
and maximum ∆ of each patient, respectively. The temporal distance (days) between the two
LUS exams is indicated on the right.
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and 68, 82, and 97% for post-COVID-19 patients (Figure 5.5b, top right). Consistently
with a previous study [28], for this type of analysis the level of agreement was computed by
summing the number of patients sharing the same worst score from the reference protocol
and dividing it by the total number of patients.

Moreover, also the distributions of scores in the posterior areas show a similar trend
when comparing COVID-19 patients (Figure 5.5a, bottom left) and post-COVID-19 pa-
tients (Figure 5.5b, bottom left). This is translated in consistent levels of agreement
between system 4 and the modified systems 4 (10 areas instead of 14) when looking
at COVID-19 patients (Figure 5.5a, bottom right) and post-COVID-19 patients (Figure
5.5b, bottom right).

Specifically, the levels of agreement between system 4 and the modified systems 4 are
83, 92, and 97% (COVID-19 patients), and 85, 86, and 96% (post-COVID-19 patients),
when the scanned posterior areas were the apical, middle, and basal, respectively.

5.3.2 Longitudinal Study

As shown in Figure 5.6 (left), ∆ values are generally heterogeneously distributed within
each patient. As a consequence, the error bars are generally long (55.17% of error bars
have a length equal to or greater than 3), with the mean values focalized in the center

Figure 5.7: The exam-based sum of scores for each LUS exam are depicted. MD exam-based
scores and AI exam-based scores are depicted in blue and red bars, respectively. Each exam
is colored (colored points above each bar) in blue, green, purple, and red, depending on the
disagreement interval. The bars highlighted in yellow represent the LUS exams where the
prognostic evaluation of MD and AI differs. The dark dashed line indicates a cumulative score
of 24, which defines the prognostic threshold. The five subgroups of exams have been divided
as follows: COVID-19 patients from Rome (exam ID 1–19), Pavia (exam ID 20–113), and Lodi
(exam ID 114–133), post-COVID-19 patients from Rome (exam ID 134–144), and Pavia (exam
ID 145–253)
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of each bar (Figure 5.6, right). It is noticeable that most of the mean values of ∆ are
positive (65.52%), meaning that most of the patients were recovering from the disease.

5.3.3 Prognostic Evaluation

Figure 5.7 shows how the prognostic agreement between AI and clinicians is higher in
COVID-19 patients than in post-COVID-19 patients. Specifically, the prognostic agree-
ment is 80.45% for COVID-19 patients (exam ID from 1 to 133) and 72.50% for post-
COVID-19 patients (exam ID from 134 to 253). It is important to highlight how the AI
models were trained on LUS data from COVID-19 positive patients.

As introduced in Section 5.2, the prognostic agreement was calculated assessing the
capability of recently developed AI algorithms [2] of automatically stratifying patients at
high risk of clinical worsening from patients at low risk. We hence compared, for each LUS
exam, the cumulative score values (the sum of the scores over the 14-areas investigated)
obtained from the analysis of the data performed by LUS experts, with that provided by
the AI [45].

For post-COVID-19 patients, it is plausible to assume that there may be a moment
in time in which the recovery process of the damaged lung tissue produces LUS patterns
which are not fully compatible with those obtained from healthy or acute patients. This
hypothesis could explain the different performance of the AI models on post-COVID-19
patients.

5.4 Discussion

In this study, we report on new results related to the application of a standardized LUS
imaging protocol and scoring system, which was developed to assess LUS data from pa-
tients affected by COVID-19. The objectives of this study are multiple. First, to deter-
mine whether a simplified LUS imaging protocol could accurately capture and characterize
the sonographic appearance of pleural and sub-pleural alterations in COVID-19 and post-
COVID-19 patients. Standardization and evidence-based results are in fact fundamental
with LUS, since one of the most important limitations of this type of exam is that it relies
on qualitative and subjective interpretations of LUS videos, which are scored depending
on the presence of relevant imaging patterns. Although standardization cannot remove
subjectivity completely, it can help reducing it by defining how many areas need to be
scanned and where, as well as detailing the range of key imaging parameters which should
be utilized to acquire the data.

Beyond the extended dataset (220 patients), one of the novelties of this study are the
comparison between data from COVID-19 and post-COVID-19 patients. From Figure
5.3, it is clear how post-COVID-19 patients present lower scores compared to COVID-19
patients. This is in line with the expectations, given the prevalence of nonhospitalized
patients in the post-COVID-19 group.

From Figure 5.4, it is also interesting to note how the score distribution for COVID-19
patients was very similar among the different centers. Moreover, a clear difference could
be observed between hospitalized and nonhospitalized post-COVID-19 patients, with the

57



latter subgroup displaying lower scores.
From Figure 5.5, we can observe how, for both COVID-19 and post-COVID-19 pa-

tients, the optimal trade-off in terms of amount of scanning areas is 12. Specifically, a
level of agreement of 98 and 97% was respectively found when comparing the results with
a 14-areas scanning protocol. Moreover, for both patients’ populations, the worst scores
are found in the basal posterior areas.

The second objective is to study whether the acquisition protocol could be further
simplified during follow-up.

From Figure 5.6, although these results were obtained on a limited number of patients
(29), it seems that it is not possible to derive the general evolution of the lung condition
from a subset of areas. In fact, no strong correlation is found among values of ∆ obtained
over different areas. This implies that a 12-areas acquisition protocol is recommended
also during follow-up.

The third objective is to investigate the performance of recently developed AI models
to automatically assess LUS videos according to the above-introduced scoring system. AI
models, especially when equipped with explainability mechanisms (which guarantee the
possibility for a user to understand the decision made by the AI), can in fact further reduce
the subjectivity of the evaluation process by providing a baseline evaluation. Moreover,
automatic scoring algorithms can execute the analysis in a shorter time and relentlessly.
They can thus be of great support for clinicians in case significant amount of data need
to be analyzed in a short period of time.

From Figure 5.7, it is possible to showcase the potential as well as the limitations of
AI models when applied to the analysis of LUS data. In fact, whether a good level of
agreement was obtained between the AI and LUS experts in the evaluation of data from
COVID-19 patients, the agreement was significantly reduced for post-COVID-19 patients.
This is consistent with the fact that the employed AI models were trained only on data
from COVID-19 patients. Once again, these results show how important it is to limit the
application of AI models to the analysis of data consistently with the characteristic of the
training dataset.

When presenting LUS findings, it is important to remember the current limitations
of ultrasound technology when applied to the lungs. First of all, its low specificity. LUS
patterns, as those investigated in this manuscript for COVID-19, are in fact nonspecific.
It is thus fundamental not to misinterpret LUS as a tool applicable to diagnose COVID-
19. Differently, it is applicable to evaluate the state of the lung and follow its evolution
over time. It should also be acknowledged that ultrasound technology can only assess the
surface of the lung, as the presence of air inhibits the exploration of deeper regions, unless
the loss of aeration is significantly extended and reaches the surface of the lung. Another
limitation of LUS, as performed through the analysis of data acquired with clinical scan-
ners, is its intrinsic qualitative nature. In fact, although a numerical scoring system can
be developed which associates specific patterns to a number, these approaches cannot be
considered truly quantitative. To do that, measurable physical quantities with the power
to characterize the alterations along the lung surface should be identified, and dedicated
ultrasound methods designed around the peculiar properties of lung tissue should be de-
veloped. Research in this direction is emerging [58, 59], but further and extensive clinical
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studies are necessary to define and validate the potential of these methodologies with
respect to their reproducibility, accuracy, and specificity.

5.5 Conclusion

In conclusion, the proposed scoring system is applicable to assess COVID-19 and post-
COVID-19 patients. For both COVID-19 and post-COVID-19 patients, a 12-areas acqui-
sition protocol is confirmed as the optimal trade-off between a time-efficient and accurate
LUS examination procedure. Moreover, the worst scores are confirmed to be found in
the basal posterior areas for both patients’ populations. As for what concerns follow-up
studies, it appears not to be possible to simplify the acquisition process, as no clear cor-
relation was found among the score evolution across different areas. Finally, LUS data
obtained from COVID-19 and post-COVID-19 seem to display differences which are ca-
pable of confusing AI models that were not trained on post-COVID-19 data. This opens
interesting questions on the existence of specific patterns associated to post-COVID-19
patients. Research in this direction will be the focus of future studies.
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Chapter 6

On the influence of imaging
parameters on lung ultrasound
B-line artifacts, in vitro study

This Chapter5 presents an experimental quantitative study aiming at investigating the gen-
esis of LUS vertical artifacts. Specifically, this study investigated an ambiguity about the
formation of vertical artifacts, leading to the formulation of two main hypotheses. The first
hypothesis states that the visualization of these artifacts is linked only to the dimension
of the emitted beam, whereas the second associates their appearance to specific resonance
phenomena. To verify these hypotheses, the frequency spectrum of these artifacts was
studied by using dedicated lung-phantoms. A research programmable platform connected
to an LA533 linear array probe was exploited both to implement a multi-frequency ap-
proach and to acquire raw RF data. The strength of each artifact was measured as a
function of frequency, focal point, and transmitting aperture by means of the artifact total
intensity. The results showed that the main parameter that influences the visualization of
vertical artifacts is the frequency rather than the focal point or the number of transmit-
ting elements. Moreover, the visualization of vertical artifacts seemed to be associated to
specific resonance phenomena rather than the dimension of the emitted beam.

6.1 Introduction

Thanks to their capacity to penetrate structures with similar acoustic impedances, such
as soft-tissue, ultrasound waves are nowadays widely used in medical imaging in order
to extract anatomical information of internal body parts. However, this is not possible
when inspecting the lung. In fact, the acoustic impedance of the lung significantly differs
from that of the soft tissues due to the presence of air and, hence, standard ultrasound
imaging techniques are unable to directly provide anatomical images of this organ. In
spite of this, ultrasound can provide useful information on the surface of the lung. This

5This Chapter appears in:
[J4] F. Mento, L. Demi, ”On the influence of imaging parameters on lung ultrasound B-line artifacts, in vitro
study,” in The Journal of Acoustical Society of America, vol. 148, no. 2, pp. 975-983, August 2020.
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information could be extracted by exploiting lung ultrasonography (LUS), which is based
on the interpretation of the visual artifacts that appear in the reconstructed image, such
as A-lines (also known as horizontal artifacts) and B-lines (also called vertical artifacts).

A-lines represent equally spaced horizontal repetitions of the pleural line, and their
physical origin has been explained by the presence of two strong reflectors, i.e., the probe
and the pleural line, which causes ultrasound waves to bounce between these two interfaces
[24]. While the A-line pattern is mainly visible in healthy lungs, where the reflection
coefficient of the pleural line can be approximated to 1, B-lines correlate with several
pathological conditions of the lung [17, 21, 50, 108, 122]. Indeed, in these pathological
conditions, part of the lung volume originally occupied by air is replaced by liquid or
tissue, the original mismatch between the lung surface and the intercostal tissue layers is,
thus, mitigated, and the organ becomes penetrable by ultrasound. This permeability can
be associated with the formation of acoustic channels filled with media (tissue, water, or
blood) where ultrasound can propagate [17, 24, 50, 87].

Even though several studies have investigated the origin of these artifacts by repro-
ducing them in foamy phantoms [85], bubbly media [16, 55], and with rigid structures
surrounded by a homogeneous medium [101], their formation remains unclear [23]. As
a consequence, being limited to the visual evaluation of these artifacts leads to qualita-
tive and subjective diagnoses, mainly based on the counting of vertical artifacts in the
reconstructed image [123–125].

To quantitatively characterize B-lines, researchers have started to develop ultrasound
imaging techniques specifically applicable to the lung [55–57]. However, further investi-
gations are needed for a better comprehension of these artifacts.

This paper investigates the dependence of B-lines on different transmission parameters,
i.e., frequency, focal point, and number of transmitting elements, in order to verify two
main hypotheses, which arise from an ambiguity about the formation of these vertical
artifacts. Since the dependence of B-lines on frequency has recently been discovered
[55], the transmitted frequency of the pulse was considered as the main parameter in our
analyses.

The first hypothesis states that the appearance of these artifacts is associated only
to the size of the emitted beam; indeed, it assumes that B-lines are always visualized
in the reconstructed image if the emitted beam is narrow enough to enter an acoustic
channel with a sufficient quantity of energy. The truthfulness of this hypothesis would
imply the possibility to adopt an approach based on thresholds, where the main target
would consist in finding the lowest transmission frequency (and, thus, the larger beam size,
assuming a fixed focal point and active aperture) at which the artifact becomes visible.
This threshold will provide an indirect estimation of the acoustic channel size. Therefore,
the appearance of B-lines at low frequencies (hence, for relatively large wavelengths) will
imply a larger channel size and, therefore, signal a worse condition of the lung surface.
A recently published review paper describes in details the importance of characterizing
the acoustic channels in order to obtain diagnostic information on the status of the lung
surface [54]. In contrast, the second hypothesis states that the presence of B-lines in the
reconstructed image is due to specific resonance phenomena. In this case, the artifact
should be clearly visible only around its resonance frequency with fading strength when
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imaging with lower or higher frequencies. The parameter of interest for the geometrical
characterization of the acoustic channel would then be the resonance frequency connected
to each B-line artifact.

In this study, we investigate the validity of these two hypotheses by analyzing the
frequency spectrum of B-lines observed in two lung-mimicking phantoms, which are able
to reliably generate vertical artifacts [55]. The analyses were performed by means of
the multi-frequency approach presented by Demi et al. [55], which we extended to higher
frequencies and implemented on the ULA-OP research programmable platform [126]. The
sum of intensities (referred as “total intensity”) is investigated in this paper to measure the
artifact strength and exploited to analyze the B-line frequency trend (see Section 6.2.3).
This feature does not capture the shape of the artifact and is not intended as an absolute
measure of B-lines intensity but as a way to quantitatively compare the appearance of a
B-line artifact with respect to the imaging frequency.

The paper is structured as follows. In Section 6.2.1, both the fabrication and charac-
teristics of the phantoms are described, whereas Section 6.2.2 focuses on the description
of the main equipment and the data acquisition procedure. Then, the process applied to
compute the total intensity parameter is introduced in Section 6.2.3. Subsequently, the
results are presented in Section 6.3, and the discussion and conclusion appear in Section
6.4.

6.2 Methods

6.2.1 Lung-mimicking phantoms

Three lung-mimicking phantoms were fabricated by trapping a population of monodis-
perse microbubbles, generated by the MicroSphere Creator (Tide Microfluidics, Enschede,
the Netherlands), within a tissue-mimicking gel as done by Demi et al. [55]. The proce-
dure used to fabricate the lung-mimicking phantoms can be resumed in five main steps.
First, a rigid cylindric structure is partially inserted within the test tube, which has been
previously filled up with the not yet solidified tissue-mimicking gel (first step). Subse-
quently, after the gel solidification, the cylinder is removed and, as a consequence, an
empty channel is formed within the gelatin (second step). Then, this cavity is filled up
with microbubbles by means of a hose (third step), and a relatively small layer of not yet
solidified gelatin is added within the channel to partially trap these microbubbles (fourth
step). Consequently, until the gelatin layer is not completely solidified, the microbub-
bles slowly migrate toward the gel surface and remain trapped when the solidification
process is complete. This process generates a microbubble layer whose size along the z
axis (depth) is about 5 mm for each phantom. However, the process does not allow each
microbubble to be positioned in a precise location. Finally, after solidification, a larger
quantity of tissue-mimicking gel is poured within the test tube to fill it (fifth step).

The employed microbubbles consisted of air-bubbles encapsulated in a lipid shell. To
simulate the alveolar size reduction, which is typically observed in several pathological
conditions [55], the diameter of these microbubbles was fixed to 80 µm, i.e., a smaller size
compared to the normal alveolus, whose diameter is about 280 µm [11]. The microbubbles
were embedded in tissue-mimicking gel with a speed of sound approximately equal to
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that of the soft tissues (1540 m/s) [127]. However, the utilized tissue-mimicking gel
does not provide attenuation values typical of soft tissues [127]. In fact, the tissue-
mimicking gel’s attenuation does not significantly vary with frequency (equals about 0.021
dB cm−1MHz−1), which is different from that of the soft tissues (approximately equal
to 0.63 dB cm−1MHz−1) [127]. It is important to note that, given the diameter of the
utilized microbubbles (80 µm), their resonance frequency will fall below 100 kHz (Ref.
[101]) and, thus, far from the employed imaging frequencies. Figure 6.1 illustrates how
the lung-mimicking phantoms are designed.

6.2.2 Data acquisition

The ULA-OP programmable platform [126] and an LA533 (Esaote, Florence, Italy) lin-
ear array probe, whose pitch and element size along the lateral dimension are, respec-
tively, equal to 245 and 220 µm [128], were exploited to acquire data by means of a
multi-frequency approach based on orthogonal sub-bands centered at different center fre-
quencies. The utilized probe has a -6 dB bandwidth from 3.8 to 12 MHz and a -12 dB
bandwidth from 3.2 to 13.2 MHz. The maximum of the transducer transfer function is
at 8 MHz. To precisely evaluate the frequency spectrum of B-lines, we guaranteed each
sub-band to have a narrow bandwidth (about 1 MHz at -10 dB) in the frequency domain
by transmitting, for every center frequency, a Gaussian pulse having a 2 µs timelength.
The most employed center frequencies were 3, 4, 5, and 6 MHz; however, to expand the
spectral analysis presented by Demi et al. [55], four acquisitions were performed also at
8, 10, and 12 MHz (see Table 6.1). A 50 MHz sampling frequency was used. In recep-
tion, a sub-aperture of 64 elements was employed for all acquisitions. Each final image,

Figure 6.1: Microbubble microscope image, a phantom representation, and a top view picture
of a lung-mimicking phantom. The x axis (lateral dimension) and the z axis (depth) are also
represented.
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which was reconstructed by linearly shifting this sub-aperture over the array, consists
of 129 lines. The time gain compensation (TGC) was implemented as a linear function
(in logarithmic scale) that increases as the depth increases. Since the attenuation does
not significantly change with frequency in the tissue-mimicking gel surrounding the mi-
crobubble clouds [127], the TGC was kept unaltered for all the acquisitions. Thanks to
an automatic positioning system allowing the management of the probe displacement, the
phantoms, contained in a test tube rack and immersed in water, were visually inspected
along their corresponding bubble layers to detect the presence of B-lines (see Fig. 6.2).
Once a vertical artifact was detected, the probe was stopped, and the transmission pa-
rameters were varied as listed in Table 6.1. The number of transmitting elements was
varied from 8 to 64, and the effect of the focal point location was evaluated for B-line IV.
To guarantee the analyses to be robust, only particularly strong B-lines were considered.
Therefore, the phantom having weaker B-lines was discarded, and the dataset was com-
posed by considering the five artifacts observed in the other phantoms (see Table 6.1).
Figure 6.3 shows an example of a reconstructed image, highlighting the main structures.

