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Abstract

Humans are able to develop a solid knowledge of the world around them: they can
leverage information coming from different sources (e.g., language, vision), focus on
the most relevant information from the input they receive in a given life situation, and
exploit what they have learned before without forgetting it. In the field of Artificial In-
telligence and Computational Linguistics, replicating these human abilities in artificial
models is a major challenge. Recently, models based on pre-training and on atten-
tion mechanisms, namely pre-trained multimodal Transformers, have been developed.
They seem to perform tasks surprisingly well compared to other computational mod-
els in multiple contexts. They simulate a human-like cognition in that they supposedly
rely on previously acquired knowledge (transfer learning) and focus on the most im-
portant information (attention mechanisms) of the input. Nevertheless, we still do not
know whether these models can deal with multimodal tasks that require merging dif-
ferent types of information simultaneously to be solved, as humans would do. This
thesis attempts to fill this crucial gap in our knowledge of multimodal models by inves-
tigating the ability of pre-trained Transformers to encode multimodal information; and
the ability of attention-based models to remember how to deal with previously-solved
tasks. With regards to pre-trained Transformers, we focused on their ability to rely on
pre-training and on attention while dealing with tasks requiring to merge information
coming from language and vision. More precisely, we investigate if pre-trained mul-
timodal Transformers are able to understand the internal structure of a dialogue (e.g.,
organization of the turns); to effectively solve complex spatial questions requiring to
process different spatial elements (e.g., regions of the image, proximity between ele-
ments, etc.); and to make predictions based on complementary multimodal cues (e.g.,
guessing the most plausible action by leveraging the content of a sentence and of an im-
age). The results of this thesis indicate that pre-trained Transformers outperform other
models. Indeed, they are able to some extent to integrate complementary multimodal
information; they manage to pinpoint both the relevant turns in a dialogue and the most
important regions in an image. These results suggest that pre-training and attention play
a key role in pre-trained Transformers’ encoding. Nevertheless, their way of processing
information cannot be considered as human-like. Indeed, when compared to humans,
they struggle (as non-pre-trained models do) to understand negative answers, to merge
spatial information in difficult questions, and to predict actions based on complemen-
tary linguistic and visual cues. With regards to attention-based models, we found out
that these kinds of models tend to forget what they have learned in previously-solved
tasks. However, training these models on easy tasks before more complex ones seems to
mitigate this catastrophic forgetting phenomenon. These results indicate that, at least in
this context, attention-based models (and, supposedly, pre-trained Transformers too) are
sensitive to tasks’ order. A better control of this variable may therefore help multimodal
models learn sequentially and continuously as humans do.
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Chapter 1

Introduction

Humans are characterized by the ability to integrate information coming from multiple

modalities, such as language and vision. Building computational models able to repro-

duce these abilities is the aim of multimodal learning. Researchers in this field have

been working on tasks where models are required to rely on both language and vision

(Baltrušaitis et al., 2018). These models are asked, for instance, to provide descrip-

tions (Bernardi et al., 2016a), to answer questions (Sharma and Jalal, 2021), or to hold

dialogues (Chen et al., 2020) about the visual content of images.

In the last years, pre-trained Transformers proved to work extremely well as compu-

tational models for tasks involving natural language processing (Devlin et al., 2018),

computer vision (Dosovitskiy et al., 2020), and the interface between them (Li et al.,

2019; Lu et al., 2019a; Tan and Bansal, 2019; Chen et al., 2019a; Su et al., 2020; amd

Nan Duan et al., 2020). Inspired by human ability to transfer knowledge acquired from

previous tasks when learning new ones, these kinds of models are pre-trained on several

different tasks in order to acquire useful knowledge which can be reused when learn-

ing from the downstream tasks. Likewise, inspired by human ability to focus on the

most salient information, these kinds of models leverage an attention mechanism which

allows them to focus on the most important parts of the input data.

