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Abstract—The commercial availability of low-cost millimeter-
wave (mmWave) communication and radar devices is starting to
improve the adoption of such technologies in consumer markets,
paving the way for large-scale and dense deployments in fifth-
generation (5G)-and-beyond as well as 6G networks. At the same
time, pervasive mmWave access will enable device localization
and device-free sensing with unprecedented accuracy, especially
with respect to sub-6 GHz commercial-grade devices.

This paper surveys the state of the art in device-based local-
ization and device-free sensing using mmWave communication
and radar devices, with a focus on indoor deployments. We
overview key concepts about mmWave signal propagation and
system design, detailing approaches, algorithms and applications
for mmWave localization and sensing. Several dimensions are
considered, including the main objectives, techniques, and per-
formance of each work, whether they reached an implementation
stage, and which hardware platforms or software tools were used.

We analyze theoretical (including signal processing and ma-
chine learning), technological, and implementation (hardware
and prototyping) aspects, exposing under-performing or missing
techniques and items towards enabling a highly effective sensing
of human parameters, such as position, movement, activity
and vital signs. Among many interesting findings, we observe
that device-based localization systems would greatly benefit from
commercial-grade hardware that exposes channel state informa-
tion, as well as from a better integration between standard-
compliant mmWave initial access and localization algorithms,
especially with multiple access points (APs). Moreover, more
advanced algorithms requiring zero-initial knowledge of the envi-
ronment would greatly help improve the adoption of mmWave si-
multaneous localization and mapping (SLAM). Machine learning
(ML)-based algorithms are gaining momentum, but still require
the collection of extensive training datasets, and do not yet
generalize to any indoor environment, limiting their applicability.
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Device-free (i.e., radar-based) sensing systems still have to be
improved in terms of: improved accuracy in the detection of vital
signs (respiration and heart rate) and enhanced robustness/gen-
eralization capabilities across different environments; moreover,
improved support is needed for the tracking of multiple users,
and for the automatic creation of radar networks to enable large-
scale sensing applications. Finally, integrated systems performing
joint communications and sensing are still in their infancy:
theoretical and practical advancements are required to add sens-
ing functionalities to mmWave-based channel access protocols
based on orthogonal frequency-division multiplexing (OFDM)
and multi-antenna technologies.

Index Terms—Millimeter waves; propagation characteristics;
channel models; communications; localization; sensing; radar;
practical constraints;

I. INTRODUCTION

Millimeter-wave (mmWave) communications in the 28–

300 GHz band are looked at with great interest, as they

may be able to quench –at least temporarily– the ever-

increasing bandwidth requirements of such applications as

massive Internet of things (IoT), virtual/augmented reality,

mobile cloud services and ubiquitous ultra-high definition mul-

timedia streaming [1]–[3]. This would cover the shortcomings

of sub-6 GHz technologies such as WiFi and fourth-generation

(4G) cellular networks, which currently cannot support the

massive bandwidth and number of users the above applications

imply.

The potential of mmWave technology, however, is not

limited to higher-rate communications: rather, mmWave de-

vices can become a proxy for high-resolution device-based

localization as well as device-free sensing. These capabilities

follow from the physics of mmWave propagation. First, the

shorter wavelength of mmWaves (compared to sub-6 GHz

signals) enables accurate location estimates and lower location

error bounds [4], [5]. Second, mmWaves have well-known

and peculiar propagation characteristics [6], [7] which yield

higher spatial scanning resolution. For example, mmWaves

propagate quasi-optically, meaning that a line-of-sight (LoS)

multipath component (MPC) is predominant over non-line-of-

sight (NLoS) contributions to the received signal [8]. Scatter-

ing also has a limited impact off typical non-rough reflecting

surfaces such as walls, furniture, metal plates as well as glass

layers [9], [10].

Another consequence of mmWave propagation is that

mmWave signals undergo much higher path loss with respect
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to microwaves. To compensate for this attenuation, and still

enable long-reach wireless links, mmWave devices resort to

large or massive antenna arrays. Via beamforming, they can

focus their transmitted energy towards a confined portion of

the 3D space, and thus achieve greater directionality. While

this requires specific protocols for initial access [11]–[13]

and beam training such as the IEEE 802.11ad [14], [15] and

802.11ay [16], [17] standards, it also means that a reduced

amount of power is typically directed towards secondary

multipath components. In addition with the quasi-optical

propagation patterns discussed above, the main consequence

is that the received angular spectrum of a mmWave signal

is sparse: in typical conditions, one can identify one LoS

MPC along with a number of NLoS MPCs corresponding

to signal reflections off the surrounding environment. The

above features of mmWave communications have significant

implications for localization and sensing [18]. For example,

being able to separate MPCs in the angular domain enables

angle-based localization schemes that are not normally used

in sub-6 GHz systems due to limited angular resolution when

using small antenna arrays. Fingerprinting-based algorithms

can also be enhanced by incorporating angle-based features

to improve location discrimination. From the point of view

of device-free sensing, mmWave propagation also implies

typically clearer reflections off sensed targets and parts thereof.

For example, a) quasi-optical mmWave propagation along with

b) the large mmWave bandwidth available at typical mmWave

radar frequencies respectively imply that reflections off targets

are usually separate in the a) angle and b) time domains.

This makes it possible to measure features that point to each

reflection’s movement velocity (e.g., the Doppler shift) and use

this data to precisely localize and identify different targets.

In this paper, we focus on indoor mmWave device-based

localization and device-free sensing, and provide a com-

prehensive review of approaches, technologies, schemes and

algorithms to estimate a device or object’s location in an

indoor environment. The objective of our survey is to shed

light on indoor applications of localization and sensing using

mmWave signals. Location information can be extremely

useful in different indoor setups [19], [20]. For example, in

factories and industrial environments, location information can

be exploited to enhance ultra-reliable low-latency communi-

cations (URLLC) for industrial IoT and smart manufactur-

ing [21], [22]. Accurate localization and sensing can benefit

healthcare scenarios for patient tracking and lifesign/behavior

monitoring, help people navigate in indoor areas, provide

trajectory suggestions through relevant waypoints in museums,

malls, and company headquarters, as well as support mission-

critical applications such as disaster relief and indoor security.

Location systems are also crucial for network performance

optimization. Accurate location information can support the

fast alignment of transmit and receive antenna arrays, optimize

the association between clients and access points (APs), and

prevent blockage of high-power LoS paths via predictive

handovers to provide seamless coverage. This can result in

low-latency communications as needed for augmented reality,

virtual reality, and tactile Internet applications.

In the following, we start with an overview that touches

on mmWave signal structure and propagation characteristics

that make this domain unique with respect to other radio

communication and sensing technologies. We consider practi-

cal constraints that define the applicability of algorithms and

processing schemes to mmWave devices operating indoors.

We then delve into a detailed description of device-based

indoor localization algorithms, explaining the main localiza-

tion techniques employed in the literature, and how they are

practically implemented in real mmWave hardware whenever

available. For device-free sensing, we list a number of relevant

applications and technologies that leverage mmWave hardware

and signals to detect, localize and track targets indoors, as well

as to specifically identify features related to sub-sections of a

target (e.g., a part of the human body). Because these device-

free approaches are mainly based on mmWave radar devices,

we will briefly discuss how mmWave radar bands are being

standardized for different applications.

A. Differences with respect to previous surveys

Localization and sensing are topics of great interest for both

current and future-generation wireless communication system

engineering. The research on these topics has proceeded at

a steady pace, considering aspects as diverse as localization

techniques, heterogeneous technologies, different scenarios,

and different kinds interactions between the device to be lo-

calized and the location server, among others. Several surveys

cover these aspects, typically for sub-6 GHz technologies. For

example, Zafari et al. [23] and Geok et al. [24] focus on

localization techniques for wireless systems in general, and

cover heterogeneous technologies. These works only tangen-

tially consider mmWaves, and instead survey geometric and

signal processing-based localization methods for sub-6 GHz

systems. Ngamakeur et al. [25] delve into device-free sensing

of different human signatures using sub-6 GHz technologies

indoors. Here, the focus is on the localization, tracking and

identification of multiple subjects using Wi-Fi and other kinds

of wireless sensors.

By leveraging similar technologies, Singh et al. [26] con-

sider techniques and algorithms to localize IoT devices in-

doors. In this case, the focus of the survey is on a specific

source of location information (received WiFi signal strength

fingerprints) and on how machine learning works when applied

to such datasets. By expanding into the concept of smart world,

the work in [27] also surveys how sub-6 GHz technologies

can help improve a variety of services via data collection

and system automation using active and passive sensing tech-

niques. Finally, the work in [28] touches on aspects related

to the modeling and estimation of wireless channels in fifth-

generation (5G) cellular systems. While the work touches on

localization, the covered techniques apply to outdoor cellular

systems, and can thus leverage the density and much higher

computational power of their hardware.

Unlike our survey, none of the above works targets mil-

limeter wave device-based and device-free indoor localization.

This area is characterized by several interesting research works

to date, but remains a very hot topic due to the inception of

mmWave coverage for future 5G-and-beyond networks as well
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as wireless (indoor) local-area networks. The objective of our

survey is to cover the most significant work in this area, while

giving a comprehensive view of unsolved challenges and open

research avenues.

Note that, in our survey, we are not seeking an analysis

of the limits of mmWave localization and sensing technology

based on purely theoretical arguments, or an operational

description of well-known geometric localization algorithms,

or even a coverage of the integration between mmWave

communications and 5G, beyond-5G, and future 6G networks.

These are related yet tangential topics for which we rather refer

the interested reader to one of the several excellent surveys that

touch on these aspects, e.g., [18], [19], [22], [28]–[34].

B. Outline and organization of the manuscript

The remainder of this paper expresses three purposes: to

cover the characteristics of mmWave propagation and commu-

nication/sensing hardware that impacts localization and sens-

ing performance, including standardization efforts (Sections II

through IV); to detail the state of the art in device-based

mmWave localization (Section V) and in device-free mmWave

sensing (Section VI); and finally to discuss our findings,

discuss promising research avenues, and draw concluding

remarks (Sections VII and VIII).

In particular, Sections V and VI constitute the core of

our technological survey. Section V discusses device-based

localization algorithms for indoor environments, whereas Sec-

tion VI presents several approaches for radar-based device-

free localization. Each section is organized to first present

the section topic, and then to add progressively more details

related to the typical techniques appropriate for each section,

the hardware typically used in testbeds, and the description

of each surveyed approach. We also include summary tables

to help the reader navigate the contents and extract key

information. Both Sections V and VI end with a summary

of the most relevant aspects and findings.

Fig. 1 represents the organization of the survey as a mind

map, starting from Section II (top right), proceeding clockwise,

and concluding with Section VII.

II. INFLUENCE OF MMWAVE CHANNELS

A. Impact of mmWave frequencies on propagation conditions

The propagation of a wave through any medium depends on

its frequency: this basic property helps us predict the behavior

of the channel for diffeangularrent carrier frequencies. When

it comes to mmWaves, considering the Friis equation under

the assumption that the antenna gain G at both link ends is

frequency-independent (by reducing the antenna aperture), the

free space path loss increases with the square of the carrier

frequency f . On the contrary, assuming a constant physical

area A at both the transmitter (TX) and the receiver (RX),

the antenna gains G = A(4π/λ)2 increase on both sides,

and thus the overall path loss decreases quadratically with in-

creasing frequency f [35]. Specular reflections for dielelectric

halfspaces (e.g., ground reflections) depend on frequency as

long as the dielectric constant is itself a function of frequency.

For reflections at a dielectric layer (e.g., building walls) the

specular reflections depend on the electrical thickness of the

wall, which in turn is also a function of frequency. Interest-

ingly, we have no evidence that the reflection coefficient varies

with frequency, although the transmission power decreases

uniformly with increasing frequency due to the skin effect in

lossy media [36].

Two effects that have gained spotlight with the increased

interest in the mmWave band are diffraction and diffuse

scattering. The former reduces noticeably at high frequencies,

and larger objects lead to “sharp” shadows. The latter effect is

more significant as the surface roughness becomes comparable

to mmWave wavelengths. As the surface roughness increases,

the objects behave like a Lambertian radiator, which scatters

the radiation. Foliage has a similar effect as scattering; with

the decreasing wavelength relative to the size of the leaves, we

observe more diffused scattering and less penetration. Another

factor is atmospheric attenuation due to fog or rain [37]

and may affect the mmWave frequencies in case of extreme

weather.

Channel models used for localization need to account for

the above mentioned phenomena, and are often based on

ray tracing or cluster-based modeling with some geometry-

based stochastic channel model (GSCM) [38]–[40]. Moreover,

for ray tracing approaches, high-resolution environment in-

formation is needed to account for such surface roughness,

as different materials have different properties (e.g., glass

windows vs. concrete walls). These effects also depend on the

environment: the high concrete walls and glass surfaces of the

urban areas lead to different propagation conditions, compared

to the greener suburban areas with, e.g., stucco exteriors and

shorter walls.

B. Measurement techniques and results

To model the properties of a channel, we need to perform the

measurements for different propagation scenarios. A channel

sounder, that helps to measure these properties is not only

an expensive piece of equipment but as we move towards

higher frequencies, the susceptibility to phase noise as well

as antenna spacing errors start to increase. Similarly, the cost

and energy consumption of up/down-conversion chains, in

particular of the front-end mixed signal circuitry in analog-to-

digital and digital-to-analog converters (ADCs/DACs) as well

as power amplifiers (PAs) becomes of paramount importance.

For up-to-Gbit/s sampling rates (as often required by best-in-

class channel sounding), 12-15 bit resolution is required. To

penetrate larger distances (and thus to maximize the forward

link gain), PAs typically need to operate with 6-10 dB backoff

power efficiency and need to be continuously driven close to

their 1 dB compression point limits.

Consequently, the channel sounders used often for measure-

ments at high frequencies use omnidirectional antennas [41]

or if directional [42], then the angular resolution is not

taken into account. Directionality is achieved by mechanically

rotating horn antennas in most cases and the angular resolution

corresponds to the beamwidth, e.g., [43]–[45]. For indoor

measurement scenarios, the directional information though can

be enhanced by using switched antenna arrays along with
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Fig. 1. Mind map showing the organization of this survey.

super-resolution algorithms like space-alternating generalized

expectation maximization (SAGE) [46] and RIMAX [47]. It

is possible to use electronically-switched horn arrays [48] as

well, which additionally lets us evaluate the MPC and intra-

cluster information.

1) Key outdoor results: When it comes to outdoor measure-

ments, path loss is a key parameter. For channel modelling,

we need to measure the pathloss coefficient, its mean and its

variance. The pathloss coefficient for mmWave frequencies

is close to that of microwaves, i.e., often there is no strong

frequency dependence beyond the f2 dependence of free-space

path loss [49]. In LoS scenarios, the path loss coefficient lies

between 1.6-2.1 (2 for pure free-space propagation) and in

NLoS scenarios the value increases to 2.5 and 5 (e.g., [43],

[44], [50]).

On the other hand, the variance of the path loss around

the distance-dependent mean is higher at mmWave frequen-

cies, which in turn increases the probability of outage [51].

The standard deviation as well is strongly dependent on the

distance and its values increases from 5-10 dB to more than

20 dB as the distance increases from 30 m to 200 m [50]. This

is due to the variation in power levels caused by location and

orientation of a street in an urban macro cell [52] and not due

to shadowing as one may expect.

Another parameter important for channel modelling is the

root mean square (RMS) delay spread. But it changes with

frequency and thus it may not be the best parameter to model

the delay dispersion. Instead, delay windows may be a better

alternative as they define the time interval containing part of

the energy of power-delay profile (PDP). Delay spreads in an
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TABLE I
SUMMARY OF CHANNEL MODELS AND THEIR SPATIAL PARAMETER VALUES

Parameter
mmWave Channel Models

3GPP [59] /
ITU-R [60]

COST
IRACON [61]

METIS
[53]

QuaDRiGa
[62]

NYUSIM
[63]

f (GHz) 6 2.6 0.45-63 5.4 28

Type 2D GSCM GSCM 3D Map-based & GSCM 3D GSCM TCSL

K- factor µK 7 N/A 7.9 -1.6 N/A

σK 4 N/A 6 2.7 N/A

Delay Spread µDS -7.7 1.07 -7.42 -7.22 2.7

σDS 0.18 0.93 0.32 0.08 1.4

AOA Spread
µASA 1.62 3.94 1.65 1.67 19.3
σASA 0.22 3.91 0.47 0.15 14.5

AOD Spread
µASD 1.60 0.71 1.64 1.54 23.5
σASD 0.18 0.59 0.43 0.1 16.0

ZOA Spread
µZSA 1.22 3.73 1.28 1.61 7.4
σZSA 0.297 2.11 0.26 0.07 3.8

ZOD Spread
µZSD N/A 1.95 1.31 1.17 -7.3
σZSD N/A 1.80 0.31 0.07 3.8

XPR (dB)
µXPR 11 15.59 29 13 N/A
σXPR 4 10.39 6.5 1.6 N/A

Shadow fading
µPL 47.9 N/A N/A 36.1 N/A
σPL 3 N/A 3 1.6 N/A

outdoor environment are measured or simulated by ray tracing

[43]–[45], [53]. Beamforming can help with minimizing the

delay spread [54]. The type of beamforming to be used

depends on the angular dispersion properties. Angular spreads

measured at the base station (BS) are more accurate than those

measured at the user equipment (UE) as the ray tracers used

often do not include scattering objects such as street signs,

parked cars, etc. in their geographic database [50], [55]. As

observed in [44], [56], the RMS angular spread at the BS is

of the order of 10◦ with one cluster only while at the UE, the

angular spreads are in the range 30-70◦ [43], [44], [56], [57].

More information related to fixed wireless scenarios can be

found in [58].

2) Key indoor results: Measurements for indoor environ-

ments have picked up in recent years as we look at localization

applications for 5G. The results are often from office and

industrial environments, where different material densities can

be studied. The path loss coefficient in this case ranges

from 1.2-2 in LoS to 2-3 in NLoS scenarios [64], [65]. The

frequency dependence of the path loss is more significant

for indoor than outdoors, fk with k ≈ 2.5 was observed

in [66]. Overall though, the values are closer to those at sub-

6 GHz, with an increased probability of outage. Path loss

in some cases is shown to follow a dual-slope model and

is the same for both mmWave and sub-6 GHz. The floating

intercept model is another alternative used in Third-generation

partnership project (3GPP) standards for indoor modelling

at high frequencies. Human blockage can cause upto 10-

20dB attenuation regardless of one or two people [67] and

similar values in case of trucks in outdoor scenarios [68].

In [69], fast Fourier transform (FFT) based beamforming is

used in conjunction with a very large virtual array (25×25×25

elements). It highlights the scattering caused by small objects

specifically in NLoS case and the importance of small scale

characterization. Further, it is shown that the indoor environ-

ment leads to enhanced diffused MPC energy.

Delay spread measured in office scenarios is usually less

than 5 ns in LoS conditions, and 10–20 ns in NLoS condi-

tions [65], [70]–[73]. Though these measurements were lim-

ited to under 100 GHz, recently [74] performed measurements

at 142 GHz and observed delay spread values of 3 ns in LoS

and 9 ns for NLoS. Further, the observed channels are much

sparser at frequencies over 100 GHz and we notice higher

partition loss compared to 28 GHz. It is worth noting for

indoor measurements, the number of MPCs is higher with

more clusters than measured for outdoor with rotating horn

antennas [75]. Here the angular spreads are often measured

for clusters, with the intra-cluster azimuth and elevation angles

are described as having a Laplacian distribution with a spread

of 5◦ [76].