Furthermore, to objectively evaluate the first hypothesis, we measured the -12 dB
lateral resolution by means of a wire phantom. To this end, a -12 dB lateral width of
a wire target located at the same depth of the phantom 2’s microbubble layer (i.e., 20
mm) and imaged by setting the same parameters utilized in the B-line III investigation

Number Phantom Elements Focus (mm) Frequency range (MHz)

I 1 8 20 3–6
I 1 16 20 3–12
I 1 32 20 3–12
I 1 64 20 3–12
II 1 8 20 3–6
II 1 16 20 3–6
II 1 32 20 3–6
II 1 64 20 3–6
III 2 64 22.5 3–12
IV 2 64 15 3–6
IV 2 64 17.5 3–6
IV 2 64 20 3–6
IV 2 64 22.5 3–6
IV 2 64 25 3–6
V 2 8 1000 3–6
V 2 16 1000 3–6
V 2 32 1000 3–6
V 2 64 1000 3–6

Table 6.1: The main parameters (number of transmitting elements, focus, and frequency) set in
the different acquisitions are listed from the third to the last column. The first column indicates
the identifying number of the analyzed B-line, whereas the second column indicates the analyzed
phantom.
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Figure 6.2: Picture of the acquisition system. The probe is controlled by means of the positioning
system, and the lung-mimicking phantoms, which are contained within the test tube rack, are
immersed in water.

(see Table 6.1) was measured. This analysis allows the comparison between the beam size
at the microbubble layer’s location and the total intensity as a function of frequency for
B-line III (observed in phantom 2).

6.2.3 Computation of the total intensity parameter to quantify the strength
of B-lines

First, for each artifact, 23 frames were acquired and averaged to obtain a final image for
each center frequency. Then, to quantitatively evaluate the strength of the main B-lines
(labeled from I to V in Table 6.1), we applied a four-step procedure to the final (averaged)
images, as depicted in Fig. 6.4. Here, with “main B-line” we refer to the stronger and
most clearly definable B-line present in an image. In step 1, both the bubble layer and
the B-lines were included in the region of interest (ROI) with a rectangular box. In step
2, to exclude undesired frequency components, a sixth-order Butterworth bandpass filter
(1.8 MHz bandwidth) centered at the transmitted center frequency was applied to the
ROI, and the envelope was extracted by means of the Hilbert transform. Furthermore,
the ROI was normalized with respect to its maximum value and visualized in logarithmic
scale with a 35-dB dynamic range. In step 3, the main B-line was visually detected and
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manually included in a smaller ROI (ROIB) in order to isolate it from both the secondary
B-lines and the bubble layer. Finally, the strength of the main B-line was quantitatively
evaluated by introducing the total intensity parameter [59], which was computed in step
4 as follows. As a preliminary operation, we set an arbitrary threshold at -35 dB to
consider only the values above the threshold in the computation of the total intensity.
Subsequently, we calculated the total intensity in logarithmic scale as

ITOT = 20 log10(Apix

∑
i,j

10
ROIB(i,j)

20 ) (6.1)

where Apix is the area of a pixel (equal to 3.6 × 10−3 mm2), i and j indexes refer to

Figure 6.3: The main elements in the reconstructed image are shown. The white line represents
the estimated depth of the water/gelatin interface, whereas the red shape highlights the location
of bubbles formed within water. The first strong reflection, associated to the bubble layer,
appears at 23.5 mm, and its replica (A-line) appears at 47 mm. The green boxes contain the
main B-line (solid-line box), i.e., the analyzed artifact, and a secondary B-line (dashed-line box).
The reflection caused by the test tube rack is highlighted by the yellow box. The image is shown
with a 35-dB dynamic range.
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the pixel in ROIB located at the ith row and j th column, and ROIB(i, j) is the intensity
value (in dB) of the pixel located at the ith row and j th column. Given a consecutive
block of N images obtained at the N different frequencies (where N = 4 when the used
center frequencies are only 3, 4, 5, and 6 MHz, and N = 7 when imaging also at 8, 10,
and 12 MHz), the ROI was manually selected from the image with the largely extended
B-line, starting below the microbubble layer and in order to contain the entire artifact as
visualized from a normalized image with a dynamic range of 35 dB. The same ROI was
then utilized for the other N -1 images of the block.

The total intensity parameter introduced by Eq. 6.1 represents, therefore, a metric able
to quantify the B-line strength, implicitly considering both the artifact spatial extension
and intensity. Moreover, the normalization applied in step 2 ensures the independence
of this parameter from the received signal amplitude, which can be lower at higher fre-
quencies due to, e.g., the probe transfer function. This increases both the reliability and
the robustness of the analysis. It is worth mentioning that although the pixel area does
not vary within the data presented in the paper, this parameter is generally different for
different imaging systems.

Figure 6.4: Schema of the procedure applied to the final (averaged) images to compute the total
intensity of each main B-line. For simplicity, only the bandpass filter employed when imaging
at 6 MHz is depicted in the figure. The filter is obviously adapted, depending on the specific
imaging frequency. The images are shown with a 35-dB dynamic range.
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Figure 6.5: Multi-frequency images of phantom 2 (B-line IV) with the focus at 15 mm (top) and
17.5 mm (bottom). The images are shown with a 35-dB dynamic range.

6.3 Results

Figure 6.5 shows an example of multi-frequency images obtained with different focal
points. It is observable how a 2.5 mm displacement of the focus qualitatively changes the
images.

The frequency dependence of B-lines can be observed more in detail in Fig. 6.6, where
multi-frequency (from 3 to 12 MHz) images of phantom 1 (top) and phantom 2 (bottom)
are shown. Both phantoms show a specific spectral behavior.

To quantitatively evaluate the frequency spectra of B-lines, we considered the nor-
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Figure 6.6: Multi-frequency images of phantom 1 (B-line I) and phantom 2 (B-line III) are shown
at the top and bottom, respectively. Both acquisitions were performed with 64 transmitting
elements. The images are shown with a 35-dB dynamic range.

malized total intensity, i.e., a scaled version of the total intensity parameter. We simply
applied a normalization with respect to the maximum value of the total intensity measured
by varying the transmission frequency and maintaining the other parameters constant.

Figure 6.7 shows the normalized total intensity of B-line I (phantom 1) as a function
of frequency, also displaying the influence of the number of transmitting elements on the
artifact. The mean trend of the normalized total intensity, depicted as blue points in the
top graph, can be considered as bell shaped. Its maximum value (-0.55 dB) is at 6 MHz,
whereas its minimum value (-10.83 dB) is at 12 MHz. As shown in Fig. 6.7 (bottom),
the frequency trend of the normalized total intensity remains approximately the same,
regardless of the number of transmitting elements (which affects both the beam width
and incident pressure). However, considering adjacent frequencies (e.g., 3 and 4 MHz), a
higher number of transmitting elements leads to a higher difference of the total intensity.
This difference can be highlighted by comparing, for example, the results obtained with 32
and 64 elements at 3, 4, 5, and 6 MHz, where the normalized total intensity is, respectively,
equal to -4.24, -2.90, -0.71, and 0 dB for 32 elements and equal to -8.34, -4.86, 0, and -2.21
dB for 64 elements. Nevertheless, the maximum variation of normalized total intensity
caused by the different number of transmitting elements is significantly lower than the
maximum variation caused by the frequency. Indeed, the former is approximately equal
to 5.80 dB (error bar at 10 MHz in Fig. 6.7), whereas the latter is about 13.06 dB.

The frequency spectrum of phantom 2 (B-line III) is shown in Fig. 6.8. Also in this
case, the frequency trend is substantially bell shaped, but visibly different from the trend
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Figure 6.7: The normalized total intensity of phantom 1 (B-line I) as a function of frequency. The
matrix (bottom) represents the normalized total intensity obtained from acquisitions performed
with a different number of transmitting elements (rows). The white cells denote unperformed
acquisitions, whereas the values at 7, 9, and 11 MHz are obtained with a linear interpolation.
In the graph (top), the blue points represent the mean of each column of the matrix, whereas
the error bars indicate the minimum and the maximum of each column (values obtained with
linear interpolation are not explicitly represented in the graph).

of phantom 1 (Fig. 6.7). As expected, the visual imperceptibility of B-line III at 3 MHz
(Fig. 6.6) is translated into a significantly low value of the normalized total intensity
(-26.95 dB). On the other hand, the normalized total intensity at 4, 5, 6, 8, 10, and 12
MHz is, respectively, -5.72, 0, -1.61, -8.36, -9.45, and -6.51 dB. Therefore, contrary to
phantom 1 (B-line I), the native frequency, which we consider as the frequency where the
total intensity is maximum, is 5 MHz. Moreover, Fig. 6.8 shows the corresponding -12
dB lateral resolution at the microbubble layer’s position.

Finally, we quantitatively compare the influence of the different transmission parame-
ters (focal point, number of elements, and frequency) on the B-line total intensity. Results
are shown by the boxplot in Fig. 6.9. The frequency box considers total intensity vari-
ations of B-line I and III (frequency range from 3 to 12 MHz), whereas the focus box
includes variations of B-line IV (focal point from 15 to 25 mm), and the elements box
considers variations of B-line I, II, and V (number of transmitting elements from 8 to 64).
The total intensity variation is defined as the maximum variation of a given B-line total
intensity with respect to a specific parameter. For example, the total intensity variation
for B-line III with respect to frequency is 26.95 dB (see Fig. 6.8).

Hence, each box represents the maximum variations of the normalized total intensity
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Figure 6.8: The normalized total intensity of phantom 2 (B-line III) as a function of frequency
(red line with blue points) and the -12 dB lateral resolution measured by means of a wire
phantom and by setting the same parameters of B-line III acquisition (green line with orange
squares). The acquisitions were performed with 64 transmitting elements.

obtained by keeping fixed all the imaging parameters except from the investigated one.
Figure 6.9 confirms that the frequency has a greater impact on B-lines compared to the
other imaging parameters; indeed, the frequency box median value is equal to 11.42 dB,
whereas the others do not exceed 4.5 dB. Moreover, the frequency box has both the widest
interquartile range (9.59 dB) and the highest maximum value (26.95 dB).

Figure 6.9: Boxplot showing the total intensity variations caused by frequency (left), focus
(center), and number of transmitting elements (right). The red lines represent the median
values, and the inferior and superior limits of the box are, respectively, the 25th and 75th
percentiles, whereas the maxima and the minima are represented by horizontal black lines.
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6.4 Conclusions and Discussion

Lung ultrasound imaging nowadays provides important clinical information on the state
of the lung to physicians. However, due to the lack of understanding on the formation
process of B-lines [23], the diagnoses are qualitative and subjective. Therefore, to base the
clinical evaluation on a quantitative measure, a deeper comprehension of the mechanisms
behind the generation of these vertical artifacts is needed.

In this paper, we have presented an in vitro study that investigates the influence of
different transmission parameters on B-lines to verify two hypotheses about the formation
of these artifacts.

Independently from the frequency, the first hypothesis links the B-line visualization
only to the emitted beam size. In this case, the greater the energy (relatively to that
associated to a given beam) entering an acoustic channel or trap, the more intense the
B-line generated by the interaction between the transmitted wave and the channel will
be. Hence, the acoustic channel aperture could be indirectly measured by controlling
the beam size and, at the same time, disclosing the presence or absence of the vertical
artifact in the image. If this hypothesis were true, increasing the transmit aperture size
while keeping the imaging frequency constant or increasing the imaging frequency while
keeping the aperture size constant should result in increasing the B-line total intensity as
in both cases the beam width is generally reduced.

In contrast, the second hypothesis associates the B-line visualization to specific reso-
nance phenomena, which could be exploited to characterize the acoustic properties of the
channel rather than only its aperture size. If this hypothesis were true, the transmit aper-
ture size should not significantly impact the B-line intensity, and the imaging frequency
would be the most significant parameter for B-line characterization.

To investigate these two hypotheses, we have exploited the total intensity parameter
to evaluate the frequency spectra of five B-lines detected in two different lung-mimicking
phantoms. Thanks to the normalization with respect to the maximum value of each
image, this parameter allows the evaluation of the B-line intensity independently from
the absolute signal strength, hence, guaranteeing a reliable comparison between data
acquired with different transmission parameters.

The results show a clear inconsistency between the frequency trend of B-lines (Figs.
7 and 8) and the beam size, which generally decreases as the transmitted frequency
increases, as also shown in Fig. 6.8. As a consequence, the first hypothesis cannot always
be considered to be true. Indeed, if this hypothesis were valid, we should expect a growing
total intensity with increasing frequency due to the decrease of the beam size. On the
contrary, we have shown the existence of cases where B-lines can be clearly visualized only
within a specific frequency range (Fig. 6.6). Accordingly to these experimental results,
the frequency response of these bubbly structures is more likely associated to specific
resonance phenomena (second hypothesis).

Moreover, it is important to note that the highest total intensity is always measured at
6 or 5 MHz (Figs. 7 and 8), hence, confirming the same native frequencies observed before
for bubbly structures generated with this size of microbubbles, although they had been
measured with a different probe [55]. This further strengthens the hypothesis that the B-
line frequency spectrum can be utilized to quantitatively characterize bubbly structures.
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In addition, the results (Fig. 6.9) show the importance of exploiting the transmitted
frequency, rather than the number of transmitting elements and the focal point, to extract
important information from B-line artifacts. The variance of the B-line total intensity is
indeed extremely larger when the frequency is considered as the main cause of variation.
For this reason, the transmitted frequency appears to be the most relevant parameter in
both the visualization and characterization of B-lines.

In conclusion, the spectral analysis of B-line artifacts may, thus, play an important role
for the estimation of the state of the lung parenchyma. In this paper, we have introduced
a quantitative parameter that allows us to evaluate in vitro the frequency spectrum of
different B-lines. Future work will focus on the investigation of the diagnostic information
that can be extracted from the B-line frequency spectrum. As there exists a clear differ-
ence of B-line intensity between cardiogenic and pneumogenic interstitial syndromes [24],
further studies could investigate the possibility to quantitatively differentiate between
these two pathological conditions.

The lung-phantoms described in this paper represent a well-controlled yet simplified
model, which tries to approximate the lung parenchyma. As a consequence, the find-
ings described in this paper may not directly apply to clinical data. To this end, future
work will focus on improving these studies by, for example, analyzing the impact of poly-
disperse versus monodisperse bubble populations, the effect of including tissue-mimicking
structures modeling the intercostal tissue layers, and the importance of bubble properties,
such as shell material and thickness. Moreover, similar studies on radio frequency (RF)
clinical data are essential, and currently ongoing. However, it is important to emphasize
how the development of tissue-mimicking phantoms is essential for studies like the one
presented in this paper. The absence of motion is, in fact, essential to guarantee that
the exact same portion of the volume of interest is evaluated under the different settings.
Moreover, control on bubbles size is another important aspect to acknowledge.

Furthermore, numerical simulations could be of strong interest to further verify the
findings of this paper and deepen our understanding of the physical phenomena involved
in the genesis of B-lines [58]. Numerical experiments would indeed be useful to study the
interaction between ultrasound waves and acoustic traps with specific sizes and shapes.
Successively, the numerical results could be verified in experimental models by finding
a strategy to control the microbubble spatial distribution, thus, generating precise and
well-defined acoustic traps. Another interesting study to be performed consists of exper-
imentally evaluating (with dedicated phantoms) the influence of the angle of incidence of
ultrasound beams on the appearance and visualization of vertical artifacts.
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Chapter 7

Dependence of lung ultrasound
vertical artifacts on frequency,
bandwidth, focus and angle of
incidence: An in vitro study

This Chapter6 presents experimental quantitative study investigating the dependence of
LUS vertical artifacts on different imaging parameters. Indeed, to develop quantitative
techniques is fundamental to understand which parameters influence the vertical artifacts’
intensity. In this study, we quantitatively analyzed the dependence of nine vertical arti-
facts observed in a thorax phantom on four parameters, i.e., center frequency, focal point,
bandwidth, and angle of incidence. The results showed how the vertical artifacts are sig-
nificantly affected by these four parameters, and confirm that the center frequency is the
most impactful parameter in artifacts’ characterization. These parameters should hence
be carefully considered when developing a LUS quantitative approach.

7.1 Introduction

The use of lung ultrasound (LUS) in clinical practice is nowadays widely spread, also due
to the coronavirus disease 2019 (COVID-19) pandemic [1, 32]. In fact, the characteristics
of LUS (e.g., real-time imaging, portability, and wide availability) render it particularly
useful in emergency contexts [32, 42].

Despite its current spread, LUS remains strongly qualitative and subjective, as it is
mainly based on the visual interpretation of imaging artifacts. Of particular importance
are vertical artifacts, which correlate with various pathologies [21, 50, 108] and whose
genesis is still not fully uncovered [24, 42]. Currently, only the so-called semi-quantitative
approaches can be used to reduce the impact of subjectivity on the LUS exam, through

6This Chapter appears in:
[J5] F. Mento, L. Demi, ”Dependence of lung ultrasound vertical artifacts on frequency, bandwidth, focus and
angle of incidence: An in vitro study,” in The Journal of Acoustical Society of America, vol. 150, no. 6, pp.
4075-4082, December 2021.
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the standardization of the acquisition and evaluation processes [1, 42]. However, also
semi-quantitative techniques present several points of improvement, as they do not di-
rectly rely on the estimation of physical quantities. They indeed do not exploit the main
characteristics of vertical artifacts, such as their dependence on different imaging param-
eters [55, 60]. These approaches are in fact implemented on images generated with the
currently available clinical scanners, which are not designed for investigating the lung [42].

To further reduce subjectivity, quantitative approaches [55–60] are essential, as they
aim at estimating physical quantities able to characterize the signals backscattered from
the lung, as those responsible for the visualization of LUS vertical artifacts [42]. How-
ever, the development of quantitative approaches requires first a deeper comprehension
of vertical artifacts’ genesis, which has been investigated in vitro [16, 55, 60, 85, 101],
and recently also in silico [96]. The appearance of these artifacts seems to be linked to
the formation, along the lung surface, of acoustic traps [24, 50, 54, 87], which through
resonance phenomena [60] can give rise to vertical artifacts. Moreover, as shown in a
previous study [60], the transmitted frequency seems to be the most impactful parameter
to characterize this type of artifact. However, it is necessary to also analyze the impact of
other parameters on the vertical artifacts’ strength, as to study the stability of a frequency
characterization as well as to support the standardization of LUS and the development
of quantitative approaches.

In this in vitro study, we aim at investigating the dependence of vertical artifacts on
four different parameters, i.e., center frequency (CF), focal point (FP), bandwidth (BW),
and angle of incidence (AOI). Even though we have already studied the dependence
of vertical artifacts on CF and FP [60], the hereby utilized phantoms are completely
different, as here we exploited a commercial thorax phantom used to train clinicians
and not phantoms made with controllable monodisperse microbubble populations [60].
Another element of novelty is the investigation of the vertical artifacts’ dependence on
BW and AOI (never reported before). The latter is particularly interesting, as it could
be a source of significant artifacts’ variability during a LUS examination, especially when
a convex probe is used.