Transformers seem to reach a high performance due to their reliance on pre-training

and attention. However, we do not know whether and how well they exploit these fea-

3



4 Chapter 1.

tures to solve more complex tasks such as answering questions that require encoding

relations among regions, or answering questions that require both linguistics and vi-

sual grounding. Our research aims to investigate to what extent pre-trained multimodal

Transformers effectively rely on pre-training and on attention mechanisms when deal-

ing with multimodal tasks which require the association of several information cues to

be solved. We are particularly interested in testing their ability to:

• Detect salient information in each modality while grounding one into the other

(Chapters 3, 4, and 5)

• Combine complementary information provided by the two modalities (Chapter 7)

We tackle the first issue by taking the dialogues of a visual guessing game, namely

GuessWhat?!, as case study. The structure of the dialogues in this task is suitable for

our purpose since it is rather simple (a short sequence of polar questions and their re-

spective answers referring to an object in an image) and hence easy to manipulate when

necessary. In particular, pre-trained Transformers are required to:

• Select the object in the image the dialogue refers to in the referential guessing

task. We focus on understanding whether models are able to detect the most

salient information in the dialogue history and to properly integrate the answer

and the corresponding question (Chapters 3 and 5)

• Answer questions about an object in the image. We focus on spatial questions

since they challenge models on detecting information across regions (Chapter 4)

We tackle the second issue by testing pre-trained Transformers on an ad hoc built task

which consists in guessing the most plausible action based on an utterance and an associ-

ated image conveying different but complementary information. In all the investigations

mentioned above, we compare pre-trained Transformers with their counterparts trained

from scratch and architectures not relying neither on pre-training nor on attention.

In our research, we are also interested in the crucial issue of catastrophic forgetting,

which affects both classical computational models and pre-trained Transformers. As
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pointed out by studies in the continual learning field (Ring, 1997), models should be

not only able to transfer their knowledge to new tasks, but also to avoid forgetting

how to solve previously-solved tasks after having learned a new task. We tackle this

parallel issue by investigating if a better control of tasks’ order helps to mitigate catas-

trophic forgetting in visual question answering tasks involving polar and Wh questions

about images (Chapter 7). In this case, we use classical multimodal models instead of

pre-trained Transformers since we consider that obtaining results on relatively simple

architectures are needed to preliminary deal with this general issue.



Chapter 2

Background

In the last years, the advent of deep learning models based on artificial neural networks

has brought to steep advances in the field of natural language processing and computer

vision. Moreover, the advent of architectures transferring previously-acquired knowl-

edge on several tasks has been a breakthrough in natural language processing and com-

puter vision. However, models learning purely from textual data lacked the processing

of the perceptual information used by humans. Hence, many models and tasks have

been proposed in order to evaluate the capability of models to integrate information

coming from modalities such as language and vision. In this chapter, first we describe

how artificial neural networks generally work. Then, we focus on state-of-the-art mod-

els for natural language processing and computer vision. Subsequently, we describe

how transfer learning has been employed to build pre-trained models which can be eas-

ily adapted in order to solve the task at hand. Finally, we focus on multimodal models,

tasks and datasets designed in order to integrate the linguistic and visual modalities.

2.1 Artificial Neural Networks

The goal of an Artificial Neural Network (ANN) is to approximate a mathematical func-

tion in order to obtain a certain output starting from the given input (Goodfellow et al.,

2016). For instance, the mathematical function to approximate may correspond to a

6
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textual classifier labeling a given e-mail as spam or not-spam or to a visual classifier

labeling a given picture as depicting a dog or a cat. The mapping is defined by learning

the parameters of the ANN leading to the best approximation of the function.

Feed-forward ANNs are called feed-forward because are no feedback connections in

which some outputs of the model are fed back into itself. In particular, the input flows

through several intermediate computation layers and finally goes to the output layer

which computes the output. The first layer is called the input layer, while the last layer

is called the output layer. The middle layers are called hidden layers, because their

values are not observed in the training set. Each layer contains a number of neurons,

which are computational units having scalar inputs and outputs. Each input has an

associated weight. Each neuron multiplies each input by its weight, sums the weighted

inputs, and eventually applies a non-linear function to the result. The computation of

the output value of a neuron is called activation. The neurons of a layer are connected

to the neurons of the next layer, composing the architecture of the ANN.

Given an ANN composed of nl layers l1, l2, . . . , lnl
, W (l)

ij denotes the weight of the

connection from the j-th neuron in layer l and the i-th neuron in layer l+1. The simplest

ANN is the perceptron, which is a linear function of its inputs defined as follows:

f(x) =Wx+ b,

where W ∈ Rdout×din is the weight matrix, b ∈ Rdout is the bias term, and x ∈ Rdin is

the input vector which represents the data given as input to the ANN.