C. Models for mmWave channels

Because mmWave propagation channels differ from mi-

crowave channels, we need to redefine or rather add certain

parameters for mmWave channel modeling. As mentioned

in [58], mmWave channels require 3D modeling of azimuth

as well as elevation spreads, inclusion of temporal/spatial/fre-

quency consistency and multipath cluster based modeling.

These have further impact when we consider positioning and

localization. Prevalent models for mmWave are GSCMs that

imitate the propagation environment with stochastic processes,

and create a 3D map. To correctly reproduce the wireless

environment, parameter values need to be extracted from the

channel impulse response of real time measurements done

using a channel sounder. An extensive review of propagation

chacteristics at mmWave frequencies is available in [77],

which also provides a summary of channel sounder mea-

surements and relevant channel models. The 3GPP defined

different environments for mmWave channel modeling, these

include Urban Macro, Urban Micro, Indoor Office and Rural

Macro. Several outdoor and indoor measurements are avail-

able, but for this paper we compare large-scale parameter

values for an indoor office scenario listed in Table I.
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Fig. 2. Cross-polarized antenna array panel [59].

Prominent channel models have been developed for the

above mentioned scenarios based on measurements done in

each of them. Some key results have already been discussed,

but we also observe that cluster-based multipath channel com-

ponents have been modelled, in order to specifically account

for an indoor office environment. Also, as can be seen from the

table, the angular spread is no longer limited to the azimuth

plane.

1) Static vs. dynamic modeling: Due to the high frequency

and thus higher path loss, there is significant deterioration

when the UE is stationary and more so when the UE is

moving or is in a high movement zone and transitions from

a LoS to NLoS scenario. This requires the dynamic modeling

of the communication channel, as the moving objects in

the vicinity also act as random blocking obstacles. The BS

needs to transmit training beams more frequently so as to

update the angle of departure (AoD)/angle of arrival (AoA)

estimates, since the location of UE changes over time, and

slight errors in the orientation of the beams can lead to

significant performance loss [78]. So far, we have considered

a fixed BS and slow moving UE, but with 5G and vehicle-

to-everything (V2X) communications we expect high mobility

scenarios [79]. Most mmWave channel models are still defined

only for a fixed BS, but have added support for dynamic

modeling scenarios for V2X.

2) Blockage: mmWaves cannot penetrate obstacles such as

human bodies, walls, foliage, etc. Thus, these blockage sources

need to be modelled in the link budget itself. One such charac-

terization study is found in [80], which measured power loss

(in dB) when 70-GHz mmWave signals propagate through a

brick wall, a PC monitor, and book shelves. Blockage does not

affect just the total received power but also the angle or power

of multipath signal components, due to varying sizes, positions

and directions of the blocking object/human. Localizing the

position of the UE with respect to these blockage sources

becomes onerous, especially in a dynamic setting.

3) Spatial consistency and clusters: A new, previously

unexplored requirement was added to 3GPP Release 14 [59].

When mmWave communications take place through narrow

antenna radiation beams, the channel characteristics become

highly correlated, especially when two UEs are close and

see the same BS. Also, for applications related to V2X

Fig. 3. BS antenna array pattern as a function of azimuth and elevation scan
angles [81].

communications, it is paramount that the channel evolves

smoothly without discontinuities during mobility [81].

4) Polarization: The radiation pattern of each antenna

element of an array extends over both the azimuthal plane

and the elevation plane, and should be separately modelled

for directional performance gains. Moreover, as we consider

indoor scenarios with higher number of reflections, the polar-

ization properties of the multipath components also come into

play.

5) Large bandwidth and large antenna arrays: Antenna

arrays that are larger in size and also massive in the number

of antenna elements are needed at mmWave, thus high reso-

lution channel modeling includes propagation patterns both

in the angular domain and in the delay domain. Massive

MIMO channel models [82] have previously not considered

these exceptions but at mmWave, accurately modeling of the

higher number of multipath components and their AoA/AoD is

paramount. Antenna elements in azimuth and elevation plane

both need to be evaluated to consider all possible array struc-

tures (planar array, rectangular array, cylindrical array). Fig. 2

depicts an antenna array panel used for 3GPP/International

telecommunication union – radiocommunication Sector (ITU-

R) antenna modeling [59], [60]. Figs. 3 and 4 show the BS

and UE array radiation pattern based on parameters as defined

in [59, Table 7.3-1, page 22].

D. Summary

The mmWave channel when considered for indoor appli-

cations differs from the microwave channel in key aspects

such as free space path loss, diffraction, and penetration loss

with respect to different surfaces. This required the need

for different measurements to be done for channel charac-

terization. Some key results are presented in Section II-B.

Path loss equations and penetration loss for indoor scenarios

can be found in [59, Tables 7.4.1-1 and 7.4.3-1]. Various

channel models have been developed, these include those by

3GPP [59], ITU-R [60], METIS [53], MiWEBA [45], Fraun-

hofer HHI’s QuaDRiGa [62], COST2100 [83], NYUSIM [84]
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Fig. 4. UE antenna array pattern as a function of azimuth and elevation scan
angles [81].

which still has ongoing measurements for indoor scenarios.

The channel models are all GSCM-based with added cluster

based modeling. Small-scale parameter values are further

available when considering indoor scenarios found in the

documentations mentioned for corresponding models.

Several measurements have been done in the mmWave band

for outdoor (urban macro and urban micro) scenarios but the

indoor measurements are limited to the sub-6 Ghz band for

the channel models developed with the exception of [85],

where the authors propose an extension for an indoor channel

model based on extensive measurements carried out at 28

and 140 GHz. We observe that indoor channel models are

an extension of outdoor ones, and can be adapted easily based

on the delay and angular spreads of any environment, as well

as by adapting path loss modeling.

III. IMPLICATIONS OF BEAMFORMING ARCHITECTURES

FOR MMWAVE LOCALIZATION

It is a common misconception that for higher frequencies

the free space propagation loss is higher. As explained in [86],

[87], for given aperture area of the antennas used, shorter

wavelengths propagate farther due to the narrow directive

beams. This is further verified in [88] with a patch antenna

operated at 3 GHz and an antenna array operated at 30 GHz

of the same physical size. We observe equal amounts of

propagation loss irrespective of the operating frequency. Thus,

mmWave frequencies enable the use of antenna arrays that

produce highly directional beams which lead to large array

gains. This can be observed from Fig. 5, which shows not only

the increase in array size with respect to the beam penetration

distance, but also how the larger array size increases the

coverage area [35].

A. Analog beamforming

Analog beamforming, sometimes also referred to as beam

steering, is done by connecting a single radio frequency (RF)

chain to a string of phase shifters that are both energy-

and cost- efficient. Each phase shifter multiplies its input

by ej
2πk

2N , where j =
√
−1, N is the number of bits, and

k = 0, . . . , 2N − 1 is used to control the phase shifters.

Most commonly, codebook-based schemes are used to steer

the beams in the direction of the UE/receiver. At the re-

ceiver, the received signal strength indicator (RSSI) is the

most commonly used parameter to estimate the direction of

arrival and delay, and thus localize the device. However, phase

shifters have a constant amplitude constraint and limited phase

resolution. It is also worth noting that analog beamforming

converges to a single beam for multiple data transmissions,

and in multi-user case the inter-user interference is very high.

This is a drawback for localization applications, as the phase

resolution for analog beamforming is low. The popularity of

analog beamforming systems comes from the availibility of

commercial off-the-shelf (COTS) devices, that are being used

for research on mmWave positioning. The devices come with a

pre-programmed codebook to generate beam patterns and with

support for retrieving the RSSI and channel state information

(CSI) which can be used to isolate the position of the UE.

One such hardware front-end is available from TMYTEK, an

analog correlator with beamformer chips and smart-antenna

arrays [89]. Another company that provides beamformer inte-

grated circuits and scalable antennas for mmWave is Anoki-

wave [90]. Siver Semiconductors provides transceiver modules

for mmWave frequencies, i.e., 28 GHz and 60 GHz [91].

National Instruments (NI) also has the PXIe-5831, a mmWave

vector signal transceiver that has beamforming capabilities

and phased antenna arrays [92]. It has been used for channel

measurements as mentioned above as well [93]. We discuss

the hardware devices used in more detail in Section V-C1.

B. Hybrid beamforming

Hybrid beamforming is by far the most researched form

of beamforming, as it provides a middle ground between

complexity and cost. Here, the analog beamformer is used

in the RF domain, along with a digital precoder at baseband.

This can be either a fully connected structure or a partially

connected one. Hybrid analog/digital beamforming structures

provide balance between the beam resolution and cost and

power consumption. By using multiple RF chains concurrently,

beam sweeping can be done in a short time leading to shorter

beam training time which leads to higher effective data rate. At

mmWave frequencies the sparse channel behaviour is useful

for beam training and higher array gains. Multiple hybrid

beamforming techniques for mmWave have been proposed in

the last ten years which broadly fall under codebook depen-

dent, spatially sparse precoding, antenna selection and beam

selection [94]. [95] first gave the idea of what we call hybrid

beamforming today. It was a combination of a digital baseband

precoder and an RF precoder which falls under spatially sparse

precoding. The work in [96] first proposed the idea of base-

band beamforming, or “hybrid beamforming” as the authors

named it, that chooses the best RF beam based on a capacity

maximization criterion, and then derives a zero-forcing (ZF)-

based weighing matrix for digital precoding. Also, both [97]

and [98] suggest codebook-based precoding solutions. Recent
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Fig. 5. Effect of beamwidth relative to operating frequency and array sizes [35].

works have proposed compressive sensing, least squares- and

discrete Fourier transform (DFT)-based solutions for hybrid

beamforming with use cases in car-to-car scenarios and high

speed trains. In most cases, hybrid beamforming is seen to

perform as well as fully-digital beamforming, and as being

both cost-effective and spectrally efficient.

C. Digital beamforming

Digital beamforming adjusts the amplitude and phase of

the transmitted signals using precoding. Linear precoding

algorithms such as matched filter (MF), ZF, and regularized

zero-forcing (RZF) methods were classically used for single-

antenna user systems. For multiple-antenna users, block diag-

onalization is a feasible approach. Digital beamforming can be

considered as the best option for mmWave positioning. With

the possibility of huge antenna arrays (256× 128 upwards) a

beam resolution of the order of centimeters can be achieved.

The calibration accuracy of digital systems allows us to

use high-resolution parameter estimation algorithms that can

estimate not only the time of arrival (ToA) and AoA but also

the Doppler frequency offset in case of mobility, making it

possible to update the position of a UE in real-time. The issue

here arises from the use of a RF chain per antenna, which leads

to a complex, non-cost-effective hardware system for massive

multiple-input multiple-output (MIMO) structures.

As digital beamforming offers higher beam resolution, it

is a viable candidate where multi user mmWave or rather

mmWave massive MIMO systems are considered. However,

commercial hardware for a fully digital system is still in its

infancy, and only laboratory results exist. Several authors have

proposed alternative techniques for the realization of a digital

system that is power efficient. For instance [99] gives an option

for digital beamforming that employs switches to bypass the

hardware constraint of using multiple RF chains. In [100]–

[102], the authors propose different ways to form an antenna

array using waveguides and printed circuit boards that support

digital beamforming. Alternatively, [99], [103] propose novel

frameworks to do digital beamforming for a mmWave setup

using linearization to help with power amplifier loss and

improved quantization.

D. Performance vs. complexity overview

In localization applications, the requirement for mmWave

indoor systems is to isolate the position of the receiver

inside a room, while taking into account blockage caused

by humans and objects alike, with LoS being the dominant

component. The presence of pillars, metal and glass surfaces

affects the channel impulse response and thus make it difficult

to extract position information. Presence of antenna arrays

greatly enhances the accuracy of the position coordinates.

Whereas digital systems have cleaner isolated beams and can

potentially yield centimeter-level pointing accuracy, analog

setups have a limit to the number of beam patterns they

can generate: when trying to increase the resolution, these

beam patterns eventually start to overlap. As stated above, the

number of beams is proportional to the number of available RF

chains, thus increasing the complexity hundred-fold for digital

systems. Calibration issues also prevent analog systems from

performing high-resolution parameter estimation which could

improve the localization accuracy. Hybrid beamforming seems

a promising tradeoff as of now, due to the easier availability

of COTS devices, and to a performance almost as good as that

of fully digital systems.

IV. PROGRESS IN STANDARDIZATION OF CELLULAR

MMWAVE SYSTEMS

The frequency bands used for 5G systems were proposed

at the 2015 World Radio Conference (WRC) by ITU-R and

approved during WRC 2019. The frequency bands standard-

ized by 3GPP in Release 15-17 [104]–[106] for 5G systems

are classified as FR-I region (below 7.125 GHz) and FR-

II region (between 7.25 GHz and 71 GHz). The approved

FR-II bands are (in GHz): 24.25–27.5; 31.8–43.5; 45.5–

50.2; 50.4–52.6; 66–71. FR-I bands act as the key bands for

cellular communications, while the FR-II are more suited to

short-range communications. The FR-II bands also provide



9

Fig. 6. 3GPP Release 16 radio access type-dependent architecture standard-
ized for UE localization in URLLC scenarios. All BSs/APs are interfaced
with a centralized unit enroute to a URLLC core network.

increased bandwidths compared to FR-I, and are managed

via licensed access mechanisms such as enhanced UTRA-

dual connectivity (EN-DC). As some bands overlap with other

services, coexistence management is needed for terrestrial

access in overlapping satellite communication channels and

for fronthaul and backhaul in fixed wireless systems. 5G com-

mercial deployments have already been taking place since the

end of last year, and some spectrum congestion was observed

initially amongst multiple operators. Since then, some novel

forms of spectrum access/coordination mechanisms have been

implemented.1 When it comes to localization of UEs, it was

the focus of 3GPP Release 16 [105] especially for the use case

of URLLC. In the past, Global Navigation Satellite Systems

assisted by cellular networks have been mostly used for UE

positioning, but their accuracy is high only in outdoor environ-

ments, as they rely on satellites to localize UEs. As we move

towards higher frequencies, we require localization indoors

as well, and we can accomplish it in 5G networks using the

location server, as it was for long-term evolution-advanced

(LTE-A) systems. The location server collects and provides

position estimates and assistance data and measurements to

the other devices. Various localization methods are used, based

on downlink or uplink communications, either separately or in

combination, to meet the accuracy requirements for different

scenarios. The overall architecture is as depicted in Fig. 6.

As shown in Fig. 7a, downlink-based localization is per-

formed when each of multiple BSs/APs send a different

reference signal, known as the positioning reference signal

(PRS). The UE receives the different PRSs and reports the ToA

difference for PRSs received from multiple distinct BSs/APs

to the location server. The location server can use the reports

to determine the position of the UE. Compared to LTE-

Advanced, the PRS has a more regular structure and a much

larger bandwidth, which enables a more precise correlation

and ToA estimation.

The canonical 3GPP Release 15 sounding reference signals

(SRSs) with Release 16 extensions added uplink-based local-

1We note that these are operator- and vendor-specific, since frequency band
combinations vary depending on the specific country.

ization or BS/AP centric localization as shown in Fig. 7b.

In this case, the UE sends the reference signal. Based on

the received SRSs, the BSs/APs can measure and report (to

the location server) the arrival time, the received power and

the AoAs from which the position of the UE is estimated.

The time difference between downlink reception and uplink

transmission can also be reported, and used in round-trip time

(RTT)-based positioning schemes, where the distance between

a BS/AP and a UE can be determined based on the estimated

RTT. By combining several such RTT measurements, involv-

ing different BSs/AP anchors, it becomes possible to estimate

the location of the UE.

We note that these methods do not utilize the full-

dimensional nature of the propagation channel (azimuth and

elevation domains), and do not fully take into account the

phase information needed to estimate the underlying MPCs

with high resolution. While this is an ongoing topic for

research in many study items of 3GPP Releases 17 and 18,

we refer the reader to [106], [107] for further details. Along

this same line, a steady stream of work is also conducted in

academia, see e.g., [108].

V. DEVICE-BASED MMWAVE LOCALIZATION ALGORITHMS

FOR INDOOR COMMUNICATION SYSTEMS

A. Introduction

In this section, we introduce algorithms and methods that

leverage lab-grade and commercial-grade mmWave hardware

to localize devices indoors. We start with a brief recap on

classical methods for indoor radio localization. The standard

techniques designed for localization involve exploiting the pa-

rameters of radio signals from existing wireless infrastructure.

These have been well explored and surveyed in, e.g., [29],

[109]–[114]. With reference to Fig. 8, localization algorithms

typically make use of signal parameters related to received

signal power (RSSI and signal-to-noise ratio, SNR), time-

information such as time of flight (ToF) and time difference-

of-arrival (TDoA), and angle information (AoA and AoD) in

order to obtain distance and direction estimates, which enable

a device or group of devices to estimate either their own

location, or the location of another device in their proximity, or

both. Fig. 9 offers a general view of this process considering

the papers on mmWave localization surveyed in the literature.

After a device has extracted location-dependent features from

a received signal, such features are either used directly for

localization, or further processed to extract additional infor-

mation, or joined into a global map of the environment along

with other measurements. The device then applies geometric

or machine learning (ML)/deep learning (DL) algorithms to

derive location information.

The most typical localization techniques rely on geometric

algorithms. For example, trilateration and triangulation utilize

distance and angle measurements from fixed reference points

to compute an intersection, which yields the estimate of a

device’s location [110]. The reference points are usually the

location of the access points, and the localized device is

typically a client. The distances between the APs and the client

are measured by exploiting either the ToF of the signal or



10

by mapping the RSSI information to absolute distance using

path-loss models. Fig. 10a shows an illustration of trilateration

using ToF to estimate distances.

AoA (the angle at which the received signal strikes the

receiver antenna or antenna array) and angle difference-of-

arrival (ADoA) (the difference between two AoAs), are es-

timated by applying signal parameter estimation algorithms

(like multiple signal classification (MUSIC) [115] and estima-

tion of signal parameters via rotational invariance techniques

(ESPRIT) [116]) on the received signal. The AoAs from

different APs are then triangulated to localize the client device.

Fig. 10b illustrates the triangulation-based technique, whereas

Fig. 10c depicts ADoA-based localization.

Wireless channel characteristics, e.g., in the form of the

channel impulse response (CIR) between a transmitter and

a receiver, also provide valuable information for localization

purposes, including the ToF of the received signal. The CSI

can also be extracted from the receiver antennas to obtain

rich information about multipath signal components [117].

As a result, one can separate the LoS propagation path from

NLoS paths, or detect that only NLoS components reached the

receiver, thus improving the accuracy of the signal parameter

measurements.

The advent of bandwidth-hungry applications such as aug-

mented reality, virtual reality, etc., and the ever-increasing

demand for high data rates, has made mmWave communi-

cation technology a popular potential replacement for existing

WLAN systems. This is mainly due to the availability of large

bandwidth in the frequency range of 30-300 GHz, resulting in

multi-Gbit/s data rates. mmWaves propagate quasi-optically,

thus reflecting crisply off indoor surfaces and obstacles with

limited scattering just like light rays [6]. This makes finer

measurements of signal parameters such as RSSI, AoA,

SNR, and ToF, more feasible and more accurate. Moreover,

we remark that wireless devices typically collect location-

dependent signal features through the interaction between a

client and one or more APs. Such interactions naturally take

place in mmWave networks, e.g., during standard-compliant

link establishment and beam refinement procedures (see also

Section V-C). Therefore, in principle the measurement of

signal features does not require the devices to implement

localization-specific message exchange protocols. This makes

localization an almost-inherent feature of mmWave communi-

cation systems [30], [118].