The paper is organized as follows. Both materials and data acquisition process are
presented in Section 7.2.1, whereas the procedure used to quantify the strength of vertical
artifacts is described in Section 7.2.2. Successively, the results are shown in Section 7.3,
and the discussion and conclusions in Section 7.4.

7.2 Materials and Methods

7.2.1 Materials and data acquisition

To perform this study, we exploited a Blue Phantom COVID-19 Ultrasound Lung Simula-
tor (CAE Healthcare, Sarasota, FL), which consists of a thorax phantom able to reproduce
LUS vertical artifacts, and generally used to train clinicians to use LUS in patients af-
fected by COVID-19 pneumonia. As shown in Fig. 7.1, the phantom was positioned
vertically within a water tank, and partially immersed in water. A metallic plate was
used to keep the phantom’s position fixed. The linear probe’s displacement was precisely
managed by means of an automatic positioning system (GAMPT, Merseburg, Germany).

76



A rotation system (GAMPT, Merseburg, Germany) was exploited to change the angle of
incidence of the ultrasound beam along the x–z plane. A total of eight different scanning
areas (from Area 1 to Area 8), including nine different vertical artifacts, were investigated
in this study. These areas were chosen by visually inspecting the phantom with the probe
along different positions of the x–y plane. The scanning areas showing vertical artifacts
were then selected.

Data were acquired by exploiting an ULA-OP programmable platform [126] and an
LA533 (Esaote, Florence, Italy) linear array probe (pitch and element size along the
lateral dimension are 245 and 220 µm [128]) whose –6 dB bandwidth is from 3.8 to 12

Figure 7.1: The utilized phantom, probe, positioning system, rotation system, metallic plate,
water tank, and the three directions (x, y, and z ) are shown on the left. A sketch showing (from
a top-view) the geometry of the acquisition is depicted on the right. The distance between the
phantom and the probe is approximately equal to 5 mm, when the AOI is 0°. The bottom
right sketch shows how the acquisition geometry changes when AOI changes. Specifically, the x -
direction and the z -direction are tilted by an angle equal to AOI (represented by the x’ -direction
and z’ -direction in the bottom right sketch)

Analyzed parameter CF [MHz] BW [MHz] FP [mm] AOI [°]
CF 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 0 30 0
CF 3, 4, 5, 6 1 30 0
CF 4, 6 2 30 0
BW 4 0.5, 1, 2 30 0
FP 4 2 10, 20, 30, 40, 50 0
AOI 4 2 30 -30, -20, -10, 0, 10, 20, 30

Table 7.1: The parameters set for each scanning area. The first column indicates the investigated
parameter (the parameter that was varied, keeping the remaining ones fixed), i.e., CF, BW, FP,
and AOI. The values of each parameter are indicated from the second column to the fifth column.

77



MHz, and its –12 dB bandwidth from 3.2 to 13.2 MHz [60]. The transducer transfer
function has its maximum at 8 MHz [60]. The radio frequency (RF) data were acquired
by varying the parameters of interest as described in Table 7.1. For each scanning area,
the center frequency was varied from 3 to 6.5 MHz, the bandwidth was evaluated at 0.5,
1, and 2 MHz, the focal point was set from 10 to 50 mm with 10-mm step size (the
pleural line is approximately at 30 mm of depth), and the angle of incidence varied from
–30° to 30° with a 10° step size. The choice of these center frequencies was made based
on frequencies generally used in clinical practice, and by considering the probe transfer
function. Furthermore, we chose CF to be consistent with previous clinical studies [58, 59].
The bandwidth was set by considering the probe transfer function, whereas the focal point
was arbitrarily and significantly varied by considering the pleural line’s depth as the main
focal point (the structures to be imaged were at pleural line). The angle of incidence
was varied so as to evaluate a significant change in the volume of interest’s geometry
and, at the same time, avoid the evaluated vertical artifact to be outside the volume of
interest when changing AOI. A Gaussian pulse having a time length equal to 1, 2, or 4

Figure 7.2: The main elements visualizable in the reconstructed image are shown. The shown
image was acquired from the first scanning area (Area 1) with CF = 3 MHz, BW = 1 MHz,
FP = 30 mm, and AOI = 0°. The Water/Phantom’s intercostal tissue interface (in green) is
at about 5-mm depth. The Phantom’s intercostal tissue/Phantom’s pleura interface (in blue)
is at about 30-mm depth. The vertical artifacts (in red) are between approximately 35 and 55
mm of depth. The horizontal artifacts (in yellow) showing replicas of the Phantom’s intercostal
tissue/Phantom’s pleura interface are about 60 mm of depth, i.e., double the distance between
the Phantom’s intercostal tissue/Phantom’s pleura interface and the probe. The same image is
shown at 35-dB dynamic range (left) and 45-dB dynamic range (right) to better visualize the
Water/Phantom’s intercostal tissue interface.

78



µs (depending on the desired bandwidth, i.e., 2, 1, or 0.5 MHz) was transmitted, and a
50 MHz sampling frequency was used. A sub-aperture of 64 elements was employed in
reception. Hence, to reconstruct the final image, this sub-aperture was linearly shifted
over the entire array (192 elements), thus obtaining an image with 129 lines along the
lateral dimension [60]. For the time-space conversion (along depth), we assumed a speed
of sound equal to 1546 m/s in the volume of interest. Figure 7.2 shows an example of
reconstructed image with the main elements highlighted. From top (shallow) to bottom
(deep), it is possible to observe the first acoustic interface dividing the water from the
phantom’s intercostal tissue (at about 5 mm), the second acoustic interface (i.e., the
pleural line) dividing the phantom’s intercostal tissue from the phantom’s pleura (at
about 30 mm), the vertical artifacts (between approximately 35 and 55 mm), and the
horizontal artifacts showing replicas of the second interface (at about 60 mm, i.e., double
the distance between the second interface and the probe).

To apply an adequate time gain compensation (TGC), we needed to estimate the at-
tenuation coefficient [129] of the phantom. Therefore, we placed the phantom at a fixed
position, and acquired RF data of the two acoustical interfaces, i.e., the water/phantom’s
intercostal tissue interface and the phantom’s intercostal tissue/phantom’s pleura inter-
face, by setting the center frequency from 3 to 6.5 MHz (BW= 0.5 MHz, FP = 30 mm,
AOI = 0°; see first acquisition setting in Table 7.1). The RF data were acquired avoid-
ing saturation phenomena, and the difference of intensity between the first and second
interfaces was computed for each center frequency. Given the distance between the two
interfaces, we estimated the attenuation coefficient, which was equal to 2.15 dB/MHz cm.
This value was hence adopted for the TGC.

To minimize variations of the pressure amplitudes delivered at the pleural line, we
measured the received signal amplitude with changing frequency by means of a wire
phantom. Specifically, we placed an 80-µm wire (immersed in water) at the pleural line
depth (about 30 mm), and acquired RF data by setting CF from 3 to 6.5 MHz (0.5-MHz
step), bandwidth equal to 0.5 MHz (see first acquisition setting in Table 7.1), and fixed
the driving signal amplitude to 80% of the maximum amplitude allowed by the ULA-
OP system. With driving signal, we intend here the electrical signal utilized to excite
each element of the transmit aperture. Next, we adapted the transmitted amplitudes of
the driving signals as to normalize the amplitude of the signals received at the different
frequencies. This operation allows us to compensate for the probe transfer function, and
reduce the effect of saturation phenomena.

7.2.2 Quantification of vertical artifacts’ strength

As done in a previous study [60], the final image was obtained by averaging 23 frames,
for each scanning area and each parameter setting. Then, a three-step procedure [59] was
applied to the final (averaged) images to extract the total intensity (ITOT ) parameter,
which allows us to quantitatively evaluate the vertical artifacts’ strength [59, 60]. In step
1, a sixth order bandpass Butterworth filter centered at the different center frequency
was applied [59, 60]. Specifically, the MATLAB butter function was utilized. The filter’s
bandwidth was adapted to the bandwidth of the signal, i.e., a filter’s bandwidth equal to
1, 1.8, and 3.2 MHz was used when the transmitted signal’s bandwidth was 0.5, 1, and
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2 MHz, respectively. We successively applied the Hilbert transform to the filtered image,
thus extracting the envelope, and normalized the image with respect to its maximum value
[59, 60]. In step 2, the images were displayed in logarithmic scale with a 35-dB dynamic
range, to visually detect the clearest vertical artifact [59, 60]. Each vertical artifact
was segmented by selecting a rectangular region of interest (ROIB) [59, 60], which was
defined from the following acquisition setting: CF = 3 MHz, BW = 0.5 MHz, AOI =
0°, FP = 30 mm, i.e., where the vertical artifact was more spatially extended. For the
same vertical artifact, the ROIB was maintained fixed for each acquisition setting [59, 60],
except from the acquisitions performed with AOI̸=0°, as the geometry changed. In this
case, the position of ROIB was manually adapted to entirely include the vertical artifact
as visualized at a 35-dB dynamic range. In the final step, where ITOT is computed,
the empirical threshold definition is fundamental (the empirical threshold defines the
minimum value that has to be considered in the computation of ITOT [59, 60]). As
the noise level was empirically estimated to be at -45 dB, the arbitrary threshold was
differently set from -33 to -37 dB (1-dB step size), obtaining five different values of ITOT

for each artifact and each parameter setting. The intention here is to analyze the impact
of the threshold on the results.

7.3 Results

To quantitatively evaluate the dependence of the vertical artifacts’ ITOT on the four inves-
tigated parameters (CF, AOI, BW, and FP), we exploited a scaled version of ITOT called
normalized ITOT . Specifically, for each imaging parameter, we applied a normalization
with respect to the maximum ITOT value measured by varying the investigated parameter
and maintaining the other three parameters constant [60]. It is important to highlight
how the maximum ITOT value was always measured when the empirical threshold was
set to the minimum value, i.e., –37 dB, as a lower threshold includes a higher number of
pixels in the computation of ITOT .

Figure 7.3 shows the normalized ITOT of the vertical artifact observed in the first
scanning area (Area 1) as a function of center frequency. In this case, three different
graphs are depicted, depending on the bandwidth (see the first three acquisition settings
in Table 7.1). The three graphs (Fig. 7.3, top), representing acquisitions performed with
bandwidths equal to 0.5 (blue), 1 (green), and 2 (red) MHz, are normalized with respect
to the maximum value of ITOT (measured at CF = 3 MHz and BW = 0.5 MHz, with an
empirical threshold of ITOT equal to -37 dB). This normalization of the graph allows us
to also highlight the dependence of the normalized ITOT on the bandwidth. The trend
of the normalized ITOT decreases as the frequency increases, regardless of the bandwidth.
Moreover, considering the same center frequency, a wider bandwidth denotes a lower
normalized ITOT . The maximum value of normalized ITOT is indeed observable when CF
= 3 MHz and BW = 0.5 MHz (maximum = 0 dB, mean = –0.16 dB, minimum = –0.36
dB), whereas the minimum value is at CF = 6.5 MHz (maximum = –41.05 dB, mean
= –52.80 dB, minimum = –64.93 dB). It is important to highlight how the error bars
lengthen as the normalized ITOT decreases. In fact, the difference between the empirical
threshold values is increasingly impactful as the ITOT decreases because the number of
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pixels involved in the ITOT computation is generally lower when the normalized ITOT

decreases.
Figure 7.4 shows the normalized ITOT of the vertical artifact in Area 1 as a function

Figure 7.3: The normalized ITOT of the vertical artifact observed in the Area 1 as a function
of center frequency (see top) is depicted together with the corresponding artifact (see bottom),
shown with a 35-dB dynamic range. The points in the graphs represent the mean values of
normalized ITOT (computed by considering the five different empirical thresholds), whereas the
error bars represent the minimum (computed with empirical threshold of ITOT equal to -33 dB)
and maximum (computed with empirical threshold of ITOT equal to -37 dB) values of normalized
ITOT (computed by varying the empirical threshold from -37 to -33 dB with a 1-dB step size).
The three graphs, representing acquisitions performed with bandwidths equal to 0.5 (blue), 1
(green), and 2 (red) MHz, are normalized with respect to the maximum value of ITOT (measured
at CF = 3 MHz and BW = 0.5 MHz, with empirical threshold of ITOT equal to -37 dB). The
focal point and the angle of incidence are fixed at 30 mm and 0°, respectively.
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of the angle of incidence. The maximum value of normalized ITOT is observed at AOI =
–10° (maximum = 0 dB, mean = –1.85 dB, minimum = –3.94 dB), whereas the minimum
value is at AOI = –30° (maximum = –4.14 dB, mean = –6.76 dB, minimum = –9.72 dB).

Figure 7.5 shows the normalized ITOT of the vertical artifact in Area 1 as a function of
bandwidth. As already seen in Fig. 7.3, the normalized ITOT decreases as the bandwidth
increases. Specifically, the maximum value of normalized ITOT is observed when BW
= 0.5 MHz (maximum = 0 dB, mean = –0.68 dB, minimum = –1.50 dB), whereas the
minimum value is at BW = 2 MHz (maximum = –9.42 dB, mean = –11.22 dB, minimum
= –13.24 dB).

Figure 7.6 shows the normalized ITOT of the vertical artifact in Area 1 as a function
of focal point. The normalized ITOT increases as the focal point depth increases. This
is particularly clear also by visually observing the vertical artifact (Fig. 7.6, bottom).
In fact, when the focal point is 20 mm before the pleural line (i.e., FP = 10 mm) the
vertical artifact is hardly visible, whereas its intensity increases when the focal point is
set to 30 mm (i.e., the depth where the pleural line is located). By further increasing
the focal point, the artifact remains clearly visible but widens laterally, most likely due
to the effects of a deeper focus on the lateral resolution. The widening of the artifact is,

Figure 7.4: The normalized ITOT of the vertical artifact observed in the Area 1 as a function of
angle of incidence (see top) is depicted together with the corresponding artifact (see bottom),
shown with a 35-dB dynamic range. The points in the graphs represent the mean values of
normalized ITOT (computed by considering the five different empirical thresholds), whereas the
error bars represent the minimum (computed with empirical threshold of ITOT equal to -33 dB)
and maximum (computed with empirical threshold of ITOT equal to -37 dB) values of normalized
ITOT (computed by varying the empirical threshold from -37 to -33 dB with a 1-dB step size).
The graph is normalized with respect to the maximum value of ITOT (measured at AOI = –10°,
with empirical threshold of ITOT equal to -37 dB). The focal point, the bandwidth, and center
frequency are fixed at 30 mm, 2 MHz, and 4 MHz, respectively.
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in this case, translated in a higher normalized ITOT . Specifically, the maximum value of
normalized ITOT is observed when FP = 50mm (maximum = 0 dB, mean = –2.09 dB,
minimum = –4.65 dB), whereas the minimum value is at FP = 10mm (maximum = -16.59
dB, mean = -22.57 dB, minimum = –28.92 dB).

As shown in Fig. 7.7, the trend of normalized ITOT as a function of the four different
parameters is similar for all the nine investigated vertical artifacts. Specifically, the nor-
malized ITOT always decreases as the center frequency increases (Fig. 7.7, top) and, in
some cases (see scanning areas 3, 5, 6, and 8), the vertical artifacts completely disappear
(normalized ITOT equals to -100 dB) at higher frequencies. The trend of normalized ITOT

as a function of angle of incidence (Fig. 7.7, bottom left) and bandwidth (Fig. 7.7, bot-
tom center) does not significantly differ from the trend of the first vertical artifact (see
Figs. 7.4 and 7.5; alternatively, see scanning area 1 in Fig. 7.7, bottom left and bottom
center). As shown in Fig. 7.7 (bottom right), when evaluating the normalized ITOT as a
function of focal point, the highest values are observed when FP is set at the pleural line
depth (30 mm) or deeper (40 and 50 mm).

Finally, to quantitatively evaluate the influence of the four parameters on the vertical
artifacts’ ITOT , we have analyzed the ITOT variation [60] by means of the boxplot shown
in Fig. 7.8. Specifically, each box represents the ITOT maximum variations obtained

Figure 7.5: The normalized ITOT of the vertical artifact observed in the Area 1 as a function of
bandwidth (see top) is depicted together with the corresponding artifact (see bottom), shown
with a 35-dB dynamic range. The points in the graphs represent the mean values of normalized
ITOT (computed by considering the five different empirical thresholds), whereas the error bars
represent the minimum (computed with empirical threshold of ITOT equal to -33 dB) and max-
imum (computed with empirical threshold of ITOT equal to -37 dB) values of normalized ITOT

(computed by varying the empirical threshold from -37 to -33 dB with a 1-dB step size). The
graph is normalized with respect to the maximum value of ITOT (measured at BW = 0.5 MHz,
with empirical threshold of ITOT equal to -37 dB). The focal point, the angle of incidence, and
center frequency are fixed at 30 mm, 0°, and 4 MHz, respectively.
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Figure 7.6: The normalized ITOT of the vertical artifact observed in the Area 1 as a function of
focal point (see top) is depicted together with the corresponding artifact (see bottom), shown
with a 35-dB dynamic range. The points in the graphs represent the mean values of normalized
ITOT (computed by considering the five different empirical thresholds), whereas the error bars
represent the minimum (computed with empirical threshold of ITOT equal to -33 dB) and max-
imum (computed with empirical threshold of ITOT equal to-37 dB) values of normalized ITOT

(computed by varying the empirical threshold from -37 to -33 dB with a 1-dB step size). The
graph is normalized with respect to the maximum value of ITOT (measured at FP = 50 mm, with
empirical threshold of ITOT equal to -37 dB). The angle of incidence, bandwidth, and center
frequency are fixed at 0°, 2 MHz, and 4 MHz, respectively. The Water/Phantom’s intercostal
tissue interface (first interface) is at about 5-mm depth, whereas the Phantom’s intercostal tis-
sue/Phantom’s pleura interface (second interface; pleural line) is at about 30-mm depth. The
normalized ITOT increases as the focal point depth increases. Higher values of normalized ITOT

can be observed starting from the pleural line depth (30 mm), as the structures to be imaged
are located at pleural line.

by keeping fixed all the parameters except from the investigated one [60]. For example,
when considering ITOT variations caused by FP, we have applied the following steps to
obtain the box shown in Fig. 7.8 (on the right). For each vertical artifact, the five ITOT

values obtained with empirical threshold = –35 dB (consistently with Fig. 7.7), CF = 4
MHz, BW = 2 MHz, AOI = 0°, and FP equal to 10, 20, 30, 40, 50 mm, respectively (see
Table 7.1). Then, we computed the ITOT maximum variation as the difference (within
these five values) between the maximum and minimum ITOT . Successively, we repeated
this process for all the nine vertical artifacts, thus obtaining nine maximum variation
values to analyze the impact of FP. These nine values were hence used to form the box
related to FP (see Fig. 7.8, right). Figure 7.8 shows how the center frequency is the most
impactful parameter (median value = 43.55 dB, interquartile range = 54.28 dB), followed
by the focal point (median value = 22.38 dB, interquartile range = 16.21 dB), bandwidth
(median value = 12.31 dB, interquartile range = 3.97 dB), and angle of incidence (median
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value = 6.19 dB, interquartile range = 4.64 dB).

7.4 Discussion and Conclusions

LUS is currently widely used by clinicians to obtain important clinical information on
the state of the lung surface. Nevertheless, LUS remains limited to qualitative or semi-
quantitative analyses, as the implementation of quantitative approaches is nowadays
slowed down by lack of dedicated hardware [49] and imaging modalities, as well as by

Figure 7.7: The normalized ITOT of all the nine vertical artifacts, acquired from the eight
scanning areas, are shown as a function of center frequency (top; BW = 0.5 MHz at top left,
BW = 1 MHz at top center, BW = 2 MHz at top right), angle of incidence (bottom left),
bandwidth (bottom center), and focal point (bottom right). The empirical threshold of ITOT

was set to -35 dB. For each group (CF, AOI, BW, FP), each row (scanning area) of cells was
normalized with respect to its maximum value (as done from Figs. 7.3–7.6). By convention,
a normalized ITOT equal to -100 dB corresponds to the absence of the vertical artifact in the
image. The normalized ITOT values of scanning area 4 b refer to the second vertical artifact
observed in scanning area 4.
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Figure 7.8: Boxplot showing the ITOT variations caused by center frequency (first, left), angle
of incidence (second), bandwidth (third), and focal point (fourth, right). Specifically, each box
represents the ITOT maximum variations obtained by keeping fixed all the parameters except
from the investigated one. The red lines represent the median values, and the inferior and
superior limits of the box are, respectively, the 25th and 75th percentiles, whereas the maxima
and the minima are represented by horizontal black lines. The ITOT variations were computed
for each scanning area by setting an empirical threshold of ITOT equal to -35 dB. This graph
was hence derived from the values of Fig. 7.7.

the incomplete understanding of the vertical artifacts’ genesis [24, 42]. However, recent
studies have investigated the origin of LUS vertical artifacts [16, 55, 60, 85, 96, 101], lead-
ing to the formulation of a plausible hypothesis. The vertical artifacts are indeed likely
caused by the formation, along the lung surface, of acoustic channels (or traps) filled with
media acoustically similar to the intercostal tissue layers, a fact that allows for ultrasound
to propagate within this traps [24, 50, 54, 87]. Then, the bouncing of the ultrasound wave
within these channels, depending on the relation between the imaging frequency, the trap
content, and geometrical property, can cause a resonance phenomenon [55, 60], which
originates the vertical artifacts.

As the genesis of these vertical artifacts is likely caused by a resonance phenomenon
[55, 60], recently proposed quantitative approaches are based on the frequency charac-
terization of vertical artifacts [55, 58–60]. However, as shown in a recent in vitro study
[60], even though the center frequency of the emitted ultrasound wave seems to be the
most impactful imaging parameter in the vertical artifacts’ characterization, there are
other parameters that should be considered when implementing quantitative approaches
or when standardizing the acquisition process in semi-quantitative approaches. This to
verify the stability of the artifacts’ intensity of key imaging parameters.

For this reason, in this article, we have quantitatively evaluated the dependence of
vertical artifacts on four different important imaging parameters (center frequency, focal
point, bandwidth, and angle of incidence).

As shown in Fig. 7.8, CF is confirmed as the most impactful parameter in the vertical
artifacts’ characterization (median value = 43.55 dB, interquartile range = 54.28 dB).
Moreover, the normalized ITOT decreases as CF increases and, thus, the highest values
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of normalized ITOT are always observed at the lowest frequencies (see Fig. 7.7, top).
The high ITOT of the artifacts at lower frequency could be caused by the presence of
acoustic traps having large dimensions [58, 101], and thus be linked to the dimension of
the lung damage. It is important to highlight how these results are linked to the specific
phantom utilized, and thus to its internal structure. Therefore, when evaluating different
pathological conditions, characterized by different alveolar distributions and geometries,
the results in terms of total intensity as a function of center frequency and bandwidth could
vary. As shown in the first clinical studies, these variations carry diagnostic information
[58, 59].

Moreover, the reduction of the artifacts’ total intensity with growing bandwidth is
also coherent with the hypothesis that vertical artifacts are generated by resonance phe-
nomena. Indeed, narrow-band ultrasound pulses are more suitable to activate such a
type of phenomena compared to wideband pulses, as the energy is more concentrated
around a specific frequency. In this sense, frequency and bandwidth should be seen as an
inter-dependent factor, with a narrow bandwidth to be favored as it improves artifacts
visualization as well as the accuracy of the artifacts’ frequency characterization. These
results are consistent with results obtained with different phantom types [55].

However, this hypothesis, coherent with reported in vitro [55, 60] and in silico [96]
results, should be further verified with studies where the exact dimensions and content of
the trap are known.

It is important to highlight how the overall results show significant variability for all
the four parameters (the lowest ITOT variation is observed for AOI, with a median value
= 6.19 dB, and an interquartile range = 4.64 dB; see Fig. 7.8). As a consequence, the
dependence of vertical artifacts on these parameters should be considered, especially when
implementing a quantitative approach. This result is of fundamental importance also for
the standardization of the acquisition process in semi-quantitative approaches. In fact,
as the operator currently has very little control over these parameters, the comparison of
data acquired with different scanners cannot be properly performed. As an example, the
use of a convex over linear probe affects the angle of incidence of the ultrasound wave
(due to its convex shape), thus potentially affecting the analysis. This would imply the
necessity of applying a compensation process when utilizing a convex probe to reduce the
effect of the angle of incidence on the vertical artifacts.

In this paper, we have mainly studied the dependence of vertical artifacts on total
intensity as this parameter was already proven to be a relevant indicator in characterizing
the lung surface of patients affected by different pulmonary pathologies [58, 59]. However,
there are other features, as the speckle pattern, that could be studied to characterize the
scatterers’ geometrical properties.

In conclusion, even though semi-quantitative approaches supported by computer aided
methods [2, 70] can partially solve the problem of subjectivity, which is intrinsic to LUS
pattern evaluation, they cannot provide quantitative methods. The visualization of ver-
tical artifacts is indeed dependent on the parameters investigated in this study and, thus,
semi-quantitative approaches remain limited, as they do not provide control on the afore-
mentioned parameters.

For these reasons, the development and implementation of quantitative LUS ap-
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proaches need to be supported by custom hardware and dedicated approaches that allow
the analysis of RF data and the possibility to tune the key parameters [49], which affect
the vertical artifacts’ intensity.
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Chapter 8

Numerical study on lung ultrasound
B-line formation as a function of
imaging frequency and alveolar
geometries

This Chapter7 presents an in silico study investigating the dependence of LUS vertical arti-
facts on alveolar size and geometry. Specifically, this study focused on the factors affecting
the artifacts’ formation by numerically simulating the ultrasound propagation within the
lungs through the toolbox k-Wave. Since the main hypothesis behind the generation of ver-
tical artifacts relies on multiple scattering phenomena occurring once acoustic channels
open at the lung surface, the impact of changing alveolar size and spacing is of interest.
The tested domain is of size 4 cm × 1.6 cm, the investigated frequencies vary from 1 to
5 MHz, and the explored alveolar diameters and spacing range from 100 to 400 µm and
from 20 to 395 µm, respectively. Results show the strong and entangled relation among
the wavelength, the domain geometries, and the artifact visualization, allowing for better
understanding of propagation in such a complex medium and opening several possibilities
for future studies.

8.1 Introduction

Lung diseases are among the most widespread globally [130]. As an example, chronic
obstructive pulmonary disease is the third primary cause of death worldwide [130]. Re-
cently, the viral pneumonia caused by the severe acute respiratory syndrome coronavirus
2 infection has affected more than sixty million people, including a million and a half
deaths [131]. To monitor and diagnose the lung pathologies, ultrasound represents a suit-
able alternative compared to chest x-ray and computed tomography, being ultrasound

7This Chapter appears in:
[J6] E. Peschiera, F. Mento, L. Demi, ”Numerical study on lung ultrasound B-line formation as a function of
imaging frequency and alveolar geometries,” in The Journal of the Acoustical Society of America, vol. 149, no. 4,
pp. 2304–2311, April 2021.
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more accessible, portable, cost-effective and radiation-free. Nevertheless, the acoustical
properties of the lungs, composed by millions of aerated alveoli that complicate the ultra-
sound propagation within the lung, render lung ultrasound (LUS) a challenging task [88].
The main assumption behind standard ultrasound imaging, requiring similar transmis-
sion media from the acoustical viewpoint, is not fulfilled when applied to the lungs. The
impedance mismatch at the lung surface is extremely large and, consequently, an acoustic
wave experiences a reflection coefficient close to one [88]. For these reasons, LUS relies
heavily on artifactual images rather than anatomical ones.

The clinical information provided by LUS is based on the different artifactual pattern
generated by a healthy and a pathological organ [21, 24, 85, 88, 132, 133]. In case of a
healthy lung, the lung volume is mostly occupied by air and the pleural-line behaves as
a perfect reflector to ultrasound, impairing the propagation beyond it [50, 88]. In this
scenario, horizontal artifacts (or A-lines) appear as a result of the multiple reflections
of the transmitted pulse between the lung surface and the probe [88, 133]. The spacing
between A-lines is equal to the distance between the pleural-line and the probe. On the
other hand, a pathology affecting the lung typically causes a reduction of the volume
occupied by air in favor of fluids (e.g., water and blood) or soft tissues [50, 88]. This
decrease in the acoustic mismatch between the intercostal tissue and the lung surface
creates acoustic channels accessible to ultrasound waves [50]. In this case, LUS images are
characterized by the presence of vertical artifacts, or B-lines [16, 17]. The most accepted
hypothesis behind their generation relies on the multiple scattering of the ultrasound pulse
within acoustic traps below the lung surface, which behave as a secondary ultrasound
source [50, 54, 101]. A correlation between B-lines visualization and several lung diseases
has been observed for decades, and different studies have been proposed to study the
B-lines formation processes depending on the alveolar features, as well as on the imaging
parameters [21, 24, 55, 58–60, 85]. Despite this, a study investigating in a highly controlled
manner the impact of the alveolar geometrical distribution was lacking.

Previous in vitro works have highlighted how the B-lines’ visualization depends on the
imaging frequency [55, 60]. Moreover, the frequency at which the spectral peak occurs,
called native frequency, is suggested to be linked with the alveolar size and distribution
[54, 55, 101]. Each acoustic trap is therefore characterized by its spatial features, which
determine the frequency able to produce a vertical artifact through resonance phenomena
[54, 101]. Hence, the native frequency could be exploited to quantitatively evaluate the
state of the lungs, and could help to characterize different diseases [54, 55, 59, 101]. Indeed,
the alterations of the sub-pleural volume vary with the pathology, and this is testified also
by the different B-lines patterns that are observed in clinical images [21, 24, 50, 85]. The
artifacts can be, for instance, modulated or non-modulated in intensity, and can have
various lateral extensions [24, 50]. Furthermore, recent clinical studies have shown the
possibility to in vivo characterize B-lines based on their frequency content, and how such
characterization can positively impact on LUS specificity [58, 59]. With these premises,
the aim of this research is to investigate, via numerical simulations, the B-lines formation
by varying the imaging frequency and the features of the domain, i.e., the alveolar diameter
and spacing. The frequency trend is of interest, as well as the impact of simulating
lungs having different densities. In general, the implicit question of the work is whether
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it is possible to obtain vertical artifacts with the numerical tool employed. In case of
positive response, several future studies would open. Indeed, the numerical setup gives
the complete freedom to define both the transmission part and the mimicked domains, as
opposed to experiments made on phantoms where the level of control is obviously reduced.

In section 8.2, the choices underlying the numerical design are presented, from the
imaging modality to the definition of the computational domains, as well as the methods
used to evaluate the outcomes of the simulations. The obtained results are presented in
section 8.3 and commented mainly in section 8.4, where future works are also proposed.

8.2 Methods

The numerical simulations have been performed through the k-Wave MATLAB toolbox
[97]. The computational domains replicate the lung structure. Indeed, they are of size 4
cm × 1.6 cm, where the first two centimeters in depth are composed of muscle tissue, while
air inclusions are introduced in the last two centimeters. Section 8.2.1 analyzes the main
features of the transmission and reception phases, as well as of the spatial resolutions.
The following section, 8.2.2, presents the numerical domains and the main parameters
describing them. Lastly, section 8.2.3 introduces the methodology used to evaluate the
intensity of the B-lines displayed in the reconstructed images.

8.2.1 Imaging parameters

The images are formed using a linear array beamforming modality, whose main parameters
are listed in Table 8.1. Beam’s focalization is implemented, with focal point placed at
the pleural-line. The transducer is located at a depth of approximately 0.3 mm from the
beginning of the computational domain. Being N the number of array elements and M
the sub-aperture dimension, the number of lines in an image equals N-M+1=17. Every
line is formed by fixing the number of sensors to M and moving each time the underlying
domain, mimicking the displacement of the sub-aperture. The elements’ excitation signals
are modulated Gaussian pulses with central frequency and pulse length equal to f0 and 2
µs, respectively.

At the end of the reception phase, where the same focalization as in the transmis-

Parameters Values

Array elements (N ) 80
Sub-aperture elements (M ) 64
Pitch 245 µm
Kerf 45 µm
Focal depth 2 cm
Pulse bandwidth 1 MHz
Transmitted peak pressure 1 MPa

Table 8.1: Imaging array parameters, being the bandwidth computed at –6 dB from the spectral
peak. The array aperture can be computed as dx ·(Pitch·N -Kerf), where dx is the grid size.
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f0 (MHz) 1 2 3 4 5

dx (µm) 12.5 12.5 12.5 10.71 10
dt (ns) 0.4 0.4 0.4 0.34 0.32

Table 8.2: Domain grid sizes (dx ) and time sampling intervals (dt) for each imaging frequency.

f0 (MHz) 1 2 3 4 5

LR (mm) 3.10 1.61 1.10 0.84 0.66

Table 8.3: –12 dB lateral resolutions (LR) for each imaging frequency.

sion phase has been adopted, the envelope is extracted through Hilbert transform and
conversion to logarithmic scale is performed. Once all the lines are formed, the image is
normalized with respect to its maximum value and, representing power values, is visual-
ized with a -40 dB of dynamic range. The studied frequencies vary from 1 to 5 MHz. The
domain’s grid size dx is computed considering the smallest wavelength occurring within
the numerical domain, while the time sampling interval dt is defined by the simulator
itself. Both quantities, that depend on f0, are reported in Table 8.2.

The -12 dB axial resolution (AR) has been computed taking as reference the speed of
sound within the muscle tissue (i.e., 1580 m/s), and equals AR=0.89 mm. The lateral
resolutions, instead, are frequency-dependent and have been estimated from the beam
profiles. Their values are listed in Table 8.3.

8.2.2 Computational domains

The computational domains are composed of two media, muscle medium (whose acoustic
properties are c0=1580 m/s and ρ0=1041 kg/m3) and air (characterized by c0=300 m/s
and ρ0=1.23 kg/m3). An example of domain is provided by Fig. 8.1, in which the image
at the top depicts the entire computational area. The simulated lung surface is located at
a depth of 2 cm, below which aerated medium is present. The lung area is subdivided into
three parts along the lateral direction, two of which are entirely composed of air, while
the central one includes both muscle tissue and alveoli. In the latter region, indicated by
a red box in Fig. 8.1, deformations in the alveolar geometries are introduced to model
different alterations of the lungs’ structure. The internal lung structures are formed by
a regular pattern formed by an alveolus and a spacing that repeats itself along both the
dimensions. Consequently, the alveoli are aligned along the depth. This is clearly an over-
simplified model of lung tissue. However, it allows for a detailed analysis on the impact
of alveolar dimensions and spacing in a highly controllable fashion. The reconstructed
images (see Fig. 8.2 and 8.8) will show how the proposed domains’ configuration enables
only the generation of a unique, relatively large B-line located at the center of the lateral
axis. In a clinical situation, B-lines appear as isolated or coalescent vertical artifacts, the
lateral extend of which depends on the extent and kind of alterations present at the lung
surface [50, 88]. In order to study this variability, dedicated numerical domains should
be investigated. In this study we opted instead to adopt a unique and regular pattern to
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start unravelling the interconnections between alveolar diameter, alveolar spacing, imag-
ing frequency and B-lines’ intensity. An improvement of the domains’ physical coherency
with respect to the many conditions that may be found in a clinical situation would re-
quire introducing local irregularities in the features of the acoustic channels and assess
their impact on the generated B-lines.

The parameters modelling the domains are the alveolar diameter D and spacing s,
defined as the distance between the end of an air sphere and the beginning of the adjacent
one (see Fig. 8.1). The examined diameters are 100, 200, 300, and 400 µm, while the
investigated spacing correspond to 20, 100, 198, 263, and 395 µm. A healthy lung features
a diameter of approximately 280 µm and a spacing of less than 10 µm [11]. Therefore, all
the tested cases replicate pathological situations. The three largest values of spacing (i.e.,
198, 263 and 395 µm) are equal to half of the wavelength (within the muscle medium) at 4,
3, and 2 MHz, respectively. Hence, the results associated to them are of interest to observe
potential resonance phenomena, associated to constructive interference of scattered waves.

It is worth highlighting how the digitally approximated values of the alveolar parame-
ters, indicated by D’ and s’, may differ from D and s because of numerical approximations

Figure 8.1: Example of numerical domain, complete view (top) and enlargement (bottom).
Deformations in the alveolar size and distance are introduced in the region surrounded by the
red box. The digitally approximated diameter D’ and spacing s’ are indicated. The couple (c0,
ρ0) represents the acoustic properties of muscle, while (c1, ρ1) is associated with air.
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D (µm) s (µm) D’ (µm) s’ (µm) s′ (µm)

100 20 88 38 44
400 20 388 38 104
100 100 88 113 119
400 100 388 113 179

Table 8.4: Original parameters (D, s), digitally approximated counterparts (D’, s’ ), and average
channel spacing (s′) of four numerical domains. As expected, both alveoli and spacing having
larger sizes are better approximated, and s′ differs considerably from s’ in the case of large
alveoli.

when converting the information from the physical (meters) to the numerical domain (pix-
els). Moreover, the spacing s’ represents only the minimum distance between two alveoli
but, due to their spherical shape, different spacing are present between two adjacent
spheres. Calling s′k the kth spacing and xk its occurrence within a single acoustic chan-

nel, the average alveolar spacing can be computed as s′ = (1/Ktot)
∑K

k=1 xks
′
k , where Ktot

is the total number of spacing within a channel. The variables D’, s’ are useful to assess
whether the original proportions on the spatial quantities are met within the numerical
domains, while s′ allows to characterize a transonic channel in its entirety. Table 8.4 pro-
vides some examples in this regard. Another useful parameter that can be extracted from
the domains’ analysis is the sub-pleural muscle percentage, denoted by p. It is computed,
from the red box in Fig. 8.1, as the percentage of pixels composed of muscle within the
central region below the lung surface and it reflects the density of the mimicked lung.