As remarked in Section III, however, mmWave devices

have peculiar characteristics that differentiate them from com-

monplace WiFi equipment. Specifically, mmWave arrays can

incorporate a large number of antennas. The presence of large

arrays enable mmWave devices to output low-level physical

layer measurements from each antenna separately. Once the

device has locked onto a signal, each antenna receives the

same signal with a different phase, corresponding to the

delay incurred by the signal due to its spatial position in the

array. These measurements can be made available as CSI and

localization algorithms can exploit them to localize a device,

either by converting them into AoA estimates (e.g., [119],

[120]) or by directly inferring the location of a device by

exploiting the CSI as a location-dependent feature.

Whenever CSI measurements are not available, a device can

still retrieve angle information by post-processing the output of

standard-compliant beam training procedures. Typically, each

mmWave has a number of pre-programmed beam patterns

that provide it with the necessary flexibility to focus energy

towards different directions. Each beam pattern ideally covers

a well-defined portion of the 3D space, so that observing each

beam pattern separately makes it possible to implement a scan

of all azimuthal and elevation angles that the mmWave array

can cover. Therefore, measuring the power received through

each beam pattern configuration would implement a sweep

of lookout angles. By identifying the beam pattern that leads
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Fig. 7. Architecture of BS/AP-centric vs UE-centric localization.
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Fig. 8. Illustration of the signal measurements obtained from mmWave
propagation. The color gradient of the beam represents the decreasing signal
strength due to path loss.

to the largest received power, a mmWave device could easily

estimate angles of arrival. We now proceed to discuss each

type of location-dependent feature separately in the context of

mmWave communications, highlighting the pros and cons of

each feature.

B. Pros and cons of location-dependent measurements for

mmWave localization

Angles of arrival and departure, angle difference-of-

arrival [121]–[127] — The term angle of arrival (AoA) refers

to the angle at which radio signals illuminate the antenna

array at the receiver. The transmitter-based counterpart, the

AoD, refers to the angle at which the radio signals emanate

from the antenna array at the transmitter front-end in order

to reach the receiver. In most cases, more than one antenna

elements are required to compute angle information. Other

methods to extract AoA information from the receiver array

involve the use of CSI, beamforming methods, or subspace

approaches such as the well-known MUSIC [115] and

ESPRIT [116] algorithms. We cover angle-based approaches

in Section V-D.

Pros: Relatively accessible information in mmWave systems,

thanks to the large number of antennas in transmitter and

receiver arrays.

Cons: If not associated to some range information, can

only yield location estimates in a relative coordinate system.

Multipath propagation can distort angle estimates, if not

properly modeled or compensated for.

Channel state information (CSI) [128]–[130] — CSI refers

to the measurable properties of a received mmWave signal

that relate to the propagation channel linking two devices,

e.g., the AP and the client. Different mmWave hardware

may provide different forms of CSI. For example, patching

TP-Link’s Talon routers [131] with special firmware makes

it possible to extract receiver-side CSI in the form of one

complex gain coefficient per receiving antenna, expressing

the attenuation and phase shift that affect the strongest

propagation path at each antenna. Post-processing CSI yields

different signal parameters, including path attenuation and

angle information. If CSI values are sufficiently precise

(e.g., no coarse quantization affects the amplitude or phase),

collecting receiver-side CSI from multiple antennas also

enables the estimation of AoAs. We cover CSI-based

approaches in Section V-E.

Pros: Rich information that can be readily used for ranging

or as an input to learning-based approaches.

Cons: Typically not available straightforwardly on all devices.

Different devices may provide different types of CSI.

RSSI [132]–[139] — RSSI is one of the simplest proxies for

the range of a device in an environment. It is measured at a

receiving device as the power or amplitude of the received RF

signal. mmWave received signal strength (RSS) measurements

can be extracted from the physical or medium access control

(MAC) layer of a device and used to measure the distance of

a client from the AP, based on the knowledge of a path loss

model. The client is believed to lie on the circumference of

the circle centered on the AP and having the estimated range

as the radius. Such estimates from more than two APs can

be trilaterated to approximate the location of the client. We

cover RSSI-based approaches in Section V-F.

Pros: Simple ranging method, typically available on

communication devices.

Cons: Error-prone, typically requires an extensive tuning of

the path loss model. RSS measurements are often affected by

the losses in the front-end receiver architecture of the client

and by the number of quantization bits in its ADC circuitry.

Time information [140] — Time information is another

common proxy for the distance between two devices. Typical

measurements used for this purpose involve ToF and TDoA

measurements. ToF (also known as ToA) measurements

exploit the time taken for a signal to propagate from the

AP to the client in order to estimate the distance between

them. The client intuitively lies on the circumference of the

circle with the AP as the center and the distance estimate as

the radius. Multilateration methods can be used to estimate

the location of the client. It is important to note that ToF

measurements require a tight synchronization between the AP

and the client. mmWave signals offer better ToF estimation

accuracy (thus better ranging resolution), owing to the large

bandwidth available, especially in the unlicensed bands. We

cover time-based approaches in Section V-F.

Pros: ToF information is usually accurate when directly

extracted from a device’s physical layer, which helps accurate

localization. Such protocols as the fine time measurement

(FTM) protocol, when available on a device, can provide

very accurate timing estimates.

Cons: Requires sub-nanosecond sampling times in a device’s

ADC in order to yield a sufficiently fine range resolution.

Hybrid approaches [141], [143]–[156] — Several solutions

propose to fuse information from multiple sources in order

to improve localization accuracy. For example, several works

merge AoA and RSSI, or AoA and ToF estimates. We cover

hybrid approaches in Section V-G.
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TABLE II
VISUAL REPRESENTATION OF THE DISTRIBUTION OF RESEARCH EFFORTS FOR DEVICE-BASED MMWAVE LOCALIZATION.

GREEN ICONS REPRESENT RECENT PAPERS THAT EMPLOY SOME FORM OF MACHINE LEARNING.

INDOOR MMWAVE LOCALIZATION

Traditional methods Tailored methods

RSSI and SNR
Time

information
Angle information CSI-based Hybrid approaches

(e.g. [133], [136]) (e.g. [140]) (e.g. [121], [123])
(e.g. [128],

[129])
(e.g. [141], [142])

Client-
centric

AP-centric

AP-client
cooperation

Pros: Hybrid schemes usually achieve better accuracy. In

some purely angle-based algorithms, side information such

as RSSI and ToA can help resolve geometric translation,

rotation, and scaling ambiguities.

Cons: The algorithms become more complex, and rely

on the estimation of multiple quantities. In ill cases, errors

compound and may make the location system more inaccurate

than non-hybrid ones.

According to our survey of the literature on mmWave lo-

calization algorithms and to the above discussion, we identify

two broad categories in the available literature:

1) Algorithms tailored to mmWave communication proto-

cols and schemes, that exploit protocol operations to

extract geometric scenario information and infer the lo-

cation of the devices;

2) General algorithms that apply well-known range-based or

range-free localization approaches to mmWave commu-

nications.

The algorithms in the first category are mainly angle-based or

CSI-based: they infer the angle of arrival structure by leverag-

ing, e.g., sector measurements in communication protocols.

Then, they use angle information to localize a device. By

way of contrast, the algorithms in the second category are

not necessarily mmWave-specific. These works can be further

subdivided by considering where the algorithm mainly runs:

1) In client-centric algorithms, the intelligence mainly re-

sides on the client, which may collect location-dependent

measurements by receiving signals from one or multiple

APs, and by estimating its own location locally. This

approach is useful for systems that need to scale to up

a large number of devices, as each device runs the al-
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difference of arrival processes using ToF, AoA, and ADoA localization
geometries, respectively. Note that di and τi respectively denote the distance
and propagation delay between AP i and the client, c is the speed of light in
air, αi denotes the AoA of the signal from AP i, and βi is the ADoA, i.e.,
the difference of the AoAs from APs i and i+ 1.

gorithm independently. Literature surveyed: [121]–[123],

[125]–[127], [132], [134]–[136], [141], [142], [153]–

[155]

2) In AP-centric algorithm, the intelligence resides in a

computing entity connected to one or multiple APs, which

coalesce their measurements from multiple clients in or-

der to estimate the location of each client. These schemes

are ideal for seamless network management purposes

(e.g., to optimize client-AP associations) but scale less

than client-centric approaches when the number of clients

increases. Literature surveyed: [124], [128]–[130], [137]–

[139], [143], [144], [147], [149], [150], [152]

3) Schemes based on AP-client cooperation are based on

a shared intelligence, where both one or more APs and

the client run portions of the localization algorithm, and

possibly exchange information to finally estimate the

client location. Literature surveyed: [133], [140], [145],

[146], [148], [151]

In our scan of the literature, we observed a comparatively

small number of works that employ a form of machine learning

to compute location estimates. We believe this is due partly to

localization being a somewhat understood problem (whereby

the community prefers the use of understandable and optimiz-

able signal processing algorithms rather than training black-

box machine learning models) and partly to the sometimes

daunting collection of training data. Yet, these prove a feasible

solution in some cases, e.g., when a huge database of different

location-dependent features is available, and the complexity

of the considered indoor environment prevents straightforward

modeling.

Table II summarizes the above preliminary subdivision

pictorially, and conveys in what category most of the re-

search efforts has concentrated so far. We observe that a few

approaches have considered baseline RSSI, SNR and time

measurements to localize mmWave devices. However, most

of the research moved to exploit the fine angle resolution that

large mmWave antenna arrays enable. A significant number

of works also consider hybrid approaches, which mix good

angle resolution with the extra information yielded by time- or

RSSI-based measurements, and thus achieve greater accuracy.

Finally, we observe that a few recent works (from 2017 to the

time of writing) rely on ML techniques, typically to process

RSSI and SNR measurements and predict the location of a

device. We highlight these works in green in Table II, in

order to emphasize the emergence of this paradigm, previously

unobserved in indoor mmWave localization.

In client-centric algorithms, the client collects signal mea-

surements thanks to the interaction with different APs. The

client then trains an ML model and employs it to estimate

its own location. For example, in [136], the client collects

SNR information to train ML regression models. In [157],

instead, the client resorts to AoA information to train shallow

neural networks and estimate its coordinates of the client.

Other works in this survey that employ client-centric machine

learning algorithms are [134] and [141].

AP-centric algorithms rely on APs collecting location-

dependent signal features that relate to the location of each

client in a given environment. These radio fingerprints are

then used to train models to localize the client. For example,

in [137], [138], the APs use the spatial beam SNR measure-

ments collected during the beam training process in order to

create a radio map of the environment. DL models are then

trained to estimate the location and orientation of the client

devices. Other works in this survey that employ AP-centric

machine learning algorithms are [139] and [124].

Other algorithms rely on some form of AP-client cooper-

ation to collect location-dependent signal features and train

machine learning models. In these schemes, the features can
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be collected either by the APs and the client separately and

then exchanged, or through possibly multi-step procedures re-

quiring AP-client cooperation. The only work in the literature

that uses this technique for ML models is [133]. Here, RSSI

and beam indices obtained both at the client and at the APs

after the beam alignment process are used to generate radio

fingerprints at different client locations.

Notably, Table II clearly shows that ML-based algorithms

are mostly AP-centric or hinge on a cooperation between

APs and clients. The main reason is most that APs are

infrastructured devices, and have easier access to compute

power in local servers through fast cabled connections.

C. Evaluation tools for mmWave localization

We now look into the tools that have been used so far

to evaluate mmWave localization algorithms. From the

surveyed literature, we observe both experimentation-based

and simulation-based performance evaluation, depending on

whether a proposed scheme is evaluated using mmWave

hardware- or software-based setups.

1) Experimentation-based performance evaluation: Local-

ization experiments so far have been carried out using either

laboratory-grade or commercial-grade equipment. Laboratory-

grade equipment typically includes software-defined radios

(SDRs) for signal generation and a mmWave up-converter,

with a directional antenna to drive signal emission. For exam-

ple, the above setup is used in [127], where the authors employ

horn antennas to emulate narrow beam patterns. A similar

setup is part of the work in [158] and [140], where the authors

employ the Zynq 7045-based SDR and the universal software

radio peripheral (USRP) X310-based SDR, respectively, in

addition to a 60-GHz analog front-end to emit the mmWave

signals. The authors of [159], [160] have used an NI SDR

with a 60-GHz transceiver that enables the user to fully

program of the physical layer (PHY), MAC, and network

layers, especially for wireless LAN (WLAN) applications. It

also incorporates a 24-element Sibeam reconfigurable antenna

array. A field-programmable gate array (FPGA)-based setup is

discussed in [161], where the authors have used the XCKU040

Kintex UltraScale FPGA for the baseband processing of a 60-

GHz reconfigurable phased antenna array. PEM-003 60 GHz

transceivers were used as the RF front-end for the experi-

mentation. Recently, the New York Uuniversity spin-off Pi-

Radio [162] developed dedicated SDR boards for mmWave

wireless communications. The Pi-Radio v1 SDRs consists of

a 4-channel fully-digital transceiver board with a Xilinx’s

ZCU111 RF system-on-chip (SoC) [163], and operates over

a bandwidth of about 2 GHz in the 57-64 GHz band.

Other platforms currently in use in experimental work

include the open source mmWave experimentation platform

proposed in [164]. It consists of a Xilinx Kintex Ultrascale

FPGA with a 60-GHz front-end. The FPGA is integrated on

an AMC599 board that implements hardware signal processing

and storage for real-time frame processing. It can also provide

antenna array reconfigurability for fast beam switching, e.g.,

for high mobility scenarios. Moreover, Polese et al. [165] pro-

pose a 60-GHz SDR, fully digital experimentation platform.

It uses a Xilinx KC705 and has 4 independent streams.

Alternatively, commercial-grade equipment can be lever-

aged for localization purposes, usually by substituting the

provided operating system image with a custom build that

embeds application program interfaces (APIs) to access the

output of the beam training procedure. For example, the work

in [143] realizes a geometric 3D localization system using a

4×8 phased array within a router that embeds a Qualcomm

QCA9006 tri-band chipset for AoA and ToF measurements.

The work in [144], instead, taps into the output made available

by the Talon AD7200 [131] routers’ firmware. In the latter

case, the hardware and the interface require significant adap-

tations of the angle estimation algorithms. For example, the

firmware and operating system used in [144] returned coarsely

quantized power measurements for each beam pattern and

sometimes incomplete measurement outputs, which required

to re-cast the angle estimation algorithm to be robust against

quantization noise and missing values. The proprietary setup

used in [143] returns the raw CIR measurements, which are

then sanitised to extract the azimuth and elevation angles

of arrival from the LoS paths, and the ToF information for

distance estimation.

Other works such as [167] also employ COTS devices like

the 802.11ad-enabled Airfide AP [168] to enhance the antenna

array performance for omni-directional coverage and to im-

prove link resilience in mobile and dynamic environments.

Table III summarizes the above discussion by relating the

works in our survey with the hardware platforms used to

validate mmWave localization algorithms. We observe that

software-defined platforms are still preferred, due to their

greater versatility and to the availability of multiple dig-

ital receiver chains. COTS hardware is starting to appear

in experimental evaluations, although this typically requires

system management (and sometimes hacking) skills to flash

the hardware with firmware and custom operating systems that

give access to information from the radio receiver chain.

From a practical standpoint, the manufacturers of

commercial-grade mmWave devices typically define a code-

book of antenna weights that drive beam patterns to cover

the largest set of lookout directions. As a result, the corre-

sponding beam patterns are not necessarily narrow, nor do

they necessarily present a single direction where the gain is

maximum [169].

Yet, standard-compliant beam training procedures still help

retrieve location-dependent measurements through an auto-

mated process that is typically implemented in every device.

For example, the 802.11ad standard [15] presents a two-phase

beam training process:

• Sector-level sweep (SLS): During this phase, the transmit-

ter (or beamformer) periodically transmits sector sweep

(SSW) frames using the different beam patterns defined

in the sector codebook. The receiver (or beamformee),

receives these frames omnidirectionally and sends back

an acknowledgment with the transmit sector yielding the

highest signal quality. Subsequently, the two devices swap

roles, and the receiver selects its best transmit sector. This
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TABLE III
SUMMARY OF THE HARDWARE AND SOFTWARE PLATFORMS USED IN MMWAVE LOCALIZATION ALGORITHMS

Hardware Platform Related Literature

Vubiq 60 GHz development system [121], [122], [127], [144], [148]

Zynq 7045 based SDR with 60 GHz analog front-end [140]

4×8 phased array AP with QCA9006 triband chipset [143]

TP-Link Talon AD7200 [128], [133], [136], [137], [138], [139]

QCA6320 baseband module with QCA6310 RF front-end [152]

USRP X310 and TwinRX daughterboard with 60 GHz analog front-end [146]

MicroTik wAP 60G [153]

Software Platform Related Literature

NYURay Ray tracer [145], [166]

S 5GCHANNEL simulator [155]

BTI A-BFT ATI CBAP SP CBAP SP

Beacon Interval (BI)
Beacon Header Interval (BHI) Data Transmission Interval (DTI)

BTI A-BFT ATI CBAPBTI A-BFT ATI CBAP

Fig. 11. Beacon Interval frame of the IEEE 802.11ad standard [15]. It is
important to note that after beam training process, STAs contend for the
channel during the contention based access period (CBAP) and access it
contention-free during the service period (SP).

phase provides coarse-grained beam patterns that are best

suited for the two communicating devices.

• Beam refinement protocol (BRP): This optional phase

can be used to refine the beam patterns chosen after

the SLS phase. The BRP process is iterative. The two

devices exchange special BRP packets requesting and

acknowledging the transmit (TX) and receive (RX) train-

ing requests (TX-TRN and RX-TRN). The result is fine-

grained beam patterns for the transmission and reception

of the data, resulting in not just better directivity and

therefore higher-throughput links, but also in a higher

correlation between the beam pattern used and the AoA

of a signal.

These phases occur during the association beamforming train-

ing (A-BFT) subinterval of the beacon interval (BI), as part

of the channel access mechanism. The beamforming process

during the data transmission interval (DTI) is to handle device

mobility, blockage, etc. The BI frame for channel access

is shown in Fig. 11 and the two beamforming phases are

illustrated in Fig. 12.

The more recent 802.11ay standard [170] formalized beam

training procedures that enhance those of 802.11ad, namely

the beam refinement protocol transmit sweep (BRP TXSS)

and the asymmetric beamforming training (ABT) [17]. These

procedures rely on a channel reciprocity assumption to speed

up beam training (through the BRP TXSS scheme) and slightly

improve the process to compensate for the possibly different

antenna gains at the AP and at the client.

In addition, 802.11ay speeds up training in the presence

of several clients through group beamforming, which extends

beam training to manage multiple clients simultaneously.

200

Transmitter Receiver

Transmits SSW packets using
coarse sector patterns 

Listens omni-directionally and
sends ACK with best sector pattern 

(a) Sector Level Sweep

Transmitter Receiver

Transmitter and Receiver iteratively fine-tune their beams
to achieve the best communication link  

(b) Beam Refinement Protocol 

Fig. 12. A simple illustration of the sector level sweep and beam refinement
protocol as proposed in the IEEE 802.11ad standard [15].