8.2.3 B-lines’ intensity metrics

A single outcome of a simulation is represented by a reconstructed image, depicting nor-
malized pressure power in dB scale, and visualized with a -40 dB of dynamic range. An
example of image is given in Fig. 8.2, together with the corresponding central line signal.

A strong reflection at a depth of 20 mm, referred as the pleural peak, is observed in
every image. Subsequently, a potential B-line artifact can be noticed, starting from a
depth of approximately 21 mm and reaching the end of the domain. Being the domains
deterministic, the region in which the vertical artifact can be formed is the same for every
simulation. This region, called ROIB and indicated in light blue in Fig. 8.2, extends from
the 6th to the 12th line along the lateral direction, and from 20.8 mm to the end of the
domain along the depth. The image lines that delimit ROIB (i.e., 6th and 12th) have
been selected empirically, evaluating where, in the reconstructed images, the B-lines were
visualised when considering a -40 dB dynamic range. The starting depth (i.e., 20.8 mm)
has been computed by adding to the depth of the pleural interface (i.e., 20 mm) half of
the axial resolution (calculated considering the entire pulse length and equal to 1.6 mm).
To quantify the B-line’s strength, the total intensity parameter has been computed as
[59, 60]
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Figure 8.2: Example of reconstructed image (top) and corresponding central line (bottom),
indicated in red. The image has been obtained employing f0 = 3 MHz, D = 300 µm, and s
= 100 µm. The B-line’s region of interest, ROIB, is highlighted in light blue. On the line
signal, the green box indicates the pleural-line reflection, while the orange box indicates the
first echo coming from within the lung. The second echo is arguably due to the scattering of
the ultrasound wave between the first layers of alveoli. However, given the complexity of the
multiple scattering phenomena in such a highly scattering environment, it is difficult to discuss
this aspect with certainty. Simulations with a different number of layers, e.g., from 1 to 10,
should be investigated to analyze this aspect, and these are the focus of future studies. The blue
arrow shows the -12 dB pulse width. At 3 MHz, a pixel has physical sizes equal to the pitch
along the lateral dimension (i.e., 245 µm) and to dt · c0/2 = 0.31 µm along the depths.

Itot = 20 log10(Apix

∑
i,j

10
ROIB(i,j)

20 ) (8.1)

where Apix is the pixel area and ROIB(i,j) represents the image intensity in dB at the
ith row and j th column in ROIB, neglecting the values under -40 dB. The Itot parameter
evaluates a B-line considering both its intensity and its spatial extension (thanks to the
summation) [59, 60]. Finally, the multiplication by Apix considers possible differences in
the grid sizes among the examined cases [59, 60].

After having computed the total intensity on all images (a total of R=100 results,
considering all the combinations of parameters, was evaluated), normalization with respect
to the maximum value in the whole set, Imax

tot , has been applied. Then, a threshold of -20
dB has been introduced to discard the images in which no B-lines are generated. Indicating
with Itot(i) the non-normalized intensity of the ith image, the first step computes

ÎNtot(i) = Itot(i)− Imax
tot [dB], ∀i = 1, ..., R. (8.2)
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The second step, instead, applies a threshold as follows:

INtot(i) =

{
ÎNtot(i) [dB], if ÎNtot(i) > −20 [dB]

−20 [dB], if ÎNtot(i) ≤ −20 [dB]
, ∀i = 1, ..., R. (8.3)

8.3 Results

All the quantitative results (Figs. 8.3, 8.4, 8.5, 8.6, 8.7) show how, regardless of the sizes
of alveolar diameter and spacing, at an imaging frequency of 1 MHz no visible B-line is
produced. At 2 MHz, apart the images obtained with s=395 µm, only tenuous artifacts
are produced. Fig. 8.3 depicts the INtot values referring to a spacing of 20 µm. The
frequency peaks are located at f0=3 MHz and, in general, the alveoli of size D=300 µm
are associated to the strongest artifacts. However, the most intense B-line is achieved
when a frequency of 3 MHz is employed and scatterers having diameter of 100 µm are

Figure 8.3: Normalized total intensity parameter as a function of alveolar diameter and imaging
frequency, referring to the alveolar spacing s = 20 µm.

Figure 8.4: Normalized total intensity parameter as a function of alveolar diameter and imaging
frequency, referring to the alveolar spacing s = 100 µm.
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replicated within the domain.
When the spacing is 100 µm (Fig. 8.4), a general increase in the artifacts’ intensity

is noticed. The frequency trend moves towards 4 MHz and, as it happens for the cases
illustrated in Fig. 8.3, no monotonic relationship is observed between f0 and the intensity
parameter. Indeed, even though the increase of frequency from 1 to 3 MHz is always
associated to a growth in the B-lines’ strength, this turns out to be not true for frequencies
greater or equal than 3 MHz. This phenomenon seems to confirm the nature of the vertical
artifacts as generated from resonance phenomena (provided that f0 is above a certain
value). Moreover, Fig. 8.4 illustrates how the small alveoli (i.e., of diameter D=100 µm
and D=200 µm) are linked to the more intense B-lines, as opposed to what happens when
s=20 µm.

By analyzing Fig. 8.5, referring to the results at s=198 µm, the same considerations
can be drawn. The frequencies achieving the more evident B-lines are 3 and 4 MHz, with
a prevalence of 4 MHz. The trend with respect to the alveolar diameter is in favor of the
smaller alveoli. Comparing Fig. 8.3, 4 and 5, it follows how denser lungs (composed of
alveoli of small size) are associated to the strongest B-lines, provided that the spacing is
greater than a certain quantity (in our case, 20 µm). It is of particular interest relating
the intensity peaks along the frequency with the alveolar spacing. Indeed, the quantity
s=198 µm equals half of the wavelength (within the muscle tissue) at 4 MHz, that is
λ = c0/f0=1580 m s−1/(4 × 106 Hz) = 395 µm.

When the spacing assumes the value of 263 µm (Fig. 8.6), the frequency trend shifts
towards lower frequencies. In particular, the most salient outcome is represented by the
f0 value at which the strongest B-lines are formed, i.e., 3 MHz. The wavelength at f0=3
MHz, in fact, is equal to twice the considered spacing. The alveoli of small size continue,
on average, to favor the generation of more intense artifacts.

The images obtained using the largest spacing (i.e., 395 µm) are associated to B-lines
whose intensities are more similar along both the frequency and the diameter axes (see
Fig. 8.7). Indeed, no sharp peaks are observed in the INtot chart in Fig. 8.7 and the
values are well spread. However, compared to the previous results, there is a tendency to

Figure 8.5: Normalized total intensity parameter as a function of alveolar diameter and imaging
frequency, referring to the alveolar spacing s = 198 µm.
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Figure 8.6: Normalized total intensity parameter as a function of alveolar diameter and imaging
frequency, referring to the alveolar spacing s = 263 µm.

Figure 8.7: Normalized total intensity parameter as a function of alveolar diameter and imaging
frequency, referring to the alveolar spacing s = 395 µm.

prefer the low frequencies, especially 2 MHz. Also in this case, the frequency that allows
the formation of the strongest artifacts is the one whose wavelength is a multiple of the
alveolar spacing (indeed, s equals to half of the wavelength at 2 MHz). It should be noted
that in this case, given the investigated frequency range, we have two frequencies (2 and 4
MHz) whose wavelength is a multiple of the spacing. As regards the intensity parameter
behavior in the diameter domain, the large alveoli are more frequently associated to
intense B-lines.

To appreciate the visualization of the vertical artifact at the different imaging frequen-
cies, Fig. 8.8 is proposed. The most intense B-line is achieved when f0=3 MHz. In this
case (represented by the third image of Fig. 8.8), the B-line is associated to an amplitude
which tends to be more constant if compared with the other frequencies.

Another worthwhile analysis is represented by the INtot dependency upon the sub-pleural
muscle percentage p. Fig. 8.9 testifies how a denser lung, composed of alveoli of small
size and characterized by high values of p, correlates with a strongest B-line. As proof,
when p is above the sixty percent, essentially all the INtot values are located within -12 dB
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Figure 8.8: Reconstructed images at 1, 2, 3, 4, and 5 MHz (from top to bottom), referring to
the numerical domain made of alveoli having diameter D = 300 µm and spacing s = 263 µm.

from the maximum intensity.

8.4 Discussion and Conclusions

Primarily, this work demonstrated the possibility to obtain B-lines artifacts by means of
numerical simulations (through the k-Wave toolbox). Moreover, the results (Section 8.3)
have shown a consistency with previous phantoms and clinical studies [55, 58, 60]. As
an example, the behavior of the artifacts’ formation in the frequency domain and with
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Figure 8.9: INtot as a function of muscle percentage below the lung surface p. The 80 values
obtained employing all the diameters and spacing and frequencies from 2 to 5 MHz are shown,
together with an interpolated average (computed by means of a smoothing spline).

respect to the density of the lung exhibits common traits between the different study
approaches. Therefore, in silico experiments can help in the characterization of the B-
lines’ dependency upon several factors and in performing tests that would be unfeasible
in vitro or in vivo.

The quantitative analysis (Figs. 8.3, 8.4, 8.5, 8.6, 8.7) has shown how low imaging
frequencies (i.e., f0 ≤2 MHz) generally do not allow the generation of consistent artifacts,
regardless of the alveolar diameter choice. Only when the alveolar spacing assumes the
largest investigated value (i.e., s=395 µm) the lowest frequencies start to enable the B-
lines’ formation. In this direction, it is reasonable that large values of λ requires larger
channels to create artifacts. These results further strengthen the hypothesis that the
frequency characterization of vertical artifacts can be used as an indirect measure of the
state of the lung, i.e., the lower the frequency at which B-lines are visualized, the larger
the channels formed between the alveoli, the more severe the lung condition. Furthermore,
when s=395 µm, the wavelength at 2 MHz (i.e., 790 µm) equals twice the spacing, and
this may contribute to the increase in the artifacts’ strength. From 3 MHz, instead, the
B-lines’ intensity trend with respect to f0 ceases to be monotonic, and maxima in the INtot
quantity occur for both 3 and 4 MHz (dependently on the alveolar spacing employed).
Therefore, the value of the imaging frequency does not a priori determine the artifact’s
intensity, but the latter will depend on how the wavelength will interact with the alveolar
geometries (determined by the quantities D’, s’, and s′). Following the same reasoning,
also the lateral resolution (that is inversely proportional to f0) is inadequate to predict
by itself the intensity of the formed artifact.

As the results achieved at s=198, s=263, and s=395 µm suggest, there may be a
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correlation between the B-lines’ strength and the ratio between the wavelength (in our
analysis, within the muscle tissue) and the spacing. Indeed, when s equals half of the
wavelength at f0, the image obtained transmitting at f0 is more frequently associated to
a more intense B-line. The reason behind these considerations may lie in the resonance
phenomena (in other words, constructive interference) occurring within the acoustic traps
below the lung surface, as hypothesized by previous works [54, 60, 101]. Therefore, spe-
cific imaging frequencies will activate certain traps according to their spatial features. In
the first instance, the spatial features can be represented by s, but a more detailed char-
acterization would certainly require more than one variable. For instance, a histogram
describing all the different acoustic paths between single alveoli can be computed and
used to differentiate between different lung’s conditions [58].

As regards the INtot trend with respect to the density of the simulated lung, large values
of p (that describe denser lungs, formed by small air spheres) correlate with more intense
B-lines, as evidenced by Fig. 8.9. Behind this finding there may be the greater sub-pleural
propagation that a denser lung enables.

In general, this study strengthens the role of the total intensity parameter, alongside
the corresponding frequency f0, in quantifying the state of the lungs, reflecting both the
quantities s′ and p. These two can be the quantities describing each acoustic channel and
trap, and are expected to vary with the pathology affecting the lung.

Further studies would include the additional validation of the numerical results through
in vitro or in vivo experiments, replicating as closely as possible the conditions and the
parameters presented in this study. On the other side, changes in the numerical model
might be inserted to replicate more faithfully the real scenarios. For instance, the simula-
tions could be performed in three dimensions instead of two, and other media (e.g., blood
or water) could be included within the lung instead of muscle. Then, other alveolar distri-
butions may be investigated (e.g., introducing some randomness in the alveolar positions
and sizes), as well as alternative values of D, s and f0. The ability to vary the alveolar
diameter and spacing within the same numerical domain (e.g., by combining areas of large
and close alveoli and areas of small and spaced alveoli) would be of interest. Also, the
significance of the depth a B-line reaches may be investigated. The impact of the angle of
insonification on the artifacts’ generation processes could provide further considerations,
as well as the minimum number of alveolar layers needed for the generation of a B-line.
Additional tests could use an unfocused transmission (e.g., a plane wave) to estimate
more broadly the impact of the lateral resolution on the artifacts’ generation, and could
study the effect of frequency dependent absorption.

All data resulting from the described simulations are available in Ref. [134].
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Chapter 9

Quantitative Lung Ultrasound
Spectroscopy Applied to the
Diagnosis of Pulmonary Fibrosis:
The First Clinical Study

This Chapter8 presents a quantitative clinical study aiming at differentiating patients with
PF from patients with other lung diseases. Specifically, a previously developed multi-
frequency ultrasound imaging technique was utilized to acquire ultrasound images from 26
selected patients. The multi-frequency imaging technique was implemented on the ULA-
OP platform and an LA533 linear-array probe was utilized. RF data obtained at different
imaging frequencies were acquired and processed in order to characterize vertical arti-
facts based on their frequency content. In particular, the artifacts’ native frequencies (the
frequency at which a vertical artifact exhibits the highest intensity) and bandwidth (the
range of frequencies over which a vertical artifact shows intensities within -6 dB from its
highest intensity), as well as artifact’s intensity, were analyzed. The results showed how
the analysis of these features allows the differentiation of fibrosis with a sensitivity and
specificity equal to 92% and 92%, respectively. These promising results strongly motivate
toward the extension of the clinical study, aiming at analyzing a larger cohort of patients
and including a broader range of pathologies.

9.1 Introduction

Respiratory diseases are among the main causes of death and disabilities in the world
[135]. A well-know example is represented by the recent COVID-19 pandemic [136]. An-
other significant group of pulmonary diseases is represented by interstitial lung diseases
(ILDs), which comprehend over 100 disorders of the lung that often lead to the fibrosis of

8This Chapter appears in:
[J7] F. Mento, G. Soldati, R. Prediletto, M. Demi, L. Demi, ”Quantitative Lung Ultrasound Spectroscopy Ap-
plied to the Diagnosis of Pulmonary Fibrosis: The First Clinical Study,” in IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 67, no. 11, pp. 2265-2273, November 2020.
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this organ. Particularly, idiopathic pulmonary fibrosis (IPF), which represents about 30%
of ILDs [137], is one of the most common forms of lung scarring and affects approximately
3 million people in the world [138]. However, since pulmonary fibrosis (PF) can derive also
from known secondary causes (contrary to IPF, which is a subgroup of PF whose causes
are unknown), the overall number of patients affected by PF is likely higher. This disease
is generally characterized by a poor prognosis, also due to the delayed diagnosis, which is
particularly common in IPF [139]. Therefore, to begin early treatment and slow down the
progression of the disease, a timely diagnosis is fundamental. The high-resolution com-
puted tomography (HRCT) represents the most utilized imaging instrument to derive a
PF diagnosis [138, 139]. Nevertheless, the availability of a faster and more accessible pre-
liminary instrumental examination would be extremely useful to better and more rapidly
evaluate the state of the lung and direct the patients to the most suitable clinical path.

Lung ultrasound (LUS) currently represents an exploitable resource that is potentially
able to satisfy the aforementioned requirements [24]. LUS is indeed a cost-effective, safe,
and portable technology that allows real-time imaging. Its clinical relevance has been
receiving growing attention only since 1997 [17]. However, the presence of air, whose
acoustic characteristics significantly differs from the soft tissues [140], strongly compli-
cates the use of ultrasound technologies. Standard ultrasound imaging is indeed designed
to anatomically investigate the human body by assuming a quasi-homogeneous speed of
sound. Furthermore, the acoustic impedances of soft tissues and air are extremely differ-
ent, hence creating an interface (pleural line) having a high reflection coefficient [50, 140].
For this reason, the healthy lung behaves essentially as a perfect reflector. As a conse-
quence, ultrasound waves bounce multiple times between two strong reflectors, i.e., the
pleural line and the probe, hence generating the horizontal artifacts known as A-lines
[24]. In contrast, when the lung becomes pathological, vertical artifacts called B-lines
appear in the reconstructed image. The correlation between the appearance of B-lines
and numerous pathological conditions of the lung are largely mentioned in the literature
[17, 21, 50, 108, 122, 141]. These pathological conditions are characterized by the partial
replacement of the lung volume previously occupied by air with fluids or tissue, conse-
quently decreasing the acoustic impedance mismatch between soft tissues and the lung
surface [50, 140]. Particularly, this replacement causes the formation of acoustic channels
(or traps) made of media, such as tissue, water, or blood, where ultrasound can propagate,
thus generating the aforementioned vertical artifacts [17, 24, 50, 87].

Hypothesis on the origin of B-lines, and their link to the presence of acoustic traps,
has been discussed since similar artifacts were observed in a bubbly medium generated by
shaking soapy water [16], rigid structures surrounded by a homogeneous medium [101],
foamy phantoms [85], and bubbly media [55]. These studies demonstrate that these ar-
tifacts cannot be only associated with the presence of very specific anatomical structures
of the lung (e.g., interlobular septa). On the other hand, both the pathological lung and
the phantoms described in the previously cited literature have in common the presence
of acoustic traps. Understanding and characterizing the interaction between ultrasound
waves and these traps could explain the generation of B-lines. Indeed, after having par-
tially trapped the energy of the emitted acoustic waves, these traps probably act as
secondary ultrasound sources, which gradually reradiate the energy to the probe [101].
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Nonetheless, the genesis of B-lines still remains unclear [23]. Consequently, diagnoses
today are only based on the visual interpretation of these artifacts and are, thus, sub-
jective and qualitative [50, 55]. The so-called semiquantitative approaches are mainly
characterized by counting the vertical artifacts which appear in the image and are partic-
ularly spread in the clinical world [123–125]. Moreover, the visual recognition of specific
ultrasound patterns and the consequent introduction of scoring systems for evaluating
the state of the lung have been recently introduced also in the context of the COVID-19
pandemic [1, 32]. Notwithstanding the clear potentiality of LUS in investigating the lung,
these approaches remain strictly dependent on the subjective evaluation of physicians.

Therefore, to provide clinicians with objective information, a quantitative character-
ization of B-lines is needed. Recent studies indeed focused on developing ultrasound
imaging techniques designed for the lung, which aim at providing a quantitative measure
describing the state of the organ [55–57]. While the study by Zhang et al. [57] was based
on measuring the surface wave speed on the lung, Demi et al. [55] and Mohanty et al. [56]
investigated the relationship between the multiple reflections of ultrasound waves occur-
ring within the acoustic traps and the signal received by the transducer [88]. Of particular
interest is the characterization of B-lines with respect to their frequency spectrum [55],
which could provide an indirect estimation of both size and shape of acoustic traps [54].

PF represents a disease where the alveolar disposition is heterogeneous and completely
subverted with respect to its normal structure [54]. Therefore, the acoustic traps are irreg-
ularly distributed and have complex and various shapes, differently from other diseases,
such as acute cardiogenic pulmonary edema, where the original alveolar distribution is al-
most entirely preserved [54]. These irregularities in the pleural plane could be potentially
characterized by a frequency analysis of B-lines, whose spectrum is expected to have a
broad bandwidth when generated by heterogeneously sized and distributed traps such as
with PF [101].

In this article, the frequency content of the B-lines observed in 26 patients with lung
pathologies is quantitatively evaluated by exploiting the multi-frequency approach pre-
sented in [55]. In particular, this research investigates the potentiality to discriminate
patients affected by PF by exploiting the frequency dependence of B-lines, which is quan-
tified with a new parameter called “total intensity”. This parameter provides a measure
of the B-line strength independently of the transmitted pressure amplitudes (assuming
that no saturation occurs), which are generally different depending on the transmission
parameters (e.g., number of transmitting elements, focal point, and center frequency of
the emitted pulse).

This article is organized as follows. The utilized equipment and acquisition methods
are presented in Section 9.2.1, whereas Section 9.2.2 describes the procedure used to
extract the total intensity parameter. Section 9.2.3 introduces the utilized features and
their statistical analysis, whereas Section 9.2.4 presents the exploited classifiers. Then,
the main results are shown in Section 9.3, and the conclusions are presented with the
discussion in Section 9.4.
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9.2 Methods

9.2.1 Data acquisition

A multi-frequency approach based on orthogonal subbands centered at different center fre-
quencies (3, 4, 5, and 6 MHz) was implemented with an ULtrasound Advanced Open Plat-
form (ULA-OP) programmable platform [126], which was used together with an LA533
(Esaote, Florence, Italy) linear-array probe to acquire raw RF data from 26 patients.
This specific set of frequencies was adopted following the results obtained from a study
on controlled lung-mimicking phantoms, which showed how analyzing B-lines within this
frequency range allowed discriminating between phantom types made to model different
levels of lung alteration [55, 88]. The utilized probe has a -6- and -12-dB bandwidth from
3.8 to 12 MHz and from 3.2 to 13.2 MHz, respectively. The maximum of the transducer
transfer function is at 8 MHz. A Gaussian pulse having a 2-µs time length was transmit-
ted for every center frequency, guaranteeing each subband to have a narrow bandwidth,
i.e., 1 MHz at -10 dB. The amplitude of each pulse was properly defined with respect
to the probe bandwidth in order to equalize the pressure outputs. Adopting a strategy
based on the transmission of pulses with a narrow bandwidth is indeed fundamental to
better detect B-lines and precisely evaluate their frequency spectrum [55]. A dynamic
sinc apodization function was utilized. Focal point and maximum imaging depth were
set at 2 and 6 cm, respectively. Given that the pleural line generally sits at a depth of
about 2 ± 1 cm, this choice allowed the analysis of artifacts for depths up to at least twice
the depth of the pleural line. The ultrasound signals were transmitted and received by
means of a subaperture of 64 elements, which was linearly shifted over the entire array
to reconstruct an image composed of 129 lines. This process was repeated sequentially
alternating between the different center frequencies. A pulse repetition frequency (PRF)
equal to 4 kHz was utilized. Each image was, thus, formed at a frame rate of PRF/129 =
31 Hz, although a frame rate of 7.75 Hz was obtained when considering the images that
belong to the same frequency.

Given the imaging settings described above, the -12-dB lateral resolution measured at
focus by means of a wire phantom equals 0.81, 0.66, 0.65, and 0.54 mm when imaging at
3, 4, 5, and 6 MHz, respectively.

The received signals were digitized at a 50-MHz sampling frequency. To increase the
signal-to-noise ratio (SNR), the time gain compensation (TGC) was experimentally set
by considering the dependence of attenuation on both depth and frequency [129]. A value
equal to 1.5 dB/MHz cm was adopted.

The examined patients represent a subgroup of a larger population of 101 patients,
who signed an informed consent form to participate in this study (approved by the ethics
committee for clinical studies: study number 1089—comitato etico sperimentazione clin-
ica CEAVNO). Subjects consecutively admitted to the Pulmonary Medicine Unit of the
Gabriele Monasterio Tuscany Foundation of Pisa in the period November 2017–December
2018 were evaluated. No selection was made for pathology. Subjects younger than 18
years were excluded. During their stay, all subjects underwent thoracic ultrasound by
a single operator (GS) with more than ten years of chest ultrasound experience. The
patients were not requested to hold their breath during the ultrasound investigation.
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Moreover, all patients were investigated for their symptoms according to the pro-
cedures usually used in the institution when indicated, without any restriction, at the
discretion of the clinician (RP). Instrumental examinations, in addition to the physical
examination, were standard radiographs, computed tomography, radioisotopic investi-
gations, and cardiac catheterization. Thoracic ultrasound was performed blindly, and
the operator who performed the ultrasound examinations was unaware of the clinical or
anamnestic data of the patients. Patients had posterior, basal, paravertebral, and apical
scans in a sitting position. In the supine position, front and side scans on all explorable
areas, including supraclavicular areas, were acquired. Video clips and RF data of the
significant findings were stored.

In this work, to compose a balanced data set, we selected all the patients diagnosed
with IPF and an equal number of randomly selected patients without lung fibrosis. There-
fore, the investigated subgroup consists of 13 patients (ten males and three females, with
age ranging from 56 to 89 years and the mean equal to 76.8) suffering from IPF (Patient
ID from 14 to 26) and 13 patients with other diseases (eight males and five females, with
age ranging from 55 to 85 years and the mean equal to 74.9), such as chronic obstructive
pulmonary disease (COPD) (Patient ID 1, 4, 5, 6, 7, 8, 9, 10, and 13), emphysema (Pa-
tient ID 2), pneumonia (Patient ID 3, 4, 7, 13), pulmonary hypertension (Patient ID 8 and
11), and allergic asthma (Patient ID 12). Some of the nonfibrotic patients suffered from
multiple diseases. Standard clinical examinations (e.g., CT) were performed to derive
these diagnoses.

Figure 9.1: Procedure applied to the ultrasound data to compute the total intensity of B-lines. In
step 1, a sixth-order bandpass Butterworth filter centered at the transmitted center frequency
and having a 1.8-MHz bandwidth was applied. In step 2, the obtained image was displayed
in logarithmic scale with a 35-dB dynamic range to manually segment the clearest B-line by
defining a specific region of interest (ROIB), represented by a white box in the figure (center).
In step 3, the total intensity parameter was computed in ROIB to quantitatively evaluate the
B-line strength.
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Figure 9.2: Number of B-lines for each patient. The patients with ID from 1 to 13 (blue bars)
are diagnosed as nonfibrotic, whereas the patients with ID from 14 to 26 (red bars) are diagnosed
as fibrotic.

9.2.2 Quantification of B-Lines’ Intensity

B-lines’ intensity was quantitatively evaluated by exploiting the three-step procedure de-
picted in Fig. 9.1. In step 1, to minimize the contributes due to unwanted frequency
components, especially the harmonics, a sixth-order bandpass Butterworth filter centered
at the transmitted center frequency and having a 1.8-MHz bandwidth was applied. This
value was empirically chosen as a trade-off aimed at minimizing pulse distortion and
maximizing noise removal. Moreover, the Hilbert transform was applied to extract the
envelope, and the image was normalized with respect to its maximum value (displayed
at the pleural line). In this way, the variability introduced by different thickness of inter-
costal layers on the relative amplitude associated with each B-line artifact (which starts
at the pleural line) is mitigated. In step 2, the obtained image was displayed in loga-
rithmic scale with a 35-dB dynamic range to visually detect the clearest B-lines over the
different imaging frequencies. Each B-line was then manually segmented by defining a
specific region of interest (ROIB). Given a consecutive block of four images obtained at
the four different frequencies, the ROI was manually selected from the image with the
largely extended B-line, starting from 3 mm below the pleural line and in order to contain
the entire artifact as visualized from a normalized image with a dynamic range of 35 dB.
The same ROI was then utilized for the other three images of the block. In the final
step, the total intensity parameter was used to quantitatively evaluate the strength of
the selected B-lines. First, an arbitrary threshold was set at -35 dB, hence considering
only the values above the threshold in the computation of the total intensity. This choice
was made based on the noise level observed with the data. Then, the total intensity in
logarithmic scale was obtained as follows:
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ITOT = 20 log10(Apix

∑
i,j

10
ROIB(i,j)

20 ) (9.1)

with Apix being the pixel area (equal to 3.6 × 10−3 mm2), i and j are the indexes
referring to the pixel located in ROIB at the ith row and j th column, and ROIB(i, j)
represents the intensity (in decibels) of the pixel at the ith row and j th column.

Hence, this new metric introduced the possibility to quantify the relevance of a given
B-line by considering both the intensity of the artifact and its spatial extension (implicitly
included in the total intensity computation by summing all the pixels contained in ROIB).
Furthermore, thanks to the normalization operation (step 1), the dependence of the total
intensity from the received signal amplitudes is mitigated, hence increasing the robustness
and the reliability of the analysis.

A total number of 5,980 frames (2,944 frames acquired from the nonfibrotic group
and 3,036 frames from the fibrotic group) was processed by means of the aforementioned
procedure, leading to the detection of 1,029 B-lines.

9.2.3 Features and Statistical Analysis

In this study, we have considered three features, namely the B-line native frequency [55],
bandwidth, and total intensity. The first two features correspond to the frequency at
which a B-line exhibits the highest intensity and the range of frequencies over which a
B-line shows intensities within -6 dB from its maximum (when the B-line’s intensity is
higher than -6 dB for all the investigated frequencies, the bandwidth equals to 4 MHz).
The total intensity is introduced by 9.1. For each patient, multiple B-lines were analyzed
with respect to these three features.

To represent each patient as a function of native frequency and bandwidth of its B-lines,
Gaussian distributions were generated. Specifically, we computed the mean value and the
covariance matrix of the native frequency and bandwidth of the B-lines observed in each
patient. Successively, for visualization purposes, the covariance matrix was scaled by a
factor of 10. A distribution of multivariate normal random numbers was then generated for
each patient by means of the MATLAB function mvnrnd, given the mean values of native
frequency and bandwidth, and the covariance matrix as inputs. Finally, a normalized
multivariate normal probability density function was generated in MATLAB by means of
the mvnpdf function, given the previously computed distribution of multivariate normal
random numbers, the mean values of native frequency and bandwidth, and the covariance
matrix as inputs.

To evaluate the performance of classifiers based on the three features introduced in
this article, each patient was characterized with the mean values of native frequency,
bandwidth, and total intensity of its B-lines (the average values of the B-lines observed
in the patient). We referred to these parameters as “mean native frequency,” “mean
bandwidth”, and “mean total intensity”.

To evaluate the statistical significance of each feature, an analysis of variance (ANOVA)
test was performed between the fibrotic and nonfibrotic groups. In particular, the mean
parameters were investigated.
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The ANOVA tests were performed by means of the MATLAB function anova1.

Figure 9.3: Gaussian distributions representing the 13 fibrotic patients (top) and the 13 non-
fibrotic patients (center). The Gaussian distributions were generated by considering the mean
native frequency, the mean bandwidth, and the covariance matrix of native frequency and band-
width of B-line artifacts. The covariance matrix was divided by a factor of 10 to improve the
visualization. The 26 patients are jointly depicted in the 2-D plot (bottom), where the x-axis
and the y-axis represent the mean native frequency and the mean bandwidth of the B-lines ob-
served in each patient, respectively. The patient IDs are written near the corresponding points.
The patients within the black box are classified as fibrotic by the empirically defined binary
classifier.
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Figure 9.4: Multi-frequency images of the fibrotic patient labeled with ID 16 (top) and the
nonfibrotic patient labeled with ID 7 (bottom). The regions of interest (ROIB) that were used
to compute the total intensity are represented as white boxes. The images are shown with a
35-dB dynamic range.

9.2.4 Classifiers

To objectively evaluate the potentiality of the mean native frequency, mean bandwidth,
and mean total intensity for discriminating fibrotic patients, we trained and tested two
different well-known classifiers, i.e., support vector machines (SVMs) with Gaussian ker-
nels [142] and decision trees [143]. More specifically, both the SVMs and decision trees
classifiers were implemented in MATLAB by means of the fitcsvm and fitctree functions,
respectively. Each classifier was trained and tested by using k -fold cross validation, with k
ranging from 2 to 26, where 26 is the number of samples (patients) in the data set. Since
k -fold cross validation strictly depends on the randomly chosen groups, we performed a
repeated k -fold cross validation by repeating 20 times the cross validation process for each
value of k. Then, the performance results (accuracy, and specificity and sensitivity with
respect to the fibrotic group) were averaged to obtain more objective measures of perfor-
mance. To evaluate the classifiers’ performance by testing all the possible combinations
of the aforementioned features, the process was repeated seven times, i.e., by testing each
feature separately, each couple of features, and the three features together. Finally, an
empirical evaluation with respect to the classifiers’ parameters was performed, and the
SVM (BoxConstraint and KernelScale, set to 10 and 1, respectively) and the decision tree
(MinParentSize set to 10) having the best accuracy were chosen. Moreover, an empirically
defined binary classifier was introduced to show the best performance achievable with this
data set. This classifier was defined by visually observing the samples’ distribution in a
bidimensional plot with the mean native frequency and bandwidth as coordinates and set-
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ting two bounds (lower and upper) for each of these two features. Successively, to achieve
the best specificity, an additional empirical upper bound was defined for the mean total
intensity. Since the empirically binary classifier perfectly overfit the data set, it obviously
outperforms the SVM and the decision tree. The scope of this classifier is in fact to show
what the best achievable performance for this data set is and not to define a reproducible
classification criterion.

9.3 Results

9.3.1 B-Lines’ Initial Evaluation

Fig. 9.2 shows how many B-lines were detected for each patient, highlighting the difference
between the patients suffering from PF (611 B-lines) and the others (418 B-lines). Indeed,
even though the number of B-lines is generally greater in patients suffering from PF, some
of these patients (ID 14, 15, and 16) present a low number of artifacts. Fig. 9.3 (top and
center) shows how the distributions representing the fibrotic patients are located within a
specific range of native frequency and bandwidth, whereas the group of patients affected by

Figure 9.5: Histograms of the total intensity for fibrotic (red bars) and nonfibrotic (blue bars)
patients are depicted on the top. The occurrence represents the number of B-lines as a function
of the total intensity (x-axis). The 2-D plot (bottom) represents the patients as a function of
the mean native frequency and mean bandwidth of the B-lines observed in each patient after
the application of a 1.6-dB threshold to the mean total intensity. The nonfibrotic patients are
reduced to 7, with a consequent increase of specificity to 92%. The patient IDs are written near
the corresponding points. The patients within the black box are classified as fibrotic by the
empirically defined binary classifier.

112



other diseases is more heterogeneous and covers a larger range. To evaluate the possibility
to discriminate the fibrotic patients from the others, each patient was represented as a
point in a 2-D plane with the mean native frequency and mean bandwidth as coordinates
(see Fig. 9.3 at the bottom). Then, a binary classifier was empirically defined so that
the patients with the mean native frequency between 3.95 and 5.00 MHz and the mean
bandwidth between 2.3 and 3.5 MHz are classified as fibrotic. Despite the simplicity of
this classifier, a sensitivity approximately equal to 92% and a specificity about 77% were
achieved. To further improve the classification performance, the mean total intensity was
evaluated. Indeed, the literature suggests that B-lines probably originate from acoustic
traps, whose characteristics depend on the pathologies affecting the lung parenchyma [54].
In particular, in PF, these traps are composed of fibrotic content, whose attenuation is
significantly higher than fluids, such as water and blood. Hence, it is expected that B-
lines would generally show a lower intensity in fibrotic patients [54], as observable in Fig.
9.4. This concept is further confirmed by the histograms of the total intensity depicted
in Fig. 9.5 (top). The mean of the histogram representing the nonfibrotic patients is
indeed significantly higher (-0.64 dB) than fibrotic patients (-4.76 dB). As a consequence,
to exclude patients with more intense B-lines, a threshold empirically fixed at 1.6 dB was
applied to the mean total intensity. The introduction of this new discrimination criterion
allowed the correct classification of six nonfibrotic patients, two of whom were previously
misclassified. Therefore, as observable in Fig. 9.5 (bottom), thanks to the mean total
intensity evaluation, the specificity increased from about 77% to approximately 92%.

9.3.2 Classifiers’ Performance

Fig. 9.6 shows the performance of the selected classifiers (SVM and decision tree) in
discriminating fibrotic patients from the other group. The best accuracy was obtained
when the decision tree was used. In particular, the maximum accuracy (76.9%) was
achieved by exploiting the mean native frequency (singular feature) or the mean native
frequency together with the bandwidth (multiple features) as parameters. The SVM’s
accuracy trend is similar, even though the achieved accuracy (maximum value equal to
74% when only the mean native frequency was used as feature) is lower than for the
decision tree. The performance of both the decision tree and the SVM decreases when all
the features were exploited (maximum accuracy about 72.5% and 68.3%, respectively).
This accuracy decrement is likely due to the higher complexity of the model, whose
discrimination power hardly increases with such a low number of samples. The decision
tree’s sensitivity is generally higher than the SVM (maximum sensitivity is, respectively,
about 75.8% with the mean native frequency and mean total intensity as features and
71.5% with only the mean native frequency as feature), whereas its maximum specificity is
lower than the SVM (respectively, about 86.64% and 92.24% with the mean total intensity
as feature).

9.3.3 Features’ Statistical Analysis

The p-values obtained by performing the ANOVA test to compare the overall difference
between the fibrotic and nonfibrotic groups are 0.0236, 0.3190, and 0.0056 for the mean
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native frequency, mean bandwidth, and mean total intensity, respectively.

9.4 Conclusion and Discussion

Due to its portability, cost-effectiveness, and safety, lung ultrasonography represents nowa-
days a key instrument to provide clinicians with important information on the state of
the lung surface. The aforementioned characteristics make LUS extremely useful espe-
cially in emergency and critical care settings [24], such as in the monitoring of COVID-19

Figure 9.6: Performance of the selected SVM and decision tree is shown. The accuracy, sensi-
tivity with respect to the fibrotic group, and specificity with respect to the fibrotic group are
represented as error bars in blue, red, and green, respectively. The upper and lower values of
each error bar represent the maximum and minimum values of accuracy, sensitivity, and speci-
ficity obtained by varying k parameter of k -fold cross validation. The points of the error bars
represent the average value of the performance obtained by averaging the performance values
obtained with k -fold cross validation, with k ranging from 2 to 26. The x-axis represents the
features exploited in the selected model, where A is the mean native frequency, B is the mean
bandwidth, and C is the mean total intensity. When multiple features were exploited, a comma
is used in the x-axis to separate them (e.g., A, B).
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pneumonia [1, 32]. The potentials of LUS in supporting clinicians during the diagnostic
process have been studied since the 1990s, when, for the first time, the vertical artifacts
known as B-lines were observed in patients with alveolar interstitial syndrome [17].