When run with generic beam patterns, the above procedures

do not yield a one-to-one relationship between the angle of

arrival or departure of a mmWave signal and the antenna

configuration that leads to the highest received power. Yet,

if the beam patterns of the codebook are known, a mmWave

device can still estimate angles of arrival via signal processing

techniques involving compressive sensing [169], or linear

programming and Fourier analysis [144]. Knowing angles

of arrival enables angle-based localization techniques, with

the additional advantage that angle estimation hinges on

standard beam training procedures, with no need for external

hardware components. In other words, localization becomes

an embedded feature of mmWave communications.
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2) Simulation-based performance evaluation: Simulation

is the performance evaluation tool of choice if mmWave hard-

ware is not available or if the available platforms do not offer

sufficient flexibility to measure location-dependent features.

A common practice observed in the literature is to employ

ray tracers to mimic the propagation of mmWave signals.

These ray tracing simulators are typically designed based on

the channel models described in Section II. The main idea is

to simulate the mmWave wireless channel characteristics at

various indoor locations. Besides allowing the experimenter

to measure channel features, ray tracers help create a radio

map of the environment, and can thus substitute costly and

time-consuming measurement campaigns [171].

Two examples of such simulators are NYURay, a 3D

mmWave ray tracer developed by New York University [171],

and S 5GChannel, developed by Siradel. NYURay was ini-

tially conceived as a geometry-based 2D ray tracer and was

used in [166] to investigate indoor positioning algorithms

based on AoA, combined path-loss and AoA, or RSSI val-

ues. NYURay was later extended in [145] to support 3D

ray tracing by combining the shooting-and-bouncing rays

(SBR) technique [172] and the geometry-based technique.

NYURay found extensive use, not just in indoor environ-

ments, but also outdoors [173], [174]. Siradel developed the

S 5GChannel [175] 5G channel simulator to address the

challenges of 5G signal propagation at mmWave frequencies

indoors and outdoors. S 5GChannel’s ray model has been used

in [155] to develop a framework for joint localization and

mapping.

A few additional works in the literature evaluate their

proposed schemes using custom simulation software typically

written in MATLAB or Python. The general purpose of

such software is to generate synthetic datasets with realistic

mmWave propagation characteristics, although typically re-

stricted to the specific signal properties required for each study

(e.g., AoA values, ToA measurements, etc.).

In the following subsections, we explain the details of each

surveyed work, and provide a synopsis of the main results of

each paper and of the main enabling techniques in the form

of summary tables at the end of the section.

D. Angle-based algorithms

AoA measurements, alongside the quasi-optical nature of

mmWave signal propagation, facilitate high-accuracy localiza-

tion based on triangulation. This is the simplest approach to

localization using AoA, wherein the angle information from

the transmitting APs and simple geometric principles are used

to compute the client’s position. In a 2-D plane, such position

can be estimated using just two APs [176].

Geometric methods are the simplest methods for localiza-

tion when using AoA estimates. In [122], the authors present

three lightweight single-anchor algorithms based on the AoA

measurements. These algorithms are based on triangulation,

ADoA, and fingerprinting, respectively. The algorithms have

been simulated and also experimentally validated on pre-

standard mmWave hardware operating at 60 GHz, showing

that they achieve sub-meter accuracy with high probability,

given the AoA estimate errors are low.

The simplicity of these algorithms motivated the authors

of [121] to generalize the schemes in [122] for any number

of APs. These algorithms are extensively simulated as well

as experimentally validated on 60 GHz COTS devices, in

different indoor scenarios against two benchmark algorithms

based on fingerprinting and AoA. The two algorithms provide

sub-meter accuracy in most indoor environments with multiple

antennas. Triangulation-based scheme performs slightly better

than the ADoA-based one in most scenarios, but independence

of orientation and compass bias makes ADoA more preferable.

The ideas proposed by [122] have also been used by the

authors of [125] for context inference and obstacle detection.

They use the TV and ADoA algorithms for receiver localiza-

tion using one AP, estimate the locations of virtual anchor

nodes, and thus infer the presence of obstacles.

AoA measurements have also been used for simultaneous

localization and mapping (SLAM). For example, in [126],

the authors propose a joint access point and device localiza-

tion (JADE) algorithm that jointly maps the location of the

client and of the physical and virtual APs, while mapping

the indoor environment, without any prior information (i.e.

number of access points, boundaries of the room, etc.). The

algorithm measures AoAs from the beam training procedure

and leverages ADoAs to estimate the location of the APs and

then of the client. Environment mapping follows by matching

physical and virtual anchors and by predicting reflection

points on surrounding surfaces. Simulation results show sub-

meter accuracy in 90% of the cases, even for erroneous AoA

estimates. JADE outperforms the approaches in [121] in almost

all scenarios.

A similar algorithm that exploits AoA information to derive

ADoA estimates and fuses multiple measurements at different

locations is CLAM [127]. Like in [126], the algorithm pro-

ceeds by first estimating the location of the anchor APs, then

of the client, and finally of the environment’s boundaries. The

algorithm is simulated and experimentally evaluated, showing

sub-meter device localization errors in about 90% of the cases.

A recent work explores deep learning-based localization

scheme. The authors of [157] propose a shallow neural net-

work model to estimate the coordinates of the client device

in an indoor environment, using ADoA measurements. The

network is trained with imperfect location estimates from the

JADE algorithm [126], which jointly estimates the location

of the APs and the clients with zero knowledge of the envi-

ronment. This relieves the burden of explicitly collecting the

training dataset. The performance evaluation of the proposed

scheme results in sub-meter client localization accuracy in

≈ 90% of the scenarios, even with large AoA errors.

In [123], the authors present mobile device positioning

scheme in an indoor mmWave massive multiple-input single-

output (MISO) scenario. The two-fold scheme utilizes coarse-

grained AoD information from mobile clients with a single

antenna to estimate the position of each client via downlink

transmissions using adaptive beamforming.

We can observe that angle-based algorithms usually rely on

geometric approaches for device localization. However, ML

and neural network regression models can also be used to

learn a non-linear mapping between AoA measurements and
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client locations.

E. Channel information-based algorithms

In recent works, mmWave CSI is also used to estimate the

location of the client. The definition of CSI varies from work

to work. Typically, the term refers to the complex amplitude

of the channel gain perceived at a receiving antenna, or to the

vector of such gains measured by all elements of an antenna

array. A work exploiting CSI for localization is [129], where

the authors present a channel parameter estimation method

that transforms the mmWave uplink training signal into a

higher-dimensional tensor using the canonical polyadic model.

Tensor factorization using the proposed generalized structured

canonical polyadic decomposition results in time delay, AoA,

and path fading coefficient estimates. These parameters are

used to localize and track a mobile device.

A different way to exploit uplink CSI estimates [128]

requires that the APs convert the LoS CSI measurements into

angle information and then localize the client. The system is

implemented on Talon AD7200 routers (without interfering

with 802.11ad operations), and the authors propose to employ

the location estimates to optimize AP–client associations. The

system achieves sub-meter localization accuracy in about 80%

of the cases.

With a focus on localizing passive objects, in [130] the

authors use the CIR captured after reflection from different

objects and surfaces in an indoor environment to detect

objects and also model the indoor environment in 2D. The

proposed method has been evaluated using a testbed developed

specifically for this purpose.

The use of CSI for localization is comparatively new

for mmWave indoor device-based localization, most likely

because retrieving full CSI or CIR data requires low-level

hardware access, and only a few experimental firmware ver-

sions provide it. However, CSI and CIR can map to angle

and time information, and therefore represent a promising

and practical research direction, especially as feature-richer

mmWave hardware and firmware emerges.

F. RSSI and ToF

RSSI and SNR based localization systems generally employ

trilateration or fingerprinting-based techniques to localize the

client. A number of works in the literature illustrate this

concept. The authors in [132] investigate trilateration-based

localization algorithm using RSSI measurements for 60-GHz

IEEE 802.11ad WLANs. They modify the trilateration algo-

rithm based on the concept of (weighted) center of mass.

Simulations on randomly generated data points and the RSSI

measured based on the IEEE 802.11ad channel model result

in an average positioning error of about 1 m. This is among

the earliest works on mmWave-based indoor localization that

leverages RSSI measurements.

RSSI is also the foundation of several fingerprinting-based

localization schemes, especially in sub-6 GHz wireless net-

works. The authors of [133] propose a localization system

that generates fingerprints of transmit beam indices and the

corresponding RSS measurements between a pair of mmWave

devices. Probabilistic location models are generated based on

the fingerprint data and are leveraged for location estimation.

The algorithm is experimentally evaluated using 60 GHz

COTS devices. Many times, SNR-based fingerprinting is also

at the core of some mmWave localization works, especially

in combination with machine learning and deep learning

techniques. The authors of [21], [136] propose machine learn-

ing regression models for localization in warehouses. SNR

information is collected from Talon AD7200 routers. The

supervised regression models are trained offline and then

deployed for localization at run time. The proposed method

achieves sub-meter accuracy in 90% of the cases.

Similar machine learning regression models have been used

for location estimation in [137], where the authors use spatial

beam SNR values, typically available during the beam train-

ing phase, in order to generate a location- and orientation-

dependent fingerprint database. Deep learning techniques are

also the main enablers for localization in [138] and [139],

where the authors proposed ResNet-inspired models [177] for

device localization in LoS and NLoS scenarios. To tackle

the challenges imposed by NLoS conditions, the authors use

spatial beam SNR values in [138], whereas they employ multi-

channel beam covariance matrix images in [139].

One example of how ToF measurements have been used in

the mmWave context is presented in [140]. Here, the authors

present a two-way ranging based on round-trip ToF (RTToF)

information. The scheme estimates the distance between mas-

ter and slave nodes, and then trilaterates the position of the

slaves. The authors implement their algorithm on an SDR with

a 60 GHz SoC. The proposed system achieves an average

distance estimation of 3 cm and an average positioning error

below 5 cm.

Although conventional wireless localization schemes rely-

ing on RSSI or SNR measurements employed trilateration,

machine learning-based fingerprinting algorithms are gaining

more popularity for mmWave-based localization systems. This

is due to the availability of mid-grained channel measure-

ments from the beam training procedures of 5G and IEEE

802.11ad/ay systems [139]. These techniques provide higher-

accuracy location estimates compared to conventional tech-

niques.

We also observe that mmWave systems do not rely on purely

time-based measurements for localization. Even though the

large bandwidth of mmWave signals can provide fine time

measurements, such measurements tend to be fully available

only on custom high-end mmWave transceivers. Therefore,

many schemes tend to collect other signal measurements as

well.

G. Hybrid approaches

A combination of two or more techniques mentioned above

can be used to build systems that achieve better localization

or mapping accuracy, with respect to stand-alone techniques.

Coupling different sources of information is useful in chal-

lenging environments, where some mmWave parameter mea-

surements may fail.

Angle information along with RSSI-based ranging are the

foundation of several mmWave localization approaches in the
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literature. The authors in [147] propose a positioning algorithm

using RSS and AoA measurements. These measurements are

derived from a channel compression scheme designed for

a mmWave mMIMO scenario with only one AP. The RSS

and AoA estimates from the above methods are employed

for position estimation. The system provides decimeter-level

accuracy even at low SNR, and even lower errors as the SNR

increases.

As opposed to ranging, the algorithms proposed in [141]

and [134] are based on location fingerprinting. In particular,

the authors measure RSSI and AoA information at various

reference points in an indoor environment to generate location

fingerprints. K fingerprints nearest to the client measure-

ment are selected from the dataset, and the location estimate

corresponds to the weighted average of these K reference

points. The algorithm has been simulated with 2.4 GHz and

60 GHz, showing that the average position error is much lower

for mmWave signals than lower-frequency signals. To solve

the problem of collecting a sufficiently large dataset, [134]

generates 3D beam fingerprints using RSSI and beam infor-

mation. Weighted K-NN was used to localize an unmanned

aerial vehicle (UAV) in GPS-denied indoor environments.

Particle filters were used along with the imperfect location

estimates to track the motion UAVs. The proposed scheme was

experimentally validated, and the results showed sub-meter

positioning accuracy on average.

RSS jointly with AoA information enables mmRanger [152]

to autonomously map an indoor environment without infras-

tructure support. The mmRanger scheme senses the environ-

ment and uses time domain RSS sequences to reconstruct the

path geometry via a path disentanglement algorithm. Then,

AoA and RSS information from the reflecting surfaces are

exploited to reconstruct the geometries of each surface. More-

over, a robot pedometer assembles all estimated fragments to

form a complete map of the environment. The results of the

proposed system implementation show a mean estimation error

of 16 cm for reflection points, and a maximum error of 1.72 m.

In [144], the authors leverage coarse-grained per-beam

pattern SNR measurements provided by a modified operating

system flashed on multiple TP-Link Talon AD7200 802.11ad-

compliant COTS mmWave router. The AoA estimation prob-

lem is formulated using linear programming, and the location

is estimated using a modified particle filter and a Fourier

analysis-based goodness function. The proposed scheme is

experimentally validated and the system achieves sub-meter

accuracy in 70% of the cases. AoD and SNR information

were used in [142] to design beam-based midline intersection

and beam scaling-based positioning algorithms. These were

evaluated using both ray-tracing simulation and a WiGig SoC

transceiver. The experiments, carried out under LoS condi-

tions, yielded centimeter-level location estimation errors.

Time-based measurements are often enriched with angle

information in order to achieve better positioning accuracy,

especially for mmWave systems. For example, in [143], the

authors propose mWaveLoc. The proposed system uses mea-

sured CIRs to calculate AoA and ToF data. The system is

implemented on IEEE 802.11ad off-the-shelf devices leverag-

ing the OpenWRT operating system, and achieves centimeter-

level distance estimation and decimeter level 3D localization

accuracy (median error 75 cm and sub-meter error in 73% of

the cases) in a realistic indoor environment. The system has

also been evaluated in various experimental conditions.

The author of [145] propose a map-assisted positioning

technique using the fusion of ToF and AoD/AoA information.

A 3D map of the environment is either generated on the fly or

assumed to be known a-priori. The scheme measures a set of

possible user locations by fusing the estimated ToF values with

angle information. These estimated locations are clustered, and

the cluster centroid is output the final location estimate. The

algorithm is simulated on the data collected at 28 GHz and

73 GHz by NYURay 3D ray tracer. The best-case and the

worst-case mean localization error is found to be about 12 cm

and 39 cm respectively.

Instead of explicitly fusing ToF and AoA information,

the authors of [148] propose a pseudo-lateration protocol,

that enacts the three following steps: i) sector sweeping for

tracking LoS and NLoS paths to compute physical and virtual

anchors, respectively; ii) angular offsets measurements using

extended sector sweeping; and iii) ToF measurements for

distance estimation. A post-processing stage is employed for

position estimation. The protocol has been simulated and

implemented using a 60 GHz mmWave testbed. The protocol

implementation achieves centimeter-level location estimation

accuracy within 1.5 m and decimeter accuracy beyond 1.5 m.

The authors of [149] explored adaptive filters for motion-

assisted indoor positioning. An improved LMS filter estimates

the AoA of the client by using the client location, velocity

and measured ToF as the inputs. AoA and ToA estimates

are fed to an unscented Kalman filter (UKF) to track the

client’s position. The two-stage algorithm is simulated in an

office environment with one AP and achieves centimeter-level

positioning accuracy.

Because mistaking LoS for NLoS paths may offset location

estimates significantly, the authors of [150] propose a scheme

to tell apart mmWave LoS and NLoS MPCs having incurred

up to one reflection. For this, they use TDoA and AoA

information and apply the mean shift clustering technique.

Then, they apply an AoA-based localization scheme that

computes least-squares estimates. The methods show a 98.87%

accuracy in path identification and positioning error of less

than 75 cm in 90% of the cases. NLoS scenarios have also been

exploited in [151], where the authors propose a positioning

scheme that relies on differential angle information, which

is independent of angular reference. This scheme has been

evaluated in an indoor environment with a geometric ray tracer

based on an IEEE 802.11ay channel model, and achieves sub-

30 cm position estimation errors in 90% of the cases.

In [154], the authors present schemes for localization,

mapping, obstacle detection and classification. Localization

and mapping make use of AoA and ToA measurements to

estimate the location of the receiver and of virtual anchors.

The latter are used to detect obstacles by estimating reflection

points. Snell’s law and the relationship between the RSS and

the reflection coefficient are used to classify the obstacles

based on material composition. The presented algorithms have

been simulated in an indoor environment.
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Besides locating a client, the schemes presented in [154]

have been integrated into a SLAM framework in [155].

This framework involves algorithms for localization, obstacle

mapping and tracking. Extended Kalman filter (EKF)-based

tracking helps improve obstacle detection and mapping. The

framework has been simulated in an indoor environment,

yielding sub-meter errors in 90% of the cases. In the same

context, the EKF improves the obstacle mapping accuracy to

sub-centimeter.

In [146], the authors present a device localization scheme,

where the AP and the client are equipped both with sub-

6 GHz and with mmWave technology. Sub-6 GHz antennas

are used for AoA estimation and mmWave antennas are fed

with the AoA estimates for subsequent beam training and two-

way ranging. The proposed method has been experimentally

validated using SDR platforms, both in an anechoic chamber

and in an office environment. Results show 2◦ AoA errors and

centimeter-level ranging accuracy in the anechoic chamber,

and 5◦ AoA error with an average 16-cm range error in the

second one.

In [153], the authors propose to track the changes in the

CIR measured at the station, that is equipped with an FPGA-

based platform with IEEE 802.11ad, in order to localize a

device-free object in an indoor industrial environment. The

station uses the estimated CIR to measure the AoD and ToF

of the signal reflecting off a moving object. Tracking CIR

changes over time helps classify the reflections as static or

mobile. Then, a Kalman filter smooths the trajectory of the

mobile object. The results show sub-meter location errors in

all scenarios, and a mean accuracy of 6.5 cm.

From the literature surveyed above, we can observe that

most localization schemes use angle information along with

RSSI/time information, and often rely on geometric algorithms

to compute high-accuracy location estimates. The use of

adaptive filters such as least mean squares (LMS) and Kalman

filters helps mitigate location estimate errors, especially with

mobile clients.

H. Summary, highlights, and challenges

We now summarize the surveyed literature in order to high-

light the main pitfalls and lessons learned from the methods.

Geometry-based algorithms – The algorithms based on

geometric techniques mostly rely on angle information

(AoA/AoD) for localization. As mmWave signals propagate

quasi-optically, angle information becomes a reliable means to

estimate the direction of the source. RSSI and ToF information

help estimate the distance between a mmWave source and its

receiver; thus, applying geometric methods such as triangu-

lation and trilateration can help localize a client. However,

the accuracy of such algorithms depends upon the accuracy

of angle and time measurements, and most of them require

accurate indoor floor plan information to work reliably.

From the perspective of COTS devices, angle measurements

are obtained either by decomposing CSI measurements using

parameter estimation techniques or from the beam patterns

chosen after beam training. However, imperfect beam patterns

with broad main lobes and non-negligible sidelobes can lead

to angle estimation errors.

Similar issues affect the estimation of time information

through CIR or packet exchange means. We can obtain fine

time measurements thanks to the large bandwidth of the

mmWave signals. However, this requires a very tight synchro-

nization between the AP and the client devices.

ML-based algorithms – Owing to recent contributions, we

observe a paradigm shift towards self-learning location sys-

tems that exploit the information from mmWave signals.

In these works, ML and DL-based models use information

extracted from mmWave signals at different locations to form

a dataset and eventually learn an accurate model to estimate

client positions. However, most of these models are specific

for the location the training data comes from, and do not

translate well to other locations. Most of the algorithms in

the literature train ML and DL models through RSSI or SNR

fingerprint maps. Recent works have showed how AoA and

CSI information also help ML models learn a non-linear

function either to estimate the location of the client or to

associate a client to the best APs.

Although these systems provide good localization accuracy,

they also face several challenges: the collection of large

training dataset; the computational complexity which limits

their application to COTS or embedded devices; their depen-

dence on the training environment. ML methods have thus

found comparatively limited application to date. A valuable

contribution to the community would be a collaborative effort

towards a public benchmark dataset, that different authors

would use to feed different machine learning approaches.

Error mitigation in mmWave localization – Errors in signal

measurements due to imperfect signal parameter estimation

limit the performance of localization systems [30]. These

errors are often due to the unpredictable interference between

multiple propagation paths and the fading that results, or to

NLoS arrivals reaching a device [178]. A detailed mathemati-

cal analysis for error mitigation is presented in [30]. In the case

of mmWaves, measurement errors may affect angle and time

measurements. The works in the literature resort to adaptive

filter-based techniques mostly to mitigate the location esti-

mation errors resulting from localization algorithms fed with

error-prone data [19]. For example, the approaches in [134],

[144] resort to particle filters to mitigate client location errors.

Different types of Kalman filters are another typical choice

to smooth out client location estimates and trajectories [179].

The authors of [150] use LMS filters to mitigate large errors in

AoA and ToF measurements. A detailed account of the tools

and techniques employed in each surveyed paper is provided

in Table VI at the end of this section.

Table IV supports the above discussion by summarizing the

techniques employed in each of the surveyed works. We ob-

serve a preference for geometry-based localization approaches,

with different supporting signal processing algorithms.

I. Discussion and future research directions

We summarize the findings of our survey in Table VI.

The table succinctly conveys the main proposition of each

paper, the main techniques used among those outlined in

Sections V-D to V-G, the tools employed, and a high-

light of the performance attained. We observe a number of
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TABLE IV
SUMMARY OF THE MAIN TECHNIQUES USED IN THE SURVEYED PAPERS

Analytical Tools Related Literature

Beamforming techniques [123]

Clustering methods [129], [150], [152]

Deep learning [124], [138], [139], [157]

Fourier analysis [144]

Geometry [121], [122], [125], [132], [135], [142], [143], [145], [154], [156]

Kalman filters [128], [149], [153], [155]

Least mean square filters [149]

Levenberg-Marquardt (LM) method [151]

Linear programming [144]

Machine learning models [124], [134], [136], [137], [141]

MUSIC [146]

Particle filters [134], [144]

Probabilistic data modelling [133]

Tensor analysis [129]

TABLE V
SUMMARY OF THE EVALUATION METHODS USED IN THE MMWAVE LOCALIZATION ALGORITHMS

Evaluation Related Literature

Experimentation [121], [122], [127], [130], [133], [134], [136], [138], [139], [140], [142], [143], [144], [146], [148], [152], [153]

Simulation [123], [125], [129], [132], [135], [141], [145], [147], [149], [150], [151], [154], [155], [156], [157]

mmWave localization approaches exploiting different features

of mmWave signals as well as different properties of mmWave

propagation. While some schemes rely on well-known tech-

niques, e.g., based on ToF and RSSI measurements, even

these techniques have been further developed to leverage the

sparsity of mmWave multipath patterns in order to collect

more precise measurements with a finer time resolution. In

some environments, typically with special-purpose lab-grade

mmWave hardware, the corresponding localization schemes

often yield decimeter- or sub-decimeter-level accuracy, but

require specific protocols to exchange the data the algorithms

need.

With respect to such approaches, angle-based localization

schemes relying on AoA and ADoA measurements still prove

accurate, and yield the additional benefit that AoA measure-

ments can directly result from beam training operations at

link setup time. Hybrid solutions that leverage both angle

information and time/RSSI information tend to show even

better performance, although only a minority of them has been

tested in operational environments with COTS equipment.

Finally, Table V summarizes the performance evaluation ap-

proach taken in each surveyed paper. We observe a majority of

evaluations based on experiments with real hardware, although

simulation is still used in several contexts, e.g., as a tool to

quickly and affordably generate large datasets.

mmWave technologies are expected to keep gaining momen-

tum as part of the 5G-and-beyond ecosystem, and there exist a

wealth of promising research directions to realize the vision of

embedding localization as a feature of mmWave communica-

tions. According to our analysis, we identify the following

key research directions. The community needs more low-

cost mmWave platforms that implement standard-compliant

operations while still providing APIs for researcher and de-

velopers to access low-level physical layer measurements,

such as per-beam pattern CSI, or even better, full CIRs. This

would democratize the research on practical algorithms that

fully integrate localization as part of standard communications

operations. In particular, such platforms would help research

better algorithms to manage scenarios featuring multiple APs,

which are expected to be common in indoor mmWave de-

ployments. Moreover, there is ample space for the design of

zero-initial knowledge algorithms that require no input data

from the user, and autonomously bootstrap the algorithm by

finding the location of all anchors (e.g., all APs), localizing the

clients, and using the joint location information of all clients

and APs to estimate the floor plan of indoor environments

in a SLAM fashion, both as a stand-alone solution and

as a complement to the device-free radar-based approaches

described in Section VI.

From the point of view of ML schemes, we observe that

most approaches still require lengthy training data collec-

tion operations before achieving practical accuracy levels.

Moreover, a trained ML algorithm remains specific to the

area where training data was collected. Therefore, further

research is needed on machine learning approaches that work

with less training data, federate training results from different

clients and APs in order to speed up the training phase, and

can be transferred across different, even previously unseen

environments.
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TABLE VI: SUMMARY OF THE LITERATURE ON INDOOR MMWAVE LOCALIZATION

Proposition Techniques Tools Used Performance

Localization Algorithms

Round-trip time based localiza-

tion [140]
ToF Geometry

Distance estimation error within 3 cm and

location estimation error within 5 cm.

Accurate 3D indoor localiza-

tion using a single AP [143]
AoA-ToF Geometry

3-D localization with median accuracy of

75 cm with sub-meter accuracy in 73% of

the cases.

Improving localization accu-

racy [144]
AoD, RSSI

Linear programming, Fourier

analysis, Particle filters
Sub-meter accuracy in 70% of the cases.

Improving the accuracy of de-

vice localization [121], [122]
AoA Geometry

Sub-meter localization accuracy in 70% of

the cases.

Improving location estimation

accuracy and network perfor-

mance [128]

CSI
Regression trees, Extended

Kalman filter

Sub-meter localization accuracy in 80%

cases and throughput improvement be-

tween 8.5% and 57%, lesser outage prob-

ability, SNR within 3 dB of optimum.

Fingerprinting based indoor lo-

calization [133]
RSSI Probabilistic models

Mean and median localization error of

≈30 cm.

Indoor localization for intelli-

gent material handling [136]
SNR

Multi layer perceptron regres-

sion, Support vector regression,

Logistic regression

Centimeter-level accuracy with root mean

square error (RMSE) of 0.84 m and MAE

of 0.37 m.

Fingerprinting based indoor lo-

calization [137], [138]
SNR

Machine learning algorithms,

Deep learning

Avg. RMSE is 17.5 cm with coordinate

estimates within 26.9 cm in 95% of the

cases. Median and mean RMSE of 9.5 cm

and 11.1 cm respectively.

Fingerprinting based indoor lo-

calization in NLoS environ-

ments [139]

SNR
Deep learning, Machine learn-

ing algorithms

Location classification accuracy greater

than 80%. Median location estimation error

of about 11 cm.

Map-assisted indoor localiza-

tion [145]

AoA, AoD,

ToA
Geometry

Mean localization accuracy of 12.6 cm and

16.3 cm in LoS and NLoS respectively.

Sub-6 GHz-assisted device lo-

calization [146]
ToF-AoA MUSIC, Geometry

AoA estimation error less than 5◦ and

about 16 cm distance estimation error.

Single-antenna client localiza-

tion using downlink transmis-

sions [123]

AoD Adaptive beamforming

60% improvement in the accuracy in the

downlink scenario as compared to in the

uplink scenario.

Indoor positioning for wide-

band multiuser millimeter wave

systems [129]

CSI
Tensor decomposition, Cluster-

ing methods
Decimeter-level position estimation errors.

Indoor network localiza-

tion [132]
RSSI Geometry Mean positioning error around 1 m.

3D indoor positioning for

mmWave massive MIMO

systems [147]

AoA-RSSI Geometry

Low complexity channel compression

and beamspace estimation developed.

Decimeter-level positioning errors

achieved in NLoS scenarios.

Location fingerprint-based lo-

calization [141]
AoA-RSSI K-nearest neighbours

Average positioning error for mmWave is

4 times less compared to lower frequency

signals.

UAV positioning in GPS-

denied environments [134]
RSSI Weighted K-NN, Particle filters

Sub-meter 90th-percentile location errors

in different cases.

Beam-based UE positioning in

indoor environment [141]
SNR, AoD Geometry

Centimeter-level estimation error in all

cases. Experimental results approach the

simulations results with MSE difference of

0.1 m.

Single RF chain-based local-

ization [148]
ToF-AoA Geometry

Centimeter accuracy in location estimation

within 1.5 m and decimeter accuracy be-

yond 1.5 m.

Motion feature-based 3D in-

door positioning [149]
AoA-ToA LMS and Kalman filters Centimeter-level positioning accuracy.
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TABLE VI: SUMMARY OF THE LITERATURE ON INDOOR MMWAVE LOCALIZATION (CONTINUED)

Proposition Techniques Tools Used Performance

LoS and NLoS path identifica-

tion and localization [150]
TDOA, AOA

Mean shift clustering, Geome-

try

98.87% accuracy in path identification and

positioning accuracy ≤ 0.753 m in 90% of

the cases.

NLoS mmWave indoor posi-

tioning [151]

AoA, AoD,

ToA

Geometry, Levenberg-

Marquardt (LM) method

Positioning accuracy within 30 cm in 90%

of the observations with differential angle

information along with time information.

5G mmWave indoor position-

ing [135]
RSSI Geometry, Beamforming

Single-beam geometric model for indoor

positioning. Mean error of 0.7 m for sta-

tionary in LoS and 2.4 m for a mobile user

in LoS/NLoS scenario.

Data-driven indoor localiza-

tion [124]
AoA

Multi-layer perceptron, Deep

learning
Sub-meter localization accuracy.

Indoor localization with imper-

fect training data [157]
AoA Deep learning

Sub-meter localization accuracy in ≈ 90%

of the cases, when trained with client lo-

cation estimates from JADE algorithm.

Localization and Mapping Algorithms

Autonomous environment

mapping [152]
RSSI, AoA Geometry, K-means clustering

Reflection point mean estimation error of

16 cm with a max error of 1.72 m.

Passive object localiza-

tion [153]
AoD, ToF Kalman filters

Sub-meter accuracy in all cases with

6.5 cm mean error accuracy.

Localization and obstacle de-

tection [125]
AoA Geometry

Sub-meter accuracy in 70% of the cases.

High accuracy obstacle detection and ob-

stacle limits estimation.

Localization and

mapping [126], [127]
AoA Geometry

Sub-meter localization accuracy in 90% of

the cases. SLAM without any prior knowl-

edge.

Accurate object detection

[130]
CIR Geometry

Accuracy of about 2 cm achieved in most

experiments.

Simultaneous localization

and mapping without a-priori

knowledge [154], [155]

AoA, ToF,

RSSI

Geometry, Extended Kalman

filters

Sub-meter device localization accuracy in

90% of the cases. Sub-centimeter obstacle

mapping accuracy.

3-D localization and map-

ping [156]

RSSI, AoA,

ToA
Geometry

Perfectly maps the environment for AoA

errors ≤ 5◦.
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VI. MMWAVE RADAR-ENABLED DEVICE-FREE

LOCALIZATION AND SENSING

A. Introduction

In this section, we focus on mmWave-based radar systems

that operate over short distances (a few tens of meters), which

have recently emerged as a low-power and viable technol-

ogy for environment sensing. These devices are expected to

find extensive use in a number of relevant applications, by

replacing standard camera-based systems, either fully or in

part. Survey papers have been recently published on mmWave

sensing, with a focus on signal processing [180] (both with

traditional and machine learning-based approaches) and ap-

plications [181]. In the following review, we emphasize the

main signal processing algorithms that are being successfully

exploited for indoor sensing, discussing their pros and cons.

In doing this, we especially focus on neural network (NN)

algorithms, discussing their different flavors, and exposing

the most promising directions for research and development.

We also comment on the level of maturity of this technol-

ogy, i.e., about whether the proposed techniques are robust

and work without requiring environment-specific and manual

calibration. Our analysis will also discuss on the role of the

supporting architecture, which should provide communication

and computing/processing capabilities, and on the opportunity

of implementing networks of radar devices. This would ex-

tend current systems, which often involve a single radar, to

the large-scale monitoring of physical spaces. An illustrative

overview of the main techniques used for sensing applications

that exploit mmWave radars is provided in Fig. 13.

Two main components of a radar device are TX and RX

RF antennas, which are combined with an ADC, micro-

controller units (MCUs), digital signal processors (DSPs) and

a clock. The main idea behind such a system is to transmit

a properly shaped radio wave (e.g., pulses or continuous

waves) and estimate the modifications that occur in the back-

scattered copy of such wave, i.e., which is returned as a

reflected signal from the surrounding environment. Through

some signal processing algorithms (usually, Fourier transform-

based), it is then possible to estimate the distance, angle,

velocity, and, to some extent, the shape of the targets. TX

and RX are usually co-located within the same device: the

transmitter sends a first version of the modulated signal and the

receiver detects its back-scattered copy from the surrounding

environment, after a very short time delay.

Modern radar systems utilize two main wave functions;

pulsed wave (PW) and frequency-modulated continuous wave

(FMCW). While radars are traditionally used to detect and

track objects that move in the far field, such as vehicles

and airplanes, here we are concerned with indoor or city

environments where the objects to be tracked may be cars or

humans. Moreover, besides the tracking, vital signs can also

be monitored such as the breathing rate and the heart rate.

Although these recent applications share common features

with traditional (far field) approaches, they also exhibit major

differences due to the short distance of the radar from the

targets (near field).

B. Pulsed Wave Radar

With PW radars the electromagnetic waves from an antenna

are emitted in short bursts. The logic behind PW is to wait

for the reflections from the previously transmitted signal to

reach to the antenna before sending the next burst. Thus, the

reflected signal from the initial emitted sequence of pulses are

sampled via a secondary sequence of pulses with a different

repetition time. In PW radars, energy of the transmitted pulse

is relatively small due to the limited peak amplitude. This

limitation in amplitude together with sequential sampling

limits the dynamic range and results in a relatively poor SNR

at larger distances. For these reasons, PW-type radars have

fallen out of favor, and are not used for the applications

that will be discussed next, which are mainly about object

and people detection, tracking/identification, and vital sign

monitoring. From the next section onward, we thus concentrate

DBSCAN
Kalman Filter

Machine Learning
Deep Learning

Fourier Transform

Feature-based Optim.

Statistical Modeling

Non-Max Suppression

Optimization Algorithms

Hardware Design Optim.

Probabilistic Data Matching

Clustering
Geometry

Health Monitoring
Object Detection

Human Activity Recognition

(e.g. [182])

(e.g. [183])

(e.g. [184])

(e.g. [185])

(e.g. [186])

(e.g. [187])

(e.g. [188])

(e.g. [189])

(e.g. [190])

(e.g. [191])

(e.g. [192])

(e.g. [193])

(e.g. [194])

Fig. 13. Overview of techniques used for mmWave radar sensing applications.
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on FMCW systems, which typically are the technology of

choice for medium and larger ranges. Still, for short range

applications, such as gesture tracking, PW-type radars might

still be a viable alternative.

C. Frequency-Modulated Continuous Wave Radar

As the name implies, FMCW radars transmit a frequency-

modulated signal in a continuous fashion. Due to the larger

temporal duration of continuous-wave signals, FMCW yields

a much larger energy on the emitted signal as compared to

PW. In order to cover the desired frequency band, the signal is

linearly modulated over time starting from the lower frequency

within the band to the higher frequency (or vice-versa). This

type of signal is most frequently referred to as a chirp, and

the linear modulation of the signal is called frequency sweep.

An analogue continuous-wave signal can be generated with a

voltage-controlled oscillator (VCO), providing flexible adjust-

ments to the sweep duration independent of the bandwidth.

A frequency synthesizer together with a VCO can be used

to provide a digital alternative. This technique also provides

a higher spectral purity which makes it possible to avoid

accidental emission of frequencies adjacent to the desired

band, and thus to comply with given regulations. In FMCW

radars, the received signal is multiplied by the TX signal. The

intermediate-frequency signal component that results is then

isolated via low-pass filtering. Additionally, a low-cost ADC

can be used to convert the received signal into the digital

domain. Due to the recent developments on radar hardware,

the wider operating frequency range and the above mentioned

advantages, FMCW radars are currently preferred over PW

ones, especially in millimeter-wave band applications.

FMCW Signal: As previously mentioned, a chirp is a lin-

early modulated FMCW signal: it is a sinusoidal function

formulated as xtx = sin(ωtxt + φtx), where the frequency

ftx = ωtx/(2π) increases linearly over time. After transmis-

sion, the reflected chirp signal from an object is collected at

the RX antenna and can be written as xrx = sin(ωrxt+ φrx).
The intermediate-frequency (IF) signal is produced by mixing

RX and TX signals in the mixer component of the radar as

xif = sin
(

(ωtx−ωrx)t+(φtx−φrx)
)

. The time delay between

the RX and the TX signals is τ = 2d/c, where d is the distance

to the objects and c is the speed of light in air. The start of

the IF is at τ , which is also when RX chirp is realized and

ends when the TX chirp is entirely transmitted. Time delay

is the foundation for computing the range and velocity of a

target in an environment. While the given introductory FMCW

concepts are sufficient for the purpose of this paper, further

details on FMCW radars can be found in [195].

Range Measurement and Resolution: Range resolution is

defined as the ability of a radar to identify closely packed

objects. When the distance separating two objects is smaller

than the resolution, the radar becomes unable to distinguish

between them, returning a single range reading. The range

measurement is carried out by computing the phase difference

between TX and RX chirps, yielding the initial phase of an

IF signal, that is formulated as φ0 = 2πfcτ , where fc =
c/λ stands for the frequency, c is the speed of light and λ

is the wavelength. Hence, the distance d to an object, the so

called range d = τc/2, can be retrieved as d = φ0c/(2πfc) =
φ0λ/(4π). When multiple objects are present, a single TX

chirp results in the reception of multiple reflected (RX) signal

copies. According to the different time delays (τ ) between

the TX and each of the RX chirps, multiple IF signals are

computed, and range measurements for each corresponding

object are derived. The range resolution dres = c/(2B), highly

depends on the bandwidth B of the radar [196]: it can be

improved by increasing the bandwidth swept by the chirp,

yielding a longer IF signal and, in turn, leading to a more

precise reading of the environment.

Velocity Measurement and Resolution: In an FMCW radar

the velocity computation (commonly referred to as Doppler)

can be achieved using two TX chirps. Initially, the object range

is calculated by applying a FFT to the RX chirps. This range

calculation is commonly called range-FFT. The range-FFT

of separate chirps at the same location will yield different

phases. The object velocity is then derived according to the

phase difference between the two chirps as v = λ∆φ/(4πTc),
where ∆φ is the phase difference and Tc is the chirp duration.