B-lines appear generally different in the presence of different pathological conditions
of the lung [24]. For example, the possibility to qualitatively differentiate cardiogenic
from pneumogenic interstitial syndrome is well recognized in the literature [24]. The
appearance of B-lines is indeed different in these two groups of pathologies, likely due to
different shape and size of the acoustic traps that form on the diseased lung surface [54].

The characteristics of acoustic traps could be detected by analyzing the frequency
spectrum of B-lines [101], which were already proved to be frequency dependent [55].
Of particular interest is the discrimination of patients affected by PF, which is charac-
terized by more attenuated and diffused B-lines, probably due to the heterogeneity and
composition of acoustic traps [54].

In this article, we have presented a study investigating the potentials of a B-line
frequency characterization method with respect to the differentiation of patients affected
by PF. We exploited the multi-frequency approach introduced in [55], which provided
images of the same region acquired with four different center frequencies. The raw RF
data acquired from 26 patients, half of whom affected by PF, were then processed and
the total intensity parameter was extracted to quantitatively evaluate the B-line intensity.
To characterize all the 1029 B-lines, the total intensity was evaluated as a function of
frequency, hence determining the native frequency and the bandwidth of each B-line.

The results show differences between the vertical artifacts observed in fibrotic patients
with respect to patients affected by other diseases (Figs. 7.3 and 7.4). Indeed, while
fibrotic patients are more homogeneously distributed within a specific range of native fre-
quencies and bandwidths (native frequency near the average of the investigated frequency
range, i.e., 4.5 MHz, and bandwidth within 2.3 and 3.5 MHz), the other group is char-
acterized by a more heterogeneous distribution covering a wider range (Fig. 9.3). This
is consistent with the pathological conditions affecting the two groups of patients. The
nonfibrotic patients are in fact affected by different diseases (e.g., pneumonia, COPD, and
pulmonary hypertension), whereas the fibrotic patients are specifically characterized by
their histopathological pattern, which is almost unique. The heterogeneity of the nonfi-
brotic group is further confirmed by the total intensity histogram (Fig. 9.5 at the top),
whose standard deviation is relatively higher (6.9 dB) compared to the other group (4.9
dB). Moreover, the mean total intensity of all the B-lines representing fibrotic patients
is significantly lower (-4.76 dB) than the mean value of the nonfibrotic group (-0.64 dB).
This difference is likely associated with the physical composition of acoustic traps, which,
in several diseases different from PF, are generally consisted of less attenuating media
(e.g., water and blood) than fibrotic tissue [50, 140]. As further confirmation, the intro-
duction of a threshold to the mean total intensity allowed the specificity of the empirically
defined binary classifier to be improved up to 92% (+15% compared to the binary classi-
fication that considers as discriminating parameters only the mean native frequency and
bandwidth).

The discrimination power of the three features (native frequency, bandwidth, and
total intensity) is reported by the statistical analysis. When investigating the overall
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differences between the PF and non-PF populations, a p-value equal to 0.0236, 0.3190,
and 0.0056 for the mean native frequency, mean bandwidth, and mean total intensity
was obtained, respectively. Considering a threshold to p-values at 0.05, both the native
frequency and total intensity are significant for discriminating the two groups. Differently,
the bandwidth is not. Furthermore, the statistical analysis’ results seem to be consistent
with the performance achieved by the SVM and decision tree (Fig. 9.6), where the native
frequency has the strongest discrimination power, followed by the total intensity and
finally the bandwidth.

In conclusion, the quantitative evaluation of B-lines by means of both the multi-
frequency analysis and the total intensity is potentially able to discriminate fibrotic pa-
tients. These promising results could open to the definition of an ultrasound imaging
technique specifically designed for the lungs. However, there exist cases where the ar-
tifactual pattern is similar to fibrotic patients and, hence, the analyzed discrimination
parameters (total intensity, native frequency, and bandwidth) are not sufficient. As a
consequence, further investigation is necessary. Of particular interest could be the anal-
ysis of patients with specific diseases, such as cardiogenic pulmonary edema (CPE), that
show artifactual and histopathological patterns extremely different from fibrotic patients.
Through the evaluation of a larger group of patients affected by PF and another group of
patients affected by CPE, the potentiality of the method described in this article could
be further explored.
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Chapter 10

Conclusion

This Chapter1 draws the conclusions of the thesis within the context of the current LUS
literature.

10.1 Final Discussion

LUS represents a relatively novel application of ultrasound technology, which has been
increasingly expanding since the 1990s [17]. However, contrary to standard ultrasound
imaging, which was developed primarily for imaging non-invasively the anatomy of in-
ternal body parts, LUS is mainly based on the visual interpretation of imaging artifacts.
Among these, the so-called vertical artifacts are particularly important as they correlate
with various pathologies [19–21]. The main limitations associated with this type of pattern
analysis remain its subjectivity and limited reproducibility. Moreover, the understanding
and exploitation of the mechanisms underlying the genesis of vertical artifacts are just
beginning.

To overcome LUS limits and study vertical artifacts as a mean to characterize the
lung surface, various experimental studies have been recently performed [60, 66, 67] and
mathematical models have been proposed [58, 101]. Specifically, the acoustic trap the-
ory suggests that vertical artifacts originate from multiple reflections of ultrasound waves
trapped within channels that can form between alveoli when lung tissue becomes patho-
logical [58, 101]. By exploiting this concept and the dependence of vertical artifacts on
imaging frequency [55, 60], Demi et al. proposed a frequency characterization of these ar-
tifacts to indirectly estimate the dimension of acoustic channels (or traps). In particular,
a lower native frequency should indicate a greater trap size [58, 101]. This theory asso-
ciates the genesis of vertical artifacts with specific resonance phenomena, as also reported
in recent in vitro studies [60, 67].

To further investigate the possibility to estimate the dimension of these acoustic traps
by means of a frequency characterization of vertical artifacts, we performed an in sil-
ico study investigating the dependence of vertical artifacts on the alveolar diameter and

1This Chapter appears in:
[J0] F. Mento, U. Khan, F. Faita, A. Smargiassi, R. Inchingolo, T. Perrone, and L. Demi, ”State of The Art in
Lung Ultrasound, Shifting From Qualitative To Quantitative Analyses,” in Ultrasound in Medicine and Biology,
in press, 2022.
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spacing (Chapter 8) [96]. This study, which is the first in silico study on LUS, was of fun-
damental importance as it allowed the reproduction of vertical artifacts in a numerically
simulated domain, whose structure would be hardly reproducible in vitro. Indeed, in this
study we were able to periodically arrange alveoli at specific distances and having specific
diameter sizes. The quantitative results showed that, when spacing was set to half of the
wavelength, a possible correlation between the artifacts’ intensity and the ratio between
the wavelength and spacing was found [96]. This strengthened the potential to estimate
the dimension of acoustic traps by means of vertical artifacts’ spectroscopy.

The dependence of vertical artifacts on different imaging parameters (center frequency,
bandwidth, focal point position and the beam’s angle of incidence) was further investi-
gated in vitro, both qualitatively [66] and quantitatively [60, 67]. In this regard, as novel
contributions, we have presented two in vitro studies (Chapters 6 [60] and 7 [67]) that
revealed how these artifacts significantly depend on the investigated imaging parameters,
regardless of the models utilized to generate them. Indeed, even though the experimen-
tal models analyzed in Chapter 6 [60] (microbubble phantoms) completely differ from
the model utilized in Chapter 7 [67] (thorax phantom), the results consistently showed
a strong dependence of vertical artifacts’ intensity on center frequency. Moreover, they
showed how the focal point position, number of transmitting elements, bandwidth, and
beam’s angle of incidence have a non-negligible effect on vertical artifacts’ intensity, and
could hence be seen as confounding factors. In addition, the study presented in Chapter 6
[60] proved how there was no correlation between the vertical artifacts’ intensity and the
beam size, thus highlighting how changes in the lateral resolution do not affect vertical
artifacts’ intensity. These findings were fundamental as they strengthened the hypothesis
associating the genesis of vertical artifacts with specific resonance phenomena. As a con-
sequence, these studies further highlighted the potential to exploit the frequency spectrum
of vertical artifacts to indirectly estimate the dimension of acoustic traps [60, 67]. These
studies also provided important information to reduce the effect of confounding factors.
As an example, they recommended positioning the focal point at the pleural line depth,
as the structures that can be analyzed are indeed those along the lung surface [60, 67].
The findings of these in vitro studies are relevant for the development of quantitative LUS
clinical approaches as they quantify the impact of potentially confounding factors. More-
over, the results presented in these studies highlighted how a visual interpretation of these
artifacts leads to subjective and qualitative analysis, as their appearance strongly depends
on several imaging parameters that are seldom considered in the design of clinical studies.
As a consequence, the technique often used in clinical practice, i.e., the count of vertical
artifacts in the image, should be considered as qualitative and poorly reproducible.

In contrast, the main advantage of quantitative techniques consists of providing a
physical measure able to estimate the state of lung surface, avoiding a subjective evalua-
tion based only on visual interpretation of LUS artifacts. However, even though different
quantitative techniques have been proposed since 2017 [55–57], they have not been fully
validated in large clinical trials, and specific limitations exist for each technique. The
technique proposed by Mohanty et al. showed promise in differentiating healthy subjects
from patients with lung diseases, but presents a practical limitation related to the impact
of the intercostal layer thickness [56]. It has so far been tested only with the probe di-
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rectly in contact with the lung. Moreover, it was applied only on rat lungs, which present
different characteristics compared to humans [56]. On the other hand, Zhang et al. tested
LUSWE in human studies and obtained encouraging results in terms of differentiation
between healthy subjects and patients affected by different diseases [57, 61, 99, 100].
However, as suggested by an in vitro study [92], the positioning of the shaker could lead
to strong variability in the findings and, thus, to less reliable results. The multifrequency
technique proposed by Demi et al. [55] yielded promising results in differentiating patients
with PF from patients with different lung diseases [59]. Indeed, consistently with the find-
ings obtained on the in vitro and in silico studies presented in Chapters 6 [60], 7 [67] and
8 [96], the multifrequency characterization of vertical artifacts proved to be potentially
effective also in vivo to derive a differential diagnosis (Chapter 9 [59]). Specifically, in
this study we showed how the characteristic acoustic traps formed in patients with PF
seemed to generate vertical artifacts having native frequencies at specific portions of the
spectrum [59]. Nevertheless, only results on a relatively small cohort of patients (26) have
been obtained so far.

At present, semi-quantitative techniques still represent the main available strategy
to exploit LUS to assess the state of the lung surface. Nevertheless, the use of these
techniques should be guided by proper definition and standardization of acquisition pro-
tocols. Specifically, given the dependence of vertical artifacts on imaging parameters
[60, 66, 67], standardization of the imaging protocols represents a key methodology to
reduce confounding factors. Unfortunately, many protocols are heterogeneously defined,
often lacking details on the imaging settings [27, 35, 42]. Also the scoring systems, as well
as the amount and location of the scanning areas, are often arbitrarily defined [25]. Dif-
ferently, to develop and validate proper imaging protocols and scoring systems to be used
depending on the disease being investigated, it is of fundamental importance to compare
the performance of different protocols following an evidence-based approach [28, 29]. To
this end, we performed two studies analyzing the impact of both location and amount
of scanning areas on the evaluation of COVID-19 [28] (Chapter 4) and post-COVID-19
patients [29] (Chapter 5). Specifically, we exploited a dataset including LUS examina-
tions performed on 220 patients (100 COVID-19 positive and 120 post-COVID-19) by
utilizing a 14-areas standardized and clinically validated imaging protocol [1, 38]. The
results showed how the scanning areas could be reduced to 10 without significantly im-
pacting the final evaluation of the patient, as long as the basal posterior areas are scanned
[29]. These important findings could allow the development of specific LUS acquisition
protocols, characterized by an optimal trade-off between time-efficiency and accuracy.

An additional problem related to semi-quantitative approaches is the subjectivity of
the analysis. Indeed, even though scoring systems are used, they are based only on the
coding of visually interpreted LUS patterns into scores. Hence, the operator dependence
is impossible to overcome. To this end, the use of AI to automatically score LUS data
could be instrumental in reducing the subjectivity in the evaluation of LUS patterns.
For this reason, in Chapter 3 we proposed a technique to automatically classify LUS
videos by means of an aggregation strategy [45] based on a deep learning (DL) frame-
based classification [2]. The development of this technique was fundamental as it allowed
the comparison between clinicians’ and AI’s evaluations at video and prognostic levels.
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Specifically, the results at prognostic level showed the potential to exploit AI algorithm
in the automatic stratification of COVID-19 positive patients [45] and post-COVID-19
patients [29]. Nevertheless, given the strong subjectivity of the task [3, 37], it is not
reliable to expect levels of agreement between AI and human operators at video level
around 90-100% [29, 45]. Indeed, the use of AI algorithms could lead to more reproducible
analyses but cannot completely avoid subjectivity, as AI training remains based on the
subjective labeling performed by clinicians.

Another problem that emerged during the COVID-19 pandemic was the extensive
development of AI solutions regardless of domain knowledge on LUS. As an example, AI
systems have been proposed for the diagnosis of COVID-19 based on the simple evaluation
of LUS videos or frames [144–146]. This application of AI is fallacious as it is not possible
to diagnose COVID-19 based on LUS. Indeed, positive patients may still not present any
alterations along the lung surface. Moreover, LUS imaging patterns are strongly unspecific
[42]. As an example, different LUS artifacts (e.g., vertical artifacts and ”white lung”) or
anatomical findings (e.g, consolidations) that were observed in COVID-19 patients could
be observed in many other diseases (e.g., CPE, PF, and ARDS).

In conclusion, quantitative approaches represent the future of LUS, as they could pro-
vide a physical metric able to characterize the lung surface by applying an acquisition
technique specifically designed for the lung. This was demonstrated in Chapter 9, where
a novel multifrequency quantitative LUS strategy was shown to be effective in discrim-
inating patients with PF from patients with other lung diseases [59]. Nevertheless, to
further develop these techniques, the genesis of vertical artifacts needs to be more deeply
investigated and understood by means of controlled in vitro and in silico studies, as done
in the studies presented in Chapters 6, 7, and 8. In the meantime, semi-quantitative
approaches based on image analysis techniques should be exploited to estimate the state
of lungs by detecting and recognizing specific LUS patterns that do signal different levels
of aeration. However, to reduce the impact of confounding factors, standardization of
the imaging protocols and scoring systems is essential. Moreover, it is fundamental to
compare the performance of different protocols to properly define an acquisition protocol
able to optimize both execution time and accuracy of the examination (Chapter 4 [28]
and Chapter 5 [29]). In this context, consistently with what was done in Chapter 3 [45],
AI algorithms could be used to guide the analysis of LUS data.

120



List of Publications

INTERNATIONAL JOURNALS

[J0] F. Mento, U. Khan, F. Faita, A. Smargiassi, R. Inchingolo, T. Perrone, and L.
Demi, ”State of The Art in Lung Ultrasound, Shifting From Qualitative To Quan-
titative Analyses,” in Ultrasound in Medicine and Biology, in press, 2022 [147].

[J1] F. Mento, T. Perrone, A. Fiengo, A. Smargiassi, R. Inchingolo, G. Soldati, L. Demi,
”Deep learning applied to lung ultrasound videos for scoring COVID-19 patients: A
multicenter study,” in The Journal of Acoustical Society of America, vol. 149, no.
5, pp. 3626–3634, May 2021 [45].

[J2] F. Mento, T. Perrone, V. N. Macioce, F. Tursi, D. Buonsenso, E. Torri, A. Smar-
giassi, R. Inchingolo, G. Soldati, L. Demi, ”On the Impact of Different Lung Ul-
trasound Imaging Protocols in the Evaluation of Patients Affected by Coronavirus
Disease 2019: How Many Acquisitions Are Needed?,” in Journal of Ultrasound in
Medicine, vol. 40, no. 10, pp. 2235-2238, October 2021 [28].

[J3] L. Demi, F. Mento, A. Di Sabatino, A. Fiengo, U. Sabatini, V. N. Macioce, M.
Robol, F. Tursi, C. Sofia, C. Di Cienzo, A. Smargiassi, R. Inchingolo, T. Perrone,
”Lung Ultrasound in COVID-19 and Post-COVID-19 Patients, an Evidence-Based
Approach,” in Journal of Ultrasound in Medicine, Online ahead of print, December
2021 [29].

[J4] F. Mento, L. Demi, ”On the influence of imaging parameters on lung ultrasound
B-line artifacts, in vitro study,” in The Journal of Acoustical Society of America,
vol. 148, no. 2, pp. 975-983, August 2020 [60].

[J5] F. Mento, L. Demi, ”Dependence of lung ultrasound vertical artifacts on frequency,
bandwidth, focus and angle of incidence: An in vitro study,” in The Journal of
Acoustical Society of America, vol. 150, no. 6, pp. 4075-4082, December 2021 [67].

[J6] E. Peschiera, F. Mento, L. Demi, ”Numerical study on lung ultrasound B-line for-
mation as a function of imaging frequency and alveolar geometries,” in The Journal
of the Acoustical Society of America, vol. 149, no. 4, pp. 2304–2311, April 2021
[96].

[J7] F. Mento, G. Soldati, R. Prediletto, M. Demi, L. Demi, ”Quantitative Lung Ul-
trasound Spectroscopy Applied to the Diagnosis of Pulmonary Fibrosis: The First

121



Clinical Study,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 67, no. 11, pp. 2265-2273, November 2020 [59].

[J8] S. Roy, W. Menapace, S. Oei, B. Luijten, E. Fini, C. Saltori, I. Huijben, N. Chen-
nakeshava, F. Mento, A. Sentelli, E. Peschiera, R. Trevisan, G. Maschietto, E.
Torri, R. Inchingolo, A. Smargiassi, G. Soldati, P. Rota, A. Passerini, R. J. G.
V. Sloun, E. Ricci, and L. Demi, “Deep learning for classification and localization
of COVID-19 markers in point-of-care lung ultrasound,” in IEEE Transactions on
Medical Imaging, vol. 39, no. 8, pp. 2676–2687, 2020 [2].

[J9] O. Frank, N. Schipper, M. Vaturi, G. Soldati, A. Smargiassi, R. Inchingolo, E. Torri,
T. Perrone, F. Mento, L. Demi, M. Galun, Y. C. Eldar, and S. Bagon, “Integrating
Domain Knowledge into Deep Networks for Lung Ultrasound with Applications to
COVID-19,” in IEEE Transactions on Medical Imaging, Online ahead of print, 2021
[47].