However, in the case of multiple moving objects having the

same distance from the radar, the above method no longer

works. To overcome this, the radar needs to transmit N chirps

with equal separation, i.e., a so called chirp frame. When

the chirp frame is passed through the range-FFT, it yields

a phase difference containing combined phase differences

of all the moving objects. The result of the range-FFT is

passed through a second FFT called Doppler-FFT to identify

specific phase differences ω of each object. In the case of two

objects, the corresponding phase differences, ω1 and ω2, can

be used to derive two velocities as v1 = λω1/(4πTc) and

v2 = λω2/(4πTc). The velocity resolution, vres, of the radar

is inversely proportional to the duration of a single frame,

Tf = NTc. By knowing the frame duration Tf , the velocity

resolution is vres = λ/(2Tf ) [196].

Angle Measurement and Resolution: In radar sensing appli-

cations, most often the “angle” refers to the horizontal-plane

AoA at the receiver (or azimuth in a spherical coordinate

system). It is calculated by observing the phase changes

occurring on the range-FFT or Doppler-FFT peaks. In order

to observe these changes, there have to be at least two RX

antennas. The difference between the readings of each antenna

is what produces the phase change in the FFT peaks. The phase

change is formulated as ∆φ = 2π∆d/λ s.t. ∆d = ℓ sin(θ),
where ℓ is the distance between the antennas. Accordingly,

the angle can be estimated as θ = sin−1
(

λ∆φ/(2πℓ)
)

. The

closer θ is to zero, the more accurate the angle estimation

becomes. In fact, the angle resolution θres = λ/Nd cos(θ) is

usually given assuming θ = 0 and d = λ/2 which simplifies

it to θres = 2/N . The field of view of the radar depends on

the maximum AoA that can be measured [196].

We remark that the distance and angle resolution of a

mmWave radar device are especially important as they char-

acterise the density and the minimum separation of the points

that are detected in the radar maps (see next section). This, in

turn, has a major impact on the resolution of the clustering al-

gorithms that are used to separate signals reflected by different
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TABLE VI
SUMMARY OF THE HARDWARE PLATFORMS USED IN THE LITERATURE

Hardware platform Related literature

Google SOLI [197]
Infineon SiGe [198]
INRAS RadarLog [183]
Keysight EXG N5172B [199], [200]
Qualcomm 802.11ad device [187]
Xilinx Kintex Ultrascale [201]
TI AWR1243 [202]
TI AWR1443 [182], [189], [191], [194]
TI AWR1443BOOST [191], [203]
TI AWR1642 [204], [205]
TI AWR1642BOOST [186], [206]–[208]
TI AWR1643BOOST [185]
TI AWR1843BOOST [209]
TI AWR2243 [193]
TI AWR6843 [188], [190]
TI IWR1443 [210], [211]

subjects and objects in the radar maps (see, e.g., density-based

spatial clustering of applications with noise (DBSCAN) in the

following sections) and, on the final tracking performance of

any signal processing pipeline.

In Table VI, we summarize the types of passive mmWave

radars employed in the literature covered by our survey.

We observe that the availability of commercial evaluation

boards from Texas Instruments (TI) and of software interfaces

enabling the retrieval of raw radar data has made TI devices the

platforms of choice in many of the works. However, others still

prefer powerful but less commercial devices or come up with

custom boards when commercial platforms are not sufficient

to satisfy the requirements of the application.

D. Key Processing Techniques

Next, we describe some key processing techniques that

are utilized in modern mmWave based radar systems. As

detailed below, these are used for various purposes such

as noise removal, object/people tracking, people detection

and identification, vital signal estimation, etc. Note also that

multiple techniques are often used concurrently as part of

the same solution. By processing distance, velocity and angle

information, it is possible to get two or three dimensional

data points, such as range-Doppler (RD), range-azimuth (RA)

or range-Doppler-azimuth (RDA) maps. This type of data

shape, with temporal information between the data frames,

can be further processed to provide valuable information about

objects and users in positioning, tracking and identification

applications.

micro-Doppler — In addition to the main (bulk) movement

of an object, it is possible to have mechanical vibrations

within the object body as well. These internal vibrations

are called micro motions. The micro-Doppler phenomenon is

observed when these micro motions from the object cause

a frequency modulation on the returned signal [212]. An

example for this would be the individual movements of the

legs and the arms of a person while walking, or rotations of

the propellers of a fix-winged aircraft while flying. Assuming

that the scalar range from the radar to an object is r(t) and

that the carrier frequency is fc, then the phase of the baseband

signal is defined as φ(t) = 2πfc
2r(t)
c

. With this, it is possible

to obtain the micro-Doppler frequency shift caused by the

motion of an object. Taking the time derivative of the phase

yields d
dt
φ(t) = 2πfc

2
c

d
dt
r(t). We manipulate this equation

by introducing the Doppler shift induced by the rotation of

the object and referring to vector p as the location of an

arbitrary point on it. Thus, the micro-Doppler frequency shift

equation is obtained as fD = 2f
c
(v +Ω × p)T · n. The first

term of the equation is the Doppler shift due to the object’s

translation ftrans =
2f
c
v · n, where v is the bulk velocity of

the object and n is the radar’s line of sight direction. The

second term is the Doppler shift due to the object’s rotation

frot =
2f
c
(Ω×p)T ·n, where Ω is the angular velocity of the

object. In order to get time-varying frequency distribution of

micro-Doppler modulation, the short-time Fourier transform

(STFT) [213] is used. STFT is a moving window Fourier

transform where the signal is examined for each window

interval in order to generate a time-frequency distribution.

This process can be pictured as a DFT multiplied by the

sliding window’s spectrum, which yields a spectrogram of

time-varying micro-Doppler modulation [214], [215]. Due to

the different characteristics in micro-Doppler, it is possible to

detect a moving body and even to identify it, by capturing the

particular modes of motions of the body parts.

Kalman filter (KF) — It is a key tool for the analysis

of time-series containing noise or inaccuracies, providing a

precise understanding on how the signal changes with time.

The KF estimates the state of the monitored process through

time, by removing random noise. It is commonly used in

movement control, navigation and activity recognition, and it

is as well widely employed in radar applications. The discrete

KF (DKF) was initially developed in [216]. It is a two-step

recursive algorithm. The first step of the recursive loop is the

prediction step, where a projection from the current state of the

model and corresponding uncertainties into the next time-step

is made. Second, the correction (or update) step is where

adjustment of the projection is made by taking the weighted

average of the projected state with the measured information.

In linear systems with additive Gaussian noise, DKF works as

an optimal least-square error estimator. While for non-linear

systems, the most common KF variants are the EKF and the

UKF. One of the possible ways of obtaining state estimations

in non-linear models is converting the system into a linear one.

At each time step, the EKF uses a first-order partial derivative

matrix for the evaluation of the next predicted state starting

from the current one. This essentially forces the system to use

linearized versions of the model in the correction step [217].

However, when the model is highly non-linear, the EKF could

experience very slow convergence to the correct solution. In

such non-linear models, the KF is used with an unscented

transformation and hence the derivation of UKF. In order to

carry out predictions, the UKF picks a finite set of points

(called sigma points [218]) around the mean and generates a

new mean by passing this set through the non-linear function

that describes the system. Thus, the new estimate is obtained.

While the computational complexity of both filters are same,

for most cases the UKF practically runs faster as compared to
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the EKF, as it does not calculate partial derivatives [219].

In radar systems, he KF makes it possible to reliably

estimate the trajectory of the targets, which is achieved by

filtering the temporal sequences of points in the RD, RA

or RDA maps, by identifying the center of mass (COM)

of the moving target(s) and estimating its (their) trajectory

(trajectories) over time. KF allows coping with random noise,

obtaining robust trajectories, and to also estimate tracks for

the targets in those cases where some temporal RD/RA/RDA

frames are lost due to occlusions see, e.g., [183]. Given the

sampling time of radar applications and the typical speed of

movement of people, linear KF models are usually appropriate

for human trajectory tracking. Also, most prior works use KF

to track the COM of an object or person, treating it as an

idealized point-shaped reflector.

A recent solution for mmWave indoor radars [184] uses an

extended object tracking KF, which makes it possible to jointly

estimate the COM and the extension of the target around it.

In [184], such extension is mapped onto an ellipse around the

COM, whose shape and orientation matches those of the target.

This KF technology has similar performance as standard KF

assuming point-shaped reflectors in terms of tracking accuracy

for the COM, but additionally it makes it possible to track

the object extension over time. In the case of human sensing,

the ellipse represents the way the torso is oriented within the

monitored environment. This information, combined with the

target trajectory, reveals where the target is steering at, which

may be a valuable information for some applications, e.g., for

the retail industry.

E. Main learning techniques

Nowadays, ML and especially DL is successfully being

applied to many different fields and applications. Although

most of these techniques have been developed for a long time,

they are recently emerging due to hardware advancements. ML

methods are used for regression, classification and clustering

tasks. A more comprehensive analysis and discussion of ML

and DL techniques can be found in [220] and [221], respec-

tively. Just like many other fields, these techniques are being

successfully and abundantly exploited within mmWave radar

sensing systems.

In some cases, it is required to group sets of objects into

categories, i.e., to perform clustering. This technique is widely

used in such areas as pattern recognition, image analysis

and machine learning. This is particularly relevant when

there are scattered data points in the observed space, and the

information about which point belongs to what category is

non trivial. In our setup, it is used for the analysis of radar

images. After the cluster analysis, if the results are good, the

clustering method could be exploited to compute labels on

the dataset, and it could even be used as a part of a more

sophisticated system, e.g., for a subsequent identification

of the subject or of the human that has generated each

data cluster within an image. Often, the clustering task is

carried out in an unsupervised fashion. Over the years, many

researchers have designed clustering algorithms tailored for

a variety of models. Some of the well known of clustering

algorithms are k-means (based on partitioning), AUTOCLASS

(based on Bayesian statistics), expectation maximization (EM)

(based on parametric statistics) and also unsupervised neural

networks and DBSCAN [222] (density based). More on the

existing clustering models and algorithms, their categorization

and discussion can be found in [223].

DBSCAN — Considering the data gathered by mapping the

radar signal on the environment are tightly packed points in

range, angle and velocity dimensions, one algorithm stands out

in the field of radar sensing, density-based spatial clustering

of applications with noise (DBSCAN) [222]. DBSCAN is a

density-based clustering technique where the points belonging

to a high density region are grouped discarding those that

are recognized to be isolated, in accordance with precise

definitions of the neighborhood of a point and of its local

density. The algorithm starts at an initial point featuring a

dense neighborhood and tags it as a core point. The remaining

points within the core point’s neighborhood, i.e., within a

preset radius from it, are referred to as reachable. Upon initial-

izing the first core point, DBSCAN evaluates the neighborhood

density of each reachable points within its neighborhood, and

the ones residing within a dense neighborhood are chosen

as the new core points. The density connected region of the

cluster is thus extended by connecting dense neighborhoods,

constructing clusters of generic shapes and only containing

densely connected points. This process is continued in a

recurrent fashion until there are no more reachable points

whose neighborhood exceeds the minimum density. Finally, a

cluster is defined as the collection of all points that are either

density-connected or density-reachable. Multiple clusters are

possible and represents density-connected regions of points.

Points that are not contained within a high-density cluster are

referred to as outliers (these are termed noise points, and are

rejected).

In mmWave based radar applications, DBSCAN has been

extensively and successfully used to extract the clusters of

data points in the RD, RA or RDA maps associated with

the tracked humans and/or objects (e.g., vehicles) in the

monitored environment [224]. This technique was found to

be very robust and efficient due to the following reasons:

i) most importantly, DBSCAN is an unsupervised method,

its simplest version only needs two parameters to work (a

density threshold and a radius for the density neighborhood),

while it does not need one to know in advance the number

of clusters (objects/humans) to be tracked. The DBSCAN

parameters are to be set at training time and, for given

hardware (mainly, working frequency, distance and angle

resolution) and environment choices (e.g., indoor vs outdoor),

their set values remain rather effective across a large number

of scenarios [183], ii) DBSCAN runs fast, with a time

complexity of O(n log n), where n is the number of points

to be evaluated, iii) the clusters do not have to be spherical,

DBSCAN works well with clusters of any shape and it is very

effective in rejecting random noise, which is quite common

in radar maps. Further discussion on how DBSCAN is used

in radar systems and applications from the state-of-the-art is

presented in Section VI-F.
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Neural networks — The term neural network (NN)

comes from biological processes where a collection of

neurons create a network. In the modern sense, NNs are

the technology counterpart of the brain. They try to achieve

learning by identifying the relationships in a set of data

similarly to how brain does [225]. The most basic NN is the

perceptron originally devised by Rosenblatt [226]. It only

has a single layer and performs a classification task based

on taking the input and multiplying it by given weights,

summing the resulting signals, and passing the result through

a non-linear decision function. Essentially, this is the idea

behind the whole DL field. Below, we talk briefly about some

state-of-the-art DL architectures, which have captured the

attention of researchers working on radar sensing applications.

Convolutional NNs (CNNs) — One of the most common

NN models is the CNN [227]. CNNs usually consist of

back to back convolutional and pooling layers with a final

fully-connected layer. The convolutional layers take the

input and process it via a kernel function (a filter) where

the feature detection is carried out. These feature maps are

then fed to the pooling layer where dimension reduction of

the domain is performed. This process is continued until

a fully-connected layer, where a flattened feature map is

computed and used to obtain the classification output (either

via a single non-linearity or a softmax layer). CNN is a

feedforward NN where information can only move in the

forward direction from the input to the output layer, without

cycles nor loops. While the convolution operation is naturally

invariant with respect to rigid translations of input patterns,

it does not work with other types of transformations, such as

rotations. For this reasons, in the radar sensing field dedicated

CNN-based approaches have been specifically proposed for

radar point clouds, which are discussed shortly below.

Use with mmWave radar signals: due to the lack of

mathematical models to describe RD/RA and RDA maps

from mmWave radars and to the presence of strong noise

components (e.g., from ghost reflections and metallic objects),

CNN have been extensively used to automatically obtain

meaningful feature representations from radar readings.

Usually, CNNs are applied to the RD/RA/RDA clusters

found by a preceding clustering algorithm, e.g., DBSCAN,

assuming that each cluster represents a target object within

the monitored space. These representations can be then

utilized to detect objects within an environment [228], to

assess the type of activity a person is carrying out [204], or

to even track their identity [183].

Recursive NNs (RNNs) — Unlike feedforward NNs, RNNs

[229] utilize their internal memory to retain information from

previous input samples. This allows temporal sequences to

be used as input and thus the learning process can extract

temporal correlation. Hence, RNNs remember the information

during the learning process, while feedforward NNs cannot.

This is especially relevant for radar data, as it makes it

possible to extract temporal features from a sequence of

radar maps (i.e., a trajectory). For example, such features

can describe the way a person moves his/her limbs while

performing a certain activity. Vanishing or exploding gradients

are commonly seen during the back-propagation [221] based

training of an RNN. This prevents the NN to effectively

learn, leading to a premature stopping of the training process.

Long-short term memory (LSTM) cells, or alternatively

gated recurrent unit (GRU) cells [230], extend the original

RNN neuron to effectively cope with vanishing or exploding

gradients [231], by intelligently redefining the structure of a

memory unit. This solves the gradient vanishing problems at

the cost of a greater complexity.

Use with mmWave radar signals: activity recognition

usually cannot be achieved on data coming from a single

time step, e.g., from a single RD/RA or RDA map. For an

activity to be determined, analysis of a sequence of such

radar maps should be carried out. Combining this with the

micro-Doppler effect observed in humans, it is possible to

estimate the identity of a person based on the specific micro

motions of their body parts [183], [184], [232].

Autoencoders (AEs) — Autoencoders [233] encode the input

and then decode it to generate the output. While an AE is

trained to copy the input onto the output, the main rationale

behind this is to learn internal representations (features) that

describe the manifold where the high-dimensional input signal

resides. That is, the AE features should be highly represen-

tative of the input and can be used to classify it with high

accuracy. For a proper training of the AE, the encode/decode

functionalities are constrained, e.g., by limiting the number of

neurons in the inner layer or forcing some sparsity for the inner

representation. This forces the AE network to approximate

the output by preserving the most relevant features. Denoising

autoencoders [233] are trained to denoise the input signal

and reconstruct, at their ouput, the original (noise-free) signal

version. This was found to produce better features in the AE

inner layers. In addition, the denoising capability of such NN

architectures is valuable for RD/RA/RDA radar maps due to

their noisy nature.

Use with mmWave radar signals: radar system are

prone to noisy data and can be significantly affected by

unwanted or fake reflections (e.g., ghost reflections). Due

to this, many radar applications use the AE encode/decode

functionalities as a middle ground for the reconstruction

of the desired observation such as anomaly analysis for

human fall detection [209], person detection for surveillance

systems [234] and indoor person identification [183].

Generative adversarial networks (GANs) — In general,

GANs [235] are divided into two sub-models called the

generator and the discriminator. In the generator network the

expected outcome is a newly generated sample which should

reflect the features found in the input data/domain. Conversely

the task of the discriminator network is to classify an input

to detect whether it is a fake (generated) or a real example.

Learning proceeds as a game, where the generator becomes

progressively better in generating fakes, and the discriminator

improves at detecting them. The final goal is again to learn

meaningful representations (features) of a (usually) high-
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dimensional input signal.

Use with mmWave radar signals: Because of the competitive

nature of the generator and discriminator networks, jumping

from one to another during training makes them better at their

respective tasks. Most often, algorithms exploit this fact to

generate the required data and use this newly generated input

whenever it fits. For instance, GANs have been used in [194]

to generate dense maps from sparse inputs (also referred to

as super resolution imaging) for the purpose of environment

mapping in a low-visibility environment. In this case, the

generator network is used to improve the image resolution

and the discriminator to train the generator better.

Residual networks (ResNets) — ResNets [177] use short-

cuts to skip layers. Typically, the skipped layers include

activation and batch normalization [236]. The reason behind

using shortcuts is to overcome vanishing gradients and/or

gradient degradation problems. Despite the seemingly simple

architectural change, this leads to a major change in terms of

learning paradigm, which preserves the correct propagation of

the error gradients across the whole network, allowing one to

build very deep networks with hundreds of layers and with a

remarkable representation (feature extraction) effectiveness.

Use with mmWave radar signals: Due to the large number

of layers that can be stacked, ResNets are exploited in

complex scenarios where the input signal contains a high

number of patterns to be concurrently classified. Examples

include human skeletal posture estimation [207], where the

detection of more than 15 joints and the subsequent tracking

of the person are carried out, or real-time object detection for

autonomous driving [228], where real time obstacle detection

is performed.

PointNet and PointConv — Images are represented through

dense regular grids of points, whereas point clouds are irreg-

ular and also unordered. For these reasons, using the con-

volution operation with them can be difficult. Pointnet [237]

is a deep neural network which uses unordered 3D (graph)

point clouds as input. The applications of PointNets are object

classification and semantic segmentation. An extension of this

network is Pointnet++ [238], where the PointNet architecture

is recursively applied on a nested partitioning of the given

point cloud. PointNet++ can identify local features on a greater

contextual scale. The key reason of using such architecture

is to make the extracted features permutation invariant with

respect to the input signal. Along the same lines, in [239]

the convolution filter is extended into a new operation, called

PointConv, which can be effectively applied to point clouds to

build convolutional neural networks. These new network layers

can be used to perform translation-invariant and permutation-

invariant convolutions (and obtain invariant features) on any

point set in the 3D space. These qualities are especially

important for radar point clouds. When tracking people or

objects from radar data, being rotation invariant is relevant as

the traits that we want to capture about the target (movement

of limbs, body shape, etc.) do not depend on their orientation

in space.

Use with mmWave radar signals: In the recent papers [184]

and [240], novel Pointnet based NNs are presented to track and

identify people from point clouds obtained by mmWave radars.

We remark that mmWave systems can either operate on dense

radar Doppler maps, or on point clouds which can be derived

from these dense maps by only retaining the most significant

(strongest) reflections. Point clouds are less informative, as

some information is lost when moving from dense to sparse

representations, but are on the other hand easier to store,

transmit and their processing is also lighter. For these reasons,

algorithms that operate on sparse point clouds are particularly

appealing and are gaining momentum.

F. Selected Applications

Some of the works that we review in this section adopt a

custom design for the whole sensing system, from the radar

hardware to the implementation of the software. Others,

instead, use off-the-shelf radar devices and present new

algorithms. Most of the applications deal with human activity

recognition, object detection and health monitoring, but

other use cases are emerging such as vibration detection,

environment mapping and even speech recognition.

Human Activity Recognition

For the purpose of tracking and identity recognition

of humans moving in a room, the authors of [183]

use micro-Doppler signatures obtained from back-scattered

mmWave radio signals. An off-the-shelf radar is used to

gather RDA maps and noise removal is carried out. Hence,

DBSCAN is applied to the pre-processed RDA maps to detect

the data points (signal reflections) generated by each of the

human targets in the monitored environment. With DBSCAN,

a cluster of RDA points is obtained for each subject and

updated as the targets move, across subsequent time steps.

Trajectory detection is carried out by applying a KF to the

clusters and, as a final step, identity recognition is carried out

using a CNN with inception layers. The average accuracy is of

90.69% for single targets, 97.96% for two targets, 95.26% for

three targets and 98.27% for four targets. Similarly, authors

in [201] have designed RAPID in order to use off-the-shelf

IEEE 802.11ay devices for person detection and activity recog-

nition. Underlying techniques for human activity recognition

are similar to the previous work (e.g micro-Doppler signatures,

KF, CNN). However, RAPID uses CIR estimation and TRN

fields to expose targets movement information from the radio

signals. As a result, the authors have achieved person detection

accuracy between 97.8% (for 2 subjects being the highest) and

90% (for 7 subjects being the lowest). In addition, activity

recognition rates for walking, running, sitting, and waving

hands are 92.9%, 71.6%, 99.8%, and 89.9% respectively.

Similarly, in [204] micro-Doppler signatures are extracted

and exploited for human motion detection, where both RD

data cubes as a whole, and RD point clouds are considered.

The real-time information is received by passing RD data

through Doppler-time extraction. DBSCAN is used to group

the RD point cloud data from each of the tracked users in the

monitored space. The movements of arms, torso and legs of

a walking person are then identified via a CNN model. Tests
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were carried out for walking and leaving, waving hands, sitting

to walking transition, walking back and forth, and combining

all behaviors. An average accuracy of 96.32% (walking),

99.59% (leaving), 64% (waving hands), 91.18% (sitting to

walking), 97.84% (walking back and forth) and 95.19% (all)

was observed for each scenario, respectively.

In the same vein, movement pattern detection for of one

or two patients is the key result in [206]. Together with

DBSCAN, Kalman filtering has been applied to track the

trajectory of each patient. Walking, falling, swinging, seizure

and restless movements are the movement patterns which are

classified by the proposed CNN model. For these movement

types, the authors have obtained accuracy values ranging

between 82.77% and 95.74%.

The authors of [199] have proposed a framework called

“mmSense”. It uses an LSTM-based classification model for

localization. Initially, environment fingerprinting is carried out

with and without human presence. Hence, the presence of

people and their location within the environment are estimated

using an LSTM model. Moreover, an approach combining hu-

man outline profile and vital sign measurements gathered from

60 GHz reflected signal strength series is devised to identify

the targets. mmSense was tested on five people concurrently

sharing the same physical space, achieving an accuracy of

97.73% for classification and of 93% for identification tasks,

respectively.

With the purpose of preventive decision making in au-

tonomous driving applications, the authors of [207] propose

“mm-Pose”, a model for estimating the posture of a person in

real-time. To achieve this, RDA data is used to obtain 3D cloud

point representations and red-green-blue (RGB) projections of

depth-Azimuth and depth-Elevation are used. CNN is used to

cope with noise and unwanted reflections and also to detect

skeletal joint coordinates. The final model was able to locate

17 human skeletal joints with errors of 3.2 cm, 2.7 cm and

7.5 cm on the depth, elevation and azimuth axes, respectively.

A similar application is presented in [185] for human

skeletal pose estimation. In this model, range-angle heatmaps

are initially fed to a CNN followed by a fractionally strided

convolutional network (FSCN). To exactly locate the target

points, the non-max suppression algorithm was used and the

obtained key points were combined, implementing and testing

the proposed solution on single user scenarios. The evaluation

metrics used in this work are object keypoints similarity

(OKS) and Mean Average Precision (AP) over different OKS

thresholds. The authors obtained an average OKS of 70.5 over

eight different body parts. As a comparison, camera based

pose estimators achieve higher performance, i.e., Openpose

(avg. OKS: 93.3) and Leave One Out (avg. OKS: 66.6).

In [209], a fall detection framework, called “mmFall” is

presented. 4D cloud points are used, i.e., range, azimuth angle,

elevation angle and Doppler. To perform fall detection, the

authors exploit a sequence-2-sequence hybrid variational RNN

autoencoder (HVRAE) model that utilizes an encoder/decoder

logic. They use a tailored loss function along with a simplified

version (HVRAE SL) for testing purposes. They also test

the model on vanilla Recurrent Autoencoders (RAE). Overall,

HVRAE achieved 98%, HVRAE SL had 60% and vanilla

RAE had 38% probability of detecting a fall.

The authors of [203] designed a system to classify static

hand gestures, namely, palm facing the radar, hand perpen-

dicular to radar and thumbs-up gesture. In addition to the

real data, artificial reconstructions of the gestures were used

to gather synthetic data. Tests were performed both on range

and RA maps and, 85% and 90% accuracy were respectively

achieved with them, while with the addition of synthetic data,

the accuracy increased up to 93.1% and 95.4% for range and

RA maps, respectively.

A framework for human detection and tracking by using

radar fusion is presented in [191]. Ground truth data is

obtained via a camera system. DBSCAN is used for clustering

and temporal relationships between clusters are exploited to

obtain the probability distribution of the new positions to

perform tracking, similar to Kalman filtering. The concurrent

use of two radars allows improving the accuracy from 46.9%

to 98.6%.

The “GaitCube” algorithm was proposed in [189]. It utilizes

so called gait data cubes, i.e., 3D joint-feature representations

of micro-Doppler and micro-Range signatures for human

recognition purposes. The idea behind this algorithm is to

exploit the radar’s multi-channel capabilities to improve the

recognition accuracy. Their proposed system achieves 96.1%

accuracy with a single antenna, 98.3% when using all antennas

and an average accuracy of 79.1% when tested in an environ-

ment not seen at training time.

Akin to the objectives of the above paper, [188] develops a

posture estimation algorithm using DBSCAN to cluster and

single out real targets. The authors generate their dataset

by installing the radar on the ceiling, and receiving data at

10 frames per second. The data processing model is based on

CNNs, and the CNN network is trained on lying, seated and

upright moving postures. Classification results demonstrate a

mean accuracy of 99.1% and an average processing time of

0.13s.

Another work in [205] performs the classification of 7 fit-

ness exercises. CNN and LSTM neural network models are

utilized for the classification task, by training them on RD,

RA, angle-Doppler (AD) and joint-image data. For these data

types, a classification accuracy of 92.08%, 98.65%, 97.7%

and 99.27% is attained, respectively. In [182], fitness activities

were tested both in offline and also in online scenarios.

Classification was performed on 5 human activities achieving

an accuracy of 93.25% and 91.52% for the offline and online

operation modes, respectively. The system was also tested

on multiple locations and the obtained average accuracy is

88.83%.

Authors of [210], [211] have created a human detection

and tracking algorithm by using two radars simultaneously.

In both of these works, Kalman filter and DBSCAN were

used for tracking and identifying the location of the person,

and the synchronization of the radars were carried out in

an offline fashion. The results in [211] show a significant

improvement when a two-radar setup was used with an ac-

curacy of 98.6% compared to 46.9% from single-radar setup

in human detection. In [210], radars were placed so that one

had a top-view and the other had side-view angle. This work
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in addition to prior work proposes an alarm system and a

posture estimation method. An alarm system is triggered upon

a positive evaluation in the change of cluster number, number

of points in the cluster or the center point of the cluster. The

posture estimation is done for standing, sitting and lying poses

by analysing the height of a person at a particular instance and

the accuracy of estimation is from 92.5% to 93.7%.

Towards performing human activity recognition, any

combination of range and Doppler (or in some cases of range,

Doppler and angle) is used. RDA is typically used with

DBSCAN and/or Kalman filtering to identify the clusters

within the environment. After extracting micro-Doppler

data, a NN architecture (i.e., CNN, RNN, AE etc.) is

employed to perform activity/sensing applications. If properly

designed, DL models are generally the preferred way to

identify movement patterns of RDA clusters, as this is

the common theme among most of the surveyed material

above. Deterministic algorithms often fail to provide good

performance due to the need of a careful parameter tuning

(which is very sensitive to the monitored scenario) and to

the lack of mathematical models that accurately represent the

signals at the receivers.

Object Detection

The authors of [228] propose a method called spatial atten-

tion fusion (SAF) for obstacle detection with mmWave radar

and vision sensors. A fully connected one-stage (FCOS) NN is

used for the detection of objects. For the training of this neural

network, radar data is converted into radar maps (images)

and during the feature extraction step, the SAF block within

the FCOS network is used for combining radar with vision

features. The proposed SAF-FCOS model is trained and tested

on the nuScenes dataset with a ResNet-50 backbone, achieving

an average precision of 90.0% with an intersection-over-union

of 0.50 or higher.

The detection of concealed objects implies additional chal-

lenges, as it becomes necessary to single out hidden objects

from rest of the scenery. In [241], the authors employ EM to

fit a Gaussian mixture model of the image acquired: through a

two-step image segmentation procedure, they first extract the

body area from the image and then detect concealed objects.

The model is evaluated in terms of average probability of error

and the authors report that multi-level EM has an increased

performance of up to 90.0% when compared to conventional

EM.

A real-time outdoor hidden object detection model is pro-

posed in [242]. This work also utilizes EM, Bayesian decision

making and Gaussian mixture model for image segmentation,

with an architecture similar to that of [241]. However, vector

quantization is adopted for the first segmentation level to

achieve faster computation times. The authors also state that

EM can be avoided as a whole to reduce computation time

(and complexity) significantly, but this causes an error increase

as well. As a result, [242] achieves a computation time of

1.11 s (with EM) and 0.134 s (without EM) per frame.

Along a similar line, the authors of [243] propose a writing

object (e.g., a pen) tracking system called “mTrack,” that

uses dedicated mechanisms to suppress interference from

background reflections. After this, the RX antenna is steered

according to the peak response observed on the reflected

received signal. In other words, the antenna is adaptively

steered to face and track the direction of the pen. Finally,

the target movement tendency is evaluated by the trend and

amount of phase shifting. The system can detect the location

of the pen at a 94% accuracy, with a tracking error smaller

than 10 mm across 90% of the trajectory.

In [244], a non-imaging sensor for hidden object detection

is developed. The authors test their device both in an outdoor

scenario with a gun and in an indoor scenario where plastic

sticks of diameter equal to 2 cm are covered by a fabric. Final

results of the model are evaluated by applying the Fourier

transform to IF chirps to get the range map on horizontal and

vertical scans of the environment compared with a captured

image. In [245], an improved version of the sensor is proposed,

using a horn antenna integrated with a focusing dielectric lens

operating in the 80–100 GHz frequency range. This sensor can

be operated with any preferred movement (e.g., up-down) and

the authors claim that the probability of detection can go up

to 100%.

In [187], an IEEE 802.11ad device is used as a pulsed

wave radar to perform passive handwriting tracking. Slow-

and fast-time dimension analysis of the complex CIR, cell-

averaging constant false alarm rate (CA-CFAR) and subsample

peak interpolation (SPI) are the underlying techniques used

in their algorithm. After applying digital beamforming, the

authors could extract Doppler maps and by choosing the bins

with higher Doppler power, could localize the writing tool

(a pen). Finally, the pen is tracked by picking the lowest

elevation angle of its lower part at each time-step. With this,

they achieved a tracking accuracy between 3 mm (at a distance

of 20 cm) and 40 mm (at a distance of 3 m) and a character

recognition accuracy ranging from 72% to 82%.

The authors of [246] perform object classification consid-

ering three classes: humans, drones and cars. The feature set

used in their algorithm consists of radial range, area under the

peak, width of the peak, height and standard deviation of the

peak in the range-FFT domain. Logistic regression and Naive

Bayes led to a classification accuracy of 86.9% and 73.9%,

respectively.

In [192], authors have developed a new deep learning model

called hybrid dilated convolution (HDC) for concealed object

detection. HDC uses two-class semantic segmentation network

for keeping a high resolution in order to detect small objects.

As a design rule and assignment strategy, expand-contract

dilation (ECD) assignment is applied. In this assignment

stage, the first dilation rate group forms the “rising edge”

(increasing dilation) and the rest forms the “falling edge”

(decreasing dilation) of dilation rates. As a result, their average

precision with intersection over union of 0.5 is at 0.69% which

outperforms rest of the existing techniques.

As it may be apparent from our discussion, a wide variety of

algorithms have been used for object detection. Initially, signal

processing with DFT or FFT is performed to distill signal

features. Next, such features are either converted into images

such as radar maps, or further data processing is applied,

e.g., CIR analysis. ML and DL methods, or decision making
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algorithms such as EM, are then applied to obtain the final

results. In general, there is not a single winning methodology.

Rather, the optimal approach depends on hardware, software,

environment and application limitations.

Health Monitoring

The authors of [247] propose a model for remote heart

rate (HR) monitoring and analysis. They use the Levenberg-

Marquardt (LM) algorithm for the extraction of heart-rate

information. The sum of heartbeat complex, respiration, body

movement, background noise, and electronic system noise is

gathered by expressing the received in-phase and quadrature-

phase components from LM as the cosine and sine of the

received signal. One distinctive advantage of this method is

that there is no phase unwrapping as the fitting of the HR

signal is directly carried out on the cosine and sine of the

received phase modulated signal, which is important for low

SNR scenarios. The method is able to estimate beat-to-beat

HR and individual heartbeat amplitude, both having a critical

role in the diagnosis of heart diseases.

The authors of [202] demonstrate a remote breathing and

sleep position monitoring system over multiple people at the

same time. High resolution AoA detection is used to identify

closely located targets. A support vector machine (SVM) is

used for finding the sleep position, and an optimal filter to

estimate the breathing rate. The designed system achieved an

accuracy of 97% for breathing rate estimation and of 83% for

sleep position detection.

In the same vein, the work in [200] proposes vital sign and

sleep monitoring system. Initially, the location of the person

is detected by using the reflection loss as the classification

parameter, performing a 360° sweep of the environment.

After localizing the human, reflected signal strength samples

from the reflected signal directed at the human are gathered.

For heart rate detection, FFT, customized band-pass filter,

inverse FFT (IFFT) and peak detection are applied, while for

breathing rate detection only IFFT and peak detection were

sufficient. The achieved accuracy was 98.4% and the mean

estimation error in breathing rate and heart rate estimation

for an incident angle of 70° was smaller than 0.5 bpm and

2.5 bpm, respectively.

A similar purpose is found in [190], which designs a robot

for human detection and heart rate monitoring. The Hungarian

Algorithm and Kalman filtering are used to detect and track the

user position. Once the person is located, the robot approaches

him or her and starts the scanning process. The biquad cascade

infinite impulse response (IIR) filter is used to extract the

heartbeat waveforms from the signal, whereas a NN is used

for predicting the heart rate. The proposed system achieved an

accuracy between 91.08% and 97.89% across eight different

poses.

For the purpose of remote glucose level monitoring, the

authors of [197], [198] observe reflected multi-channel signal

signatures collected through the SOLI mmWave sensor [248].

The signal is analyzed by obtaining average power spectral

density (PSD) of each gated signal vector by applying DFT

and FFT. With this, they were able to sense the change in

dielectric constant due to a varying glucose level in the blood.

The authors of [193] use the radars’ multi-channel ca-

pabilities to improve the estimation of vital signs (heart

rate). Experiments are performed on 4 different scenarios by

changing the location of the radar and the posture of the

subject. Authors claim that using multi-channel Maximal Ratio

Combining (MRC) outperforms single channel estimates in

most cases, quantifying the benefits for each scenario.

Although an increasing number of articles is appearing

on health monitoring via mmWave radars, this field of

application deserves significant additional work. In fact, prior

art presents results for rather ad-hoc and artificial scenarios,

where people are still, positioned at known locations, etc. A

fully automated monitoring system should instead operate

in free living conditions, where users are free to move and

no prior location information is available. Further research

is thus needed to enable multi-user tracking of vital signs,

by also compensating for people movement, which has a

detrimental effect on the estimation of breathing and heart rate.

Other Applications

In [186], a system namely “mmVib” for micrometer level

vibration detection is presented. The authors propose a

multi-signal consolidation model to understand In-phase and

Quadrature (IQ) domain and in turn exploit the consistency

among the two obtained signals to estimate the vibration char-

acteristics of an object. With this, they can detect vibrations

at micrometer level.

The authors of [194] propose an indoor mapping system

called “milliMap”, designed for low-visibility environments.

A lidar is used for environment mapping as a ground truth

data collector. A GAN is used to construct the grid map by

recognizing obstacles, free spaces and unknown areas. Finally,

semantic mapping is applied for the classification of obstacles.

A noise-resistant speech sensing framework, “WaveEar,”

is proposed in [249]. Directional beamforming is used to

make the system robust to noise. After localizing the throat

and receiving the data, voice reconstruction is achieved by

a neural network based on an encoder-decoder (autoencoder)

architecture. As a result, WaveEar achieves a stable 5.5% word

error rate at a distance of about 1.5 m from the user. The

authors also point out that joint optimization speech-to-text

and WaveEar would further enhance the capabilities of their

system.

In [208], a mmWave radar device is mounted on a robot

to estimate its position. This is achieved by exploiting the

interference produced by other mmWave radars located in

the same environment (with known positions), and by only

estimating the angle of arrival of each other radar interference.

The proposed system attains position errors for the robot

ranging from 14 cm (with three radars) down to 6 cm (ten

radars).

The applications presented in this section vary from

micrometer-level activity recognition to speech recognition.