[J10] R. Roshankhah, Y. Karbalaeisadegh, G. Hastings, F. Mento, G. Soldati, A. Smar-
giassi, R. Inchingolo, E. Torri, T. Perrone, S. Aylward, L. Demi, and M. Muller,
“Investigating training-test data splitting strategies for automated segmentation and
scoring of COVID-19 lung ultrasound images,” in The Journal of The Acoustical So-
ciety of America, vol. 150, no. 6, pp. 4118–4127, 2021 [48].

[J11] L. Carrer, E. Donini, D. Marinelli, M. Zanetti, F. Mento, E. Torri, A. Smargiassi,
R. Inchingolo, G. Soldati, L. Demi, F. Bovolo, and L. Bruzzone, “Automatic Pleu-
ral Line Extraction and COVID-19 Scoring from Lung Ultrasound Data,” in IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 11,
pp. 2207–2217, 2020 [43].

[J12] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F. Briganti,
S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, F. Tursi, F. Mento, and L. Demi,
“Is There a Role for Lung Ultrasound During the COVID-19 Pandemic?” in Journal
of Ultrasound in Medicine, vol. 39, no. 7, pp. 1459–1462, 2020 [32].

[J13] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F. Briganti,
S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, F. Tursi, F. Mento, and L.
Demi, “Proposal for International Standardization of the Use of Lung Ultrasound
for Patients With COVID-19,” in Journal of Ultrasound in Medicine, vol. 39, no. 7,
pp. 1413–1419, 2020 [1].

[J14] A. Smargiassi, G. Soldati, E. Torri, F. Mento, D. Milardi, P. D. Giacomo, G. De
Matteis, M. L. Burzo, A. R. Larici, M. Pompili, L. Demi, and R. Inchingolo, “Lung
Ultrasound for COVID-19 Patchy Pneumonia: Extended or Limited Evaluations?”
in Journal of Ultrasound in Medicine, vol. 40, no. 3, pp. 521–528, August 2020 [30].

[J15] F. Mento, T. Perrone, A. Fiengo, F. Tursi, V. N. Macioce, A. Smargiassi, R.
Inchingolo, and L. Demi, “Limiting the areas inspected by lung ultrasound leads to
an underestimation of COVID-19 patients’ condition,” in Intensive Care Medicine,
vol. 47, no. 7, pp. 811–812, 2021 [118].

122



[J16] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F. Briganti,
S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, F. Tursi, F. Mento, and L. Demi,
“Time for a new international evidence-based recommendations for point-of-care
lung ultrasound,” in Journal of Ultrasound in Medicine, vol. 40, no. 2, pp. 433–434,
August 2021 [31].

[J17] G. Soldati, A. Smargiassi, T. Perrone, E. Torri, F. Mento, L. Demi, and R.
Inchingolo, “There is a Validated Acquisition Protocol for Lung Ultrasonography
in COVID-19 Pneumonia,” in Journal of Ultrasound in Medicine, vol. 40, no. 12,
p. 2783, February 2021 [41].

[J18] G. Soldati, A. Smargiassi, T. Perrone, E. Torri, F. Mento, L. Demi, and R. Inchin-
golo “LUS for COVID-19 Pneumonia: Flexible or Reproducible Approach?” in Jour-
nal of Ultrasound in Medicine, vol. 41, no. 2, pp. 525–526, April 2021 [40].

[J19] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F. Briganti,
S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, F. Tursi, F. Mento, and L.
Demi, “On Lung Ultrasound Patterns Specificity in the Management of COVID-19
Patients,” in Journal of Ultrasound in Medicine, vol. 39, no. 11, pp. 2283–2284,
May 2020 [148].

[J20] U. Khan, F. Mento, L. N. Giacomaz, R. Trevisan, A. Smargiassi, R. Inchingolo, T.
Perrone, and L. Demi, ”Deep learning-based classification of reduced lung ultrasound
data from COVID-19 patients,” in IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 69, no. 5, pp. 1661-1669, March 2022 [83].

[J21] N. Fatima, F. Mento, A. Zanforlin, A. Smargiassi, E. Torri, T. Perrone, and L.
Demi, “Human to AI Interrater Agreement for Lung Ultrasound Scoring in COVID-
19 Patients,” in Journal of Ultrasound in Medicine, Online ahead of print, July 2022
[3].

INTERNATIONAL CONFERENCE PROCEEDINGS

[CP1] F. Mento, G. Soldati, R. Prediletto, M. Demi, and L. Demi, “Differentiation of
Pulmonary Fibrosis by Means of Quantitative Lung Ultrasound Spectroscopy, First
Clinical Study in Humans,” in 2020 IEEE International Ultrasonics Symposium
(IUS), Las Vegas, USA, 2020, pp. 1–4 [149].

[CP2] F. Mento and L. Demi, “Effect of Imaging Parameters on the Visualization of Lung
Ultrasound B-line Artifacts,” in 2020 IEEE International Ultrasonics Symposium
(IUS), Las Vegas, USA, 2020, pp. 1–4 [150].

[CP3] D. Yaron, D. Keidar, E. Goldstein, Y. Shachar, A. Blass, O. Frank, N. Schipper, N.
Shabshin, A. Grubstein, D. Suhami, N. R. Bogot, C. S. Weiss, E. Sela, A. A. Dror,
M. Vaturi, F. Mento, E. Torri, R. Inchingolo, A. Smargiassi, G. Soldati, T. Perrone,
L. Demi, M. Galun, S. Bagon, Y. M. Elyada, and Y. C. Eldar, “Point of Care Image
Analysis for COVID-19,” in ICASSP 2021 - 2021 IEEE International Conference

123



on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021, pp.
8153–8157 [151].

[CP4] F. Mento, T. Perrone, A. Fiengo, V. N. Macioce, F. Tursi, A. Smargiassi, R.
Inchingolo, and L. Demi, “A Multicenter Study Assessing Artificial Intelligence Ca-
pability in Scoring Lung Ultrasound Videos of COVID-19 Patients,” in 2021 IEEE
International Ultrasonics Symposium (IUS), Xi’an, China, 2021, pp. 1–3 [152].

[CP5] F. Mento and L. Demi, “Impact of Frequency, Bandwidth, Focus, and Angle of
Incidence on Lung Ultrasound Vertical Artifacts’ Intensity, in-vitro Study,” in 2021
IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 2021, pp. 1–3 [153].

[CP6] U. Khan, F. Mento, L. N. Giacomaz, R. Trevisan, A. Smargiassi, R. Inchingolo,
T. Perrone, and L. Demi, “Impact of pixel, intensity, and temporal resolution on
automatic scoring of LUS from Coronavirus disease 2019 patients,” in Proceedings
of Meetings on Acoustics, in press, 2022 [154].

[CP7] L. L. Custode, F. Mento, S. Afrakhteh, F. Tursi, A. Smargiassi, R. Inchingolo,
T. Perrone, G. Iacca, and L. Demi, “Neuro-symbolic interpretable AI for automatic
COVID-19 patient-stratification based on standardised lung ultrasound data,” Pro-
ceedings of Meetings on Acoustics, in press, 2022 [155].

INTERNATIONAL CONFERENCE ABSTRACTS

[CA1] F. Mento, G. Soldati, R. Prediletto, M. Demi, and L. Demi, “The impact of B-
lines’ frequency characterization on lung ultrasound imaging, in vitro- and in vivo
study,” in The Journal of the Acoustical Society of America, vol. 148, no. 4, pp.
2692, 2020. [Online]. Available: https://doi.org/10.1121/1.5147454

[CA2] R. Roshankhah, Y. Karbalaeisadegh, H. Greer, F. Mento, G. Soldati, A. Smar-
giassi, R. Inchingolo, E. Torri, S. Aylward, L. Demi, and M. Muller, “Automated
segmentation and scoring of lung ultrasound images of COVID-19 patients,” in The
Journal of the Acoustical Society of America, vol. 148, no. 4, pp. 2735, 2020.
[Online]. Available: https://doi.org/10.1121/1.5147599

[CA3] A. Smargiassi, G. Soldati, T. Perrone, E. Torri, F. Mento, D. Milardi, P. Del
Giacomo, G. De Matteis, M. L. Burzo, A. R. Larici, M. Pompili, L. Demi, and R.
Inchingolo, “Lung ultrasound and high-resolution CT-scan of the chest for COVID-
19 pneumonia,” in The Journal of the Acoustical Society of America, vol. 148, no.
4, pp. 2691, 2020. [Online]. Available: https://doi.org/10.1121/1.5147452

[CA4] S. Bagon, M. Galun, O. Frank, N. Schipper, M. Vaturi, G. Zalcberg, G. Soldati,
A. Smargiassi, R. Inchingolo, E. Torri, T. Perrone, F. Mento, L. Demi, and Y.
Eldar, “Assessment of COVID-19 in lung ultrasound by combining anatomy and
sonographic artifacts using deep learning,” in The Journal of the Acoustical Society
of America, vol. 148, no. 4, pp. 2736, 2020. [Online]. Available: https://doi.

org/10.1121/1.5147600

124

https://doi.org/10.1121/1.5147454
https://doi.org/10.1121/1.5147599
https://doi.org/10.1121/1.5147452
https://doi.org/10.1121/1.5147600
https://doi.org/10.1121/1.5147600


[CA5] E. Peschiera, T. Rigolin, F. Mento, and L. Demi, “Ultrasound waves propagation in
aerated inhomogeneous media,” in The Journal of the Acoustical Society of America,
vol. 148, no. 4, pp. 2737, 2020. [Online]. Available: https://doi.org/10.1121/

1.5147604

[CA6] L. Demi, F. Mento, T. Perrone, A. Fiengo, A. Smargiassi, R. Inchingolo, and G.
Soldati, “Agreement between expert sonographers and artificial intelligence in the
evaluation of lung ultrasound data acquired from COVID-19 patients,” ERJ Open
Research, vol. 7, no. suppl 6, 2021. [Online]. Available: https://doi.org/10.

1183/23120541.LSC-2021.61

[CA7] F. Mento, and L. Demi, “Investigating the link between intensity of lung ultrasound
vertical artifacts and penetration depth of ultrasound waves, in silico study,” in The
Journal of the Acoustical Society of America, vol. 151, no. 4, pp. A76, 2022.
[Online]. Available: https://doi.org/10.1121/10.0010706

[CA8] L. Demi, F. Mento, A. Di Sabatino, A. Fiengo, U. Sabatini, V. N. Macioce, M.
Robol, F. Tursi, C. Sofia, C. Di Cienzo, A. Smargiassi, R. Inchingolo, and T. Per-
rone, “A standardised and evidenced-based lung ultrasound acquisition protocol and
scoring system for the monitoring and stratification of COVID-19 and post-COVID-
19 patients,” in The Journal of the Acoustical Society of America, vol. 151, no. 4,
pp. A112, 2022. [Online]. Available: https://doi.org/10.1121/10.0010818

[CA9] U. Khan, F. Mento, L. Nicolussi Giacomaz, R. Trevisan, A. Smargiassi, R. Inchin-
golo, T. Perrone, and L. Demi, “On the impact of pixel resolution on automated
scoring of lung ultrasound images from coronavirus disease 2019 patients,” in The
Journal of the Acoustical Society of America, vol. 151, no. 4, pp. A112, 2022.
[Online]. Available: https://doi.org/10.1121/10.0010819

[CA10] L. L. Custode, F. Mento, S. Afrakhteh, F. Tursi, A. Smargiassi, R. Inchingolo,
T. Perrone, L. Demi, and G. Iacca, “Neuro-symbolic interpretable AI for automatic
COVID-19 patient-stratification based on standardised lung ultrasound data,” in
The Journal of the Acoustical Society of America, vol. 151, no. 4, pp. A112, 2022.
[Online]. Available: https://doi.org/10.1121/10.0010820

[CA11] F. Mento, L. Demi, A. Di Sabatino, A. Fiengo, U. Sabatini, V. N. Macioce, M.
Robol, F. Tursi, C. Sofia, C. Di Cienzo, A. Smargiassi, R. Inchingolo, and T. Perrone,
”Multicenter Study on Lung Ultrasound COVID-19 and Post-COVID-19 Patients,”
in Journal of Ultrasound in Medicine, vol. 41, no. S1, pp. S129, 2022. [Online].
Available: https://doi.org/10.1002/jum.16028

[CA12] F. Mento, U. Khan, L. Nicolussi Giacomaz, R. Trevisan, A. Smargiassi, R. Inchin-
golo, T. Perrone, and L. Demi, ”On the Impact of Pixel Resolution on Automated
Scoring of Lung Ultrasound Images From COVID-19 Patients,” in Journal of Ul-
trasound in Medicine, vol. 41, no. S1, pp. S130, 2022. [Online]. Available:
https://doi.org/10.1002/jum.16028

125

https://doi.org/10.1121/1.5147604
https://doi.org/10.1121/1.5147604
https://doi.org/10.1183/23120541.LSC-2021.61
https://doi.org/10.1183/23120541.LSC-2021.61
https://doi.org/10.1121/10.0010706
https://doi.org/10.1121/10.0010818
https://doi.org/10.1121/10.0010819
https://doi.org/10.1121/10.0010820
https://doi.org/10.1002/jum.16028
https://doi.org/10.1002/jum.16028




Bibliography

[1] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F. Briganti, S. Perlini, E. Torri,
A. Mariani, E. E. Mossolani, F. Tursi, F. Mento, and L. Demi, “Proposal for International Standardization
of the Use of Lung Ultrasound for Patients With COVID-19,” Journal of Ultrasound in Medicine, vol. 39,
no. 7, pp. 1413–1419, 2020. [Online]. Available: https://doi.org/10.1002/jum.15285

[2] S. Roy, W. Menapace, S. Oei, B. Luijten, E. Fini, C. Saltori, I. Huijben, N. Chennakeshava,
F. Mento, A. Sentelli, E. Peschiera, R. Trevisan, G. Maschietto, E. Torri, R. Inchingolo,
A. Smargiassi, G. Soldati, P. Rota, A. Passerini, R. J. G. V. Sloun, E. Ricci, and L. Demi, “Deep
learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound,”
IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2676–2687, 2020. [Online]. Available:
https://doi.org/10.1109/TMI.2020.2994459

[3] N. Fatima, F. Mento, A. Zanforlin, A. Smargiassi, E. Torri, T. Perrone, and L. Demi, “Human to
AI Interrater Agreement for Lung Ultrasound Scoring in COVID-19 Patients,” Journal of Ultrasound in
Medicine, July 2022. [Online]. Available: https://doi.org/10.1002/jum.16052

[4] F. Dunn and W. J. Fry, “Ultrasonic absorption and reflection by lung tissue,” Physics in Medicine and
Biology, vol. 5, no. 4, pp. 401–410, 1961. [Online]. Available: https://doi.org/10.1088/0031-9155/5/4/302

[5] T. J. Bauld and H. P. Schwan, “Attenuation and reflection of ultrasound in canine lung tissue,”
Journal of the Acoustical Society of America, vol. 56, no. 5, pp. 1630–1637, 1974. [Online]. Available:
https://doi.org/10.1121/1.1903488

[6] F. Dunn, “Attenuation and speed of ultrasound in lung,” Journal of the Acoustical Society of America,
vol. 56, no. 5, pp. 1638–1639, 1974. [Online]. Available: https://doi.org/10.1121/1.1903489

[7] ——, “Attenuation and speed of ultrasound in lung: Dependence upon frequency and inflation,”
Journal of the Acoustical Society of America, vol. 80, no. 4, pp. 1248–1250, 1986. [Online]. Available:
https://doi.org/10.1121/1.393818

[8] P. C. Pedersen and H. S. Ozcan, “Ultrasound properties of lung tissue and their measurements,”
Ultrasound in Medicine and Biology, vol. 12, no. 6, pp. 483–499, 1986. [Online]. Available:
https://doi.org/10.1016/0301-5629(86)90220-6

[9] R. T. Towa, R. J. Miller, L. A. Frizzell, J. F. Zachary, and W. D. O’Brien Jr., “Attenuation coefficient
and propagation speed estimates of rat and pig intercostal tissue as a function of temperature,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 49, no. 10, pp. 1411–1420, 2002.
[Online]. Available: https://doi.org/10.1109/TUFFC.2002.1041082

[10] M. L. Oelze, R. J. Miller, J. P. Blue Jr., J. F. Zachary, and W. D. O’Brien Jr., “Estimation of
the acoustic impedance of lung versus level of inflation for different species and ages of animals,”
Journal of the Acoustical Society of America, vol. 124, no. 4, pp. 2340–2352, 2008. [Online]. Available:
https://doi.org/10.1121/1.2973186

[11] K. B. Sagar, T. L. Rhyne, G. S. Myers, and R. S. Lees, “Characterization of Normal and Abnormal
Pulmonary Surface by Reflected Ultrasound,” Chest, vol. 74, no. 1, pp. 29–33, 1978. [Online]. Available:
https://doi.org/10.1378/chest.74.1.29

[12] C. R. Joyner Jr., L. D. Miller, S. J. Dudrick, D. J. Eskin, and P. Bloom, “Reflected ultrasound in the
study of diseases of the chest.” Transactions of the American Clinical and Climatological Association,
vol. 78, pp. 28–37, 1967. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441130/

127

https://doi.org/10.1002/jum.15285
https://doi.org/10.1109/TMI.2020.2994459
https://doi.org/10.1002/jum.16052
https://doi.org/10.1088/0031-9155/5/4/302
https://doi.org/10.1121/1.1903488
https://doi.org/10.1121/1.1903489
https://doi.org/10.1121/1.393818
https://doi.org/10.1016/0301-5629(86)90220-6
https://doi.org/10.1109/TUFFC.2002.1041082
https://doi.org/10.1121/1.2973186
https://doi.org/10.1378/chest.74.1.29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441130/


[13] L. D. Miller, C. R. Joyner Jr., S. J. Dudrick, and D. J. Eskin, “Clinical use of ultrasound in the
early diagnosis of pulmonary embolism.” Annals of surgery, vol. 166, no. 3, pp. 381–393, 1967. [Online].
Available: https://dx.doi.org/10.1097%2F00000658-196709000-00006

[14] M. C. Ziskin, D. I. Thickman, N. J. Goldenberg, M. S. Lapayowker, and J. M. Becker, “The comet
tail artifact,” Journal of Ultrasound in Medicine, vol. 1, no. 1, pp. 1–7, 1982. [Online]. Available:
https://doi.org/10.7863/jum.1982.1.1.1

[15] D. I. Thickman, M. C. Ziskin, N. Jacobs Goldenberg, and B. E. Linder, “Clinical manifestations of
the comet tail artifact,” Journal of Ultrasound in Medicine, vol. 2, no. 5, pp. 225–230, 1983. [Online].
Available: https://doi.org/10.7863/jum.1983.2.5.225

[16] L. Avruch and P. L. Cooperberg, “The ring-down artifact,” Journal of Ultrasound in Medicine, 1985.
[Online]. Available: https://doi.org/10.7863/jum.1985.4.1.21
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