We observe that radio sensing enables new and unforeseen

use cases, such as vibration detection [186], indoor naviga-

tion [194] and speech reconstruction [249]. However, it is

still unclear whether these signals can be reliably detected

in an environment with mobility and other sources of noise.
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TABLE VII
SUMMARY OF THE ENVIRONMENTS IN WHICH THE EXPERIMENTS HAVE BEEN CARRIED OUT

Evaluation Related literature

Indoors [182], [183], [185]–[194], [197]–[204], [206], [208]–[211], [241], [243]–[245], [247], [249], [250]
Outdoors [185], [205], [207], [228], [242], [244]–[246]

TABLE VIII
SUMMARY OF THE MAIN TECHNIQUES USED IN THE SURVEYED PAPERS

Analytical Tools Related Literature

DBSCAN [182], [183], [188], [191], [204], [210], [211]
Deep learning [182], [182], [183], [185], [188]–[191], [194], [199], [201], [203]–[207], [209], [228], [249]
Fourier transform [186], [187], [197], [198], [200], [203], [208], [244], [246]
Hungarian algorithm [183], [190]
Kalman filter [183], [190], [201], [210], [211]
Levenberg-Marquard method [247]
Machine learning [188], [202], [246]
Non-max suppression [185]
Signal processing [187], [193], [199]–[201], [243], [249]
Statistical modeling [191], [241], [242]

Additional experimental data would be required to check the

performance of these solutions in general settings and to

possibly improve their robustness.

G. Summary

In this section, we have summarized the recent advances

and trends in signal processing for passive mmWave radar

systems for indoor spaces. These systems are rapidly gaining

momentum as radar devices become commercially available,

at a low cost. A number of applications are emerging, tar-

geting diverse scenarios such as people detection, tracking

and identification, estimation of biosignals such as respiration

and heart rate, detection of gestures/activities/falls, vibrations,

speech or environmental mapping. Table IX summarizes these

application-oriented propositions, while Table VII categorizes

them based on the environment where the experiments were

carried out. While early works used standard machine learning

algorithms such as expectation maximization and support

vector machines, latest developments have been dominated

by neural networks. This is clearly evident from Table VIII,

which presents a summary of the analytical tools discussed

in the survey. These are being implemented in their many

flavors, and are allowing researchers to obtain good results

in scenarios where no analytical models are available. As far

as human data monitoring is concerned (e.g., people tracking,

activity monitoring, etc.), the key processing algorithms are

DBSCAN clustering for the separation of user data in the

radar RD/RA/RDA maps and Kalman filtering to reliably track

their trajectories. Neural network architectures are evolving

from standard CNNs to more advanced convolutions (Point-

Conv and PointNets) that were specifically designed for radar

point clouds. Some solutions then use RNNs to capture and

exploit the temporal correlation of radar signals. Advanced

architectures, such as GAN based, are also being exploited to

extract features from radar images.

Although many applications and uses of this technology

have emerged lately, a lot of research and implementation

work is still required. As far as research is concerned, vital

sign monitoring is still in its infancy as more robust algo-

rithms are to be developed, capable of working in free living

conditions, i.e., in the presence of user mobility and other

noise sources. In addition, while advanced user tracking and

positioning techniques are available for single radar systems,

no substantial work can be found for multi-radar setups, i.e.,

radar networks. With multiple radar devices, many additional

problems have to be tackled, including time synchronization,

data fusion among radar signals, distributed calibration and

means to quantify whether and to which extent radar devices

share a common portion of their field of view. For what

concerns implementation, much work still has to be performed

architecturally, e.g., where to place the ML based intelligence,

which messages are to be exchanged between the radars and

the computing units, which protocols are to be exploited to

synchronize multiple devices along time and data dimensions,

etc. Lastly, experimental work is key to the development of

robust algorithms, as analytical or simulated models often

fail to accurately represent all the noise sources. Hence, the

collection of experimental data and its publication along with

the code of the developed solutions are vital to make progress.
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TABLE IX: SUMMARY OF THE MMWAVE RADAR SENSING WORKS IN THE LITERATURE

Proposition Tools Used Band (GHz) Performance

Human Activity Recognition Algorithms

Multi-person tracking and

identification [183]

Micro-Doppler, DBSCAN,

Kalman filter, Hungarian

algorithm, CNN

77
Continuous identification of multiple per-

sons with up to 98% accuracy.

Indoor human detection and

sensing [201]

CIR, micro-Doppler, Kalman fil-

ter, CNN
60

Person detection accuracy of 97.8% to

90%. Walking, running, sitting and waving

hands accuracy of 92.9%, 71.6%, 99.8%

and 89.9% respectively.

Multi-person detection and

identification [199]

LSTM-based model, RSS series

analysis
60

Multi person classification and identifica-

tion accuracy of 97.73% and 93% respec-

tively.

Gait-based human recognition

[189]
CNN 77

Classification accuracy of 96.1% and

98.3% with single gait cycle, when using

single and all receive antenna respectively.

Human detection and tracking

[191]

DBSCAN, probability distribu-

tion matching, Kalman filter-like

algorithm

77-81
Human detection sensitivity and precision

of 90% and 98.6% respectively.

Real-time human activity

recognition [182]
DBSCAN, CNN, RNN 77

Offline and real-time activity recognition

accuracy of 93.25% and 91.52% respec-

tively, over five different human activities.

Hand gesture classification

[203]

Deep learning, Signal processing

(FFT)
77-81

Hand gesture classification accuracy of

93% and 95% on range and range-angle

data respectively.

Human motion behavior detec-

tion [204]
Micro-Doppler, DBSCAN, CNN 77

Accuracy of over 90% in detecting various

human motion behaviours.

Activity recognition and fitness

tracker [205]
Deep learning, CNN 77-81

Classification accuracy of 92.08%,

98.65%, 97.7%, and 99.27% for RD, RA,

Angle-Doppler (AD), and joint-image

evaluation respectively.

Real-time patient behaviour de-

tection [206]
Micro-Doppler, STFT, CNN 77

Over 84.31% prediction accuracy for dif-

ferent behaviors for a single patient.

Around 80% prediction accuracy for dif-

ferent behaviors for two patients.

Human skeletal pose estima-

tion [207]
CNN 77

Detection of 17 human skeletal joints with

3.2 cm, 2.7 cm and 7.5 cm localization

error on depth, elevation, and azimuth axes

respectively.

Human pose estimation [185] CNN, Fractionally strided CNN 77
Average object keypoints similarity of 70.5

over 8 different parts.

Fall detection system [209] LSTM, RNN 77

Proposed scheme achieves 98% fall de-

tection rate and outperforms the baseline

techniques.

Real-time posture estimation

system [188]

DBSCAN, CNN, LSTM, Deci-

sion trees
77

Posture estimation with an accuracy of

99.1% at a processing time of 0.13s

Human detection and track-

ing [210], [211]
DBSCAN, Kalman filters 76-81

Human detection sensitivity of over 90%.

Two-radar setup improves precision from

46.9% to 98.6%. Posture estimation preci-

sion from 92.5% to 93.7%

Object Detection Algorithms

Handwriting tracking [187]

STFT, CIR, Cell averaging-

constant false alarm rate

(CA-CFAR)

60

Tracking accuracy of 3 mm to 40 mm and

character recognition accuracy of 72% to

82%.

Obstacle detection for

autonomous driving [228]
Deep learning, CNN 77

Average precision of 90% with intersection

of unions greater than 0.5.
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TABLE IX: SUMMARY OF THE MMWAVE RADAR SENSING WORKS IN THE LITERATURE (CONTINUED)

Proposition Tools Used Band (GHz) Performance

Concealed object

detection [241]

Gaussian smoothing filter,

expectation-maximization,

Bayesian

37.47

Usage of multi-level EM increased perfor-

mance up to 90% compared to conven-

tional EM.

Real-time concealed object de-

tection [242]

Expectation-Maximization,

Bayesian decision making,

Gaussian mixture model

94
Computation time of 1.11 s and 0.134 s

with reduced processing.

Writing object tracking

(mTrack) [243]
RSS, phase change analysis 60

The system tracks/locates a pen with sub-

centimeter accuracy in 90% of the cases.

Concealed object detection

[244], [245]
FFT 80-100 Object detection accuracy up to 100%.

Object classification [246]
FFT, Logistic regression, Naive

Bayes
77-81

86.9% and 73.9% classification accuracy

using Logistic Regression and Naive Bayes

respectively.

Hidden object detection [192] Semantic segmentation, CNN 60

The proposed expand-contract dilation

(ECD) scheme has an average precision

(AP@0.5) of 0.69, and outperforms all the

existing techniques.

Health Monitoring Algorithms

Blood glucose level monitoring

[197]
DFT, FFT 57-64

Remote detection of blood glucose levels

by sensing the change in dielectric constant

and loss tangent.

Glucose level detection [198]
Energy-density comparison,

DTFT
57-64

Demonstrates accurate identification of

blood glucose levels.

Vital sign and sleep monitoring

[200]
RSS, IFFT 60

Human finding accuracy of 98.4% and the

mean estimation error in breathing rate

and heart rate is less then 0.43 Bpm and

2.15 Bpm.

Breathing and sleep position

monitoring [202]
FFT, DOA, optimum filter, SVM 77-81

Accuracy of 97% and 83% for breathing

rate estimation and sleep position detection

respectively.

Vital sign monitoring [193]
Arctangent demodulation (AD),

Maximal ratio combining (MRC)
77-81

Proposed signal processing chain signifi-

cantly improves the heart rate estimation

accuracy in all cases.

Heart rate sensing [190]
Neural networks, Hungarian al-

gorithm, Kalman filter
60-64

Accuracy of 91.08–97.89% over 8 different

human poses.

Heart rate analysis [247] Non-linear Levenberg-Marquardt 94
Capability of estimating beat-to-beat heart

rate and individual heartbeat amplitude.

Other Algorithms

Indoor mapping [194] GAN 77
Map reconstruction error within 0.2 m.

Obstacle classification accuracy of 90%.

Vibration detection [186] FFT, AoA 77
Median amplitude error of 3.4 µm for the

100 µm amplitude vibration.

Robot position estimation

[208]
AoA, range and doppler FFT 77

Position estimation of the robot with an

error below 20 cm.

Speech sensing [249] SSNR, Neural network 77 5.5% word error rate around 1.5 m distance
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VII. DISCUSSION AND OPEN RESEARCH DIRECTIONS

Our comprehensive review of the state of the art in mmWave

localization and sensing shows that a sizeable set of contribu-

tions have already covered significant work in this research

area. Such works show that current mmWave equipment,

even COTS devices, already offer sufficient opportunities to

incorporate localization as part of communication processes.

Moreover, commercial implementations of mmWave radars are

currently very compact, and cater for precise device-free local-

ization and sensing. However, additional efforts are required

to democratize these tasks and make them natively available

to vertical applications that rely on mmWave connectivity.

At the current stage of hardware development, fully-custom

signal processing algorithms only apply to software-defined

radio platforms, where fully-digital transceiver architectures

can be available upfront. Conversely, commercial-grade hard-

ware does not give full access to internal signal samples and

measurements, requiring more complex processing and often

yielding limited performance. For example, while theoretical

analysis predicts millimeter-level device localization accuracy

and fully digital architectures achieve centimeter-level accu-

racy, algorithms for commercial-grade mmWave devices typ-

ically achieve decimeter-level 3rd-quartile localization errors.

In this perspective, we conclude that promising research

directions in the above field would greatly benefit from new-

generation standard-compliant mmWave transceiver hardware

that also exposes channel state information to external al-

gorithms. While some efforts in this direction have been

announced, there is still no such platform available on the

market. The same observation holds for hybrid beamforming

architectures. While preliminary works exist that exploit hy-

brid beamforming to improve beam pattern directivity and

adaptivity, or to make the 802.11ay SLS operations faster,

these architectures could also help localize mmWave devices

faster, e.g., by enabling faster angular spectrum scanning.

Moreover, the field still needs scalable algorithms that flexibly

manage the presence of multiple APs or of several clients

in the same area. These algorithms should work, if possible,

with zero initial knowledge of the floor plan and surrounding

area, and ideally estimate the whole environment, including the

location of the APs and of all reflective surfaces automatically

in a SLAM fashion, in order to relieve the need of input

from the user. Significant research opportunities also exist for

integrating ML algorithms into location systems. Here, the

main challenges relate to: relieving the need for extensive

training datasets, whose collection requires important efforts;

creating models that transfer well across different environ-

ments, especially indoors; speeding up the convergence of the

trained models, e.g., through federated learning, particularly

when involving heterogenous clients.

All of the above would be important enablers of a fully

integrated device-based sensing and localization system, for

which significant research is still needed. The benefits of

such a system would be enormous, as the seamless integra-

tion of device-based localization and communications would

enable advanced location-based services in multiple domains

(including but not limited to healthcare, massive IoT, industrial

scenarios, safety, and mission-critical applications), as well

as multiple network optimizations (such as optimal client-AP

associations, predictive re-association before link breakage due

to movement or obstacles, or location-aided beam training and

tracking).

Regarding passive radar sensing, a number of major ad-

vancements are envisaged. First, most commercial low-cost

radars incorporate linear antenna arrays, which have limited

detection and tracking capabilities. Bi-dimensional antenna

arrays would make it possible to detect higher resolution radar

images in the 3D space, enabling new uses of this technology

(e.g., human gait analysis). Even though commercial mmWave

radars with enhanced capabilities and 2D antenna arrays are

becoming available, e.g., TI AWR/IWR radars [251] and

TI cascaded imaging radar MMWCAS [252] with relatively

large antenna array size, very little work is available to date

exploiting massive MIMO radars. These would allow high

resolution sensing, which makes it possible to detect finer

movements and shapes. Also, most of the available research

only involves a single radar sensor, whereas radars could be as

well co-deployed, allowing for large-scale monitoring applica-

tions. This will give rise to new opportunities and technical

challenges to face, such as new techniques to perform sensor

fusion from multiple radar views, self-calibration algorithms

for the distributed radar sensors, transmission and compression

of radar features from multiple sensing units. Architecturally,

no clear approach was found on where the supporting com-

puting facilities are to be located, which messages should

be sent to them and what is the preferred interaction model

between the field sensors and the computing units. All of

this is of key importance especially for large deployments

involving multiple sensors. Additional opportunities concern

the combination of mmWave radar systems with camera-based

ones (including thermal cameras), to perform data/feature

extraction and fusion across different sensing domains. Finally,

a promising research avenue is to modify commercial off-

the-shelf communication technology, such as the forthcoming

IEEE 802.11ay, so that it can double as a passive mmWave

radar. This would enable joint communications and passive

sensing, potentially without having to deploy a dedicated

mmWave radar network. The recent creation of the TGbf task

group (working on research and standardization of WLAN

sensing towards the IEEE 802.11bf amendment) testifies the

interest of the community on these emerging topics.

As a general observation, the research on machine learning

methods applied to device-based localization remains limited

compared to device-free radar-based sensing. For device-based

localization, machine learning methods find their typical appli-

cation in fingerprinting approaches. Yet, these schemes require

a typically lengthy preliminary measurement effort, which is

often deemed excessive or impractical. Conversely, modern

mmWave radar systems are both compact and affordable, and

expose a number of features that can be more easily passed

on to complex learning and clustering algorithms to map

environments, track movement, or estimate the occurrence of

some events of interest. The applicability of machine learning

algorithms to to either field could change if more features

become available, e.g, from multiple digital transceiver ar-
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chitectures integrated in the same client. For example, this

would make it possible to use machine learning to increase the

speed of intermediate localization algorithm steps (e.g., angle

computations, ranging and simultaneous distance estimation

among multiple mmWave devices, or joint angle/distance

estimates based on radio features).

VIII. CONCLUSIONS

Millimeter-wave (mmWave) communication devices will

soon become a fundamental component of 5G-and-beyond

communication networks. This survey put the lens on re-

cent research advances in localization and sensing algorithms

for indoor mmWave communication and radar devices. Af-

ter introducing the most important properties of mmWave

signal propagation and communication chain architectures

that enable mmWave channel measurements, we presented

a thorough account of localization algorithms for mmWave

devices. These are based on a broad range of techniques,

that include both traditional methods based, e.g., on timing

and received signal strength indicator (RSSI) information, and

more specific methods that exploit the properties of mmWave

devices and signal propagation, e.g., by processing channel

state information (CSI).

Then, we turned our attention to consumer-grade mmWave

radar devices, which are becoming extremely cost-effective

sensing platforms. After introducing the basic structure of such

radar architectures, we discussed different approaches that

tackle applications such as human activity recognition, object

detection and health monitoring. We unveiled that several

research directions remain open in both fields, including better

algorithms for localization and sensing with consumer-grade

devices, data fusion methods for dense deployments, as well

as an educated application of machine learning methods to

both device-based localization and device-free sensing.

LIST OF ABBREVIATIONS

3GPP Third-generation partnership project

4G fourth-generation

5G fifth-generation

A-BFT association beamforming training

ABT asymmetric beamforming training

AD angle-Doppler

ADC analog-to-digital converter

ADoA angle difference-of-arrival

AE autoencoder

AoA angle of arrival

AoD angle of departure

AP access point

API application program interface

BI beacon interval

BRP beam refinement protocol

BS base station

CA-CFAR cell-averaging constant false alarm rate

CBAP contention based access period

CIR channel impulse response

CNN convolutional NN

COM center of mass

COTS commercial off-the-shelf

CSI channel state information

DAC digital-to-analog converter

DBSCAN density-based spatial clustering of applications with noise

DFT discrete Fourier transform

DKF discrete KF

DL deep learning

DSP digital signal processor

DTI data transmission interval

ECD expand-contract dilation

EKF extended Kalman filter

EM expectation maximization

EN-DC enhanced UTRA-dual connectivity

ESPRIT estimation of signal parameters via rotational invariance tech-

niques

FCOS fully connected one-stage

FFT fast Fourier transform

FMCW frequency-modulated continuous wave

FPGA field-programmable gate array

FSCN fractionally strided convolutional network

FTM fine time measurement

GAN generative adversarial network

GRU gated recurrent unit

GSCM geometry-based stochastic channel model

HDC hybrid dilated convolution

HR heart rate

HVRAE hybrid variational RNN autoencoder

IF intermediate-frequency

IFFT inverse FFT

IIR infinite impulse response

IoT Internet of things

ITU-R International telecommunication union – radiocommunication

Sector

KF Kalman filter

LM Levenberg-Marquardt

LMS least mean squares

LoS line-of-sight

LSTM long-short term memory

MAC medium access control

MCU micro-controller unit

MF matched filter

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML machine learning

mmWave millimeter-wave

MPC multipath component

MUSIC multiple signal classification

NLoS non-line-of-sight

NN neural network

OFDM orthogonal frequency-division multiplexing

OKS object keypoints similarity

PA power amplifier

PDP power-delay profile

PHY physical layer

PRS positioning reference signal

PSD power spectral density

PW pulsed wave

RA range-azimuth

RD range-Doppler

RDA range-Doppler-azimuth

ResNet residual network

RF radio frequency

RGB red-green-blue

RMS root mean square

RMSE root mean square error
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RNN recursive NN

RSS received signal strength

RSSI received signal strength indicator

RTT round-trip time

RX receive/receiver

RZF regularized zero-forcing

SAF spatial attention fusion

SAGE space-alternating generalized expectation maximization

SDR software-defined radio

SLAM simultaneous localization and mapping

SLS sector-level sweep

SNR signal-to-noise ratio

SoC system-on-chip

SP service period

SPI subsample peak interpolation

SRS sounding reference signal

SSW sector sweep

STA station

STFT short-time Fourier transform

SVM support vector machine

TDoA time difference-of-arrival

ToA time of arrival

ToF time of flight

TX transmit/transmitter

TXSS transmit sweep

UAV unmanned aerial vehicle

UE user equipment

UKF unscented Kalman filter

URLLC ultra-reliable low-latency communications

USRP universal software radio peripheral

V2X vehicle-to-everything

VCO voltage-controlled oscillator

WLAN wireless LAN

ZF zero-forcing
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