In order to go beyond linear functions, a hidden layer having a non-linear function is

introduced, resulting in a 2-layer feed-forward ANN defined as follows:

f(x) =W (2)g(W (1)x+ b(1)) + b(2),

where W (1) ∈ Rd1×din and b(1) ∈ d1 are the weight matrix and bias term for the first

layer, W (2) ∈ Rd2×d1 and b(2) ∈ d2 are the weight matrix and bias term for the second

layer, g is a non-linear function, also called non-linearity or activation function, which

is applied element-wise to its input vector, and x ∈ Rdin is the input vector of the ANN.
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Figure 2.1 shows the architecture of a 2-layer feed-forward ANN. Deeper ANNs, which

approximate more complex functions, can be built by adding more layers. In general,

ANNs having at least one hidden layer are called Multi-Layer Perceptrons (MLPs).

x1

x2

x3

x4

Input
layer

Hidden
layer

y1

y2

y3

Output
layer

Figure 2.1: Architecture of a 2-layer feed-forward ANN.

Supervised learning is a common approach to find the parameters of an ANN which

best approximate a given function based on a training set of input-output pairs. This

paradigm requires to compute a loss function which represents, for each input-output

pair in the training set, the error committed by the ANN when computing the output for

input of the pair with respect to the actual output. In particular, the loss function can

be defined as E[L(f(x;Θ), y)], where Θ is the matrix containing parameters, f(x;Θ)

is the approximated function, (x, y) is a input-output pair sampled from the training set,

and E averages the loss over samplings. The parameters of an ANN are often randomly

sampled according to a given probability distribution. Then, the back-propagation algo-

rithm computes the gradient ∂L
∂w

of a loss function L representing the error committed by

the ANN with respect to any parameter w (Rumelhart et al., 1988). Finally, the parame-

ters of the ANN minimizing the loss function are adjusted according to a gradient-based

optimization method (LeCun et al., 2012) such as Adam (Kingma and Ba, 2014).

2.1.1 Natural Language Processing

As mentioned previously, an ANN can be used to build a classifier labeling a given e-

mail as spam or not-spam. In order to do that, the ANN must build a representation
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of the received textual data, where the representation corresponds to the output vector

computed by a layer which is given as input to the final layer computing the actual

classification. In natural language processing, a simple way to deal with a sequence of

words consists in representing it as the average of its word representations computed

through methods such as Word2vec (Mikolov et al., 2013) or GloVe (Pennington et al.,

2014). Then, more powerful methods, which can build a richer representation from

the received textual data starting from its word representations (having parameters ini-

tialized randomly or through methods like Word2Vec), have been developed. Initially,

Recurrent Neural Networks (Rumelhart et al., 1985), which represent the input data se-

quentially by updating a state based on the next element of the sequence and the last

previously-updated state, have been proposed. Subsequently, Vaswani et al. (2017) pro-

posed Transformers, which receive the sequence all at once and leverage an attention

mechanism to simultaneously focus on each part of the sequence given each other part

of the sequence. These last two approaches are described as follows.

Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a class of ANNs where connections between

neurons form a directed cycle (Rumelhart et al., 1985). This allows the RNN to process

the input sequentially, by updating a state based on the next element of the sequence,

with the output depending on the previous computations. The state after the processing

of the whole sequence is usually taken as the representation of the input data.

RNNs are described as operating on a sequence which contains vectors x(t) with the

time step index t ranging from 1 to τ . According to the idea of defining recurrent

connections between neurons, different RNN architectures can be designed. In general,

given the input vector x(t) at time-step t, a variable h representing the state of the hidden

units and the weights θ, RNNs compute the values of their hidden units as follows:

h(t) = f(h(t−1),x(t);θ).

Usually, the hidden state vector h(t) is initialized to a fixed vector at time step 0. An
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RNN learns to use h(t) as a summary of the relevant aspects of the past sequence of

inputs up to t. This summary is lossy because it maps an arbitrary length sequence

(x(t), . . . ,x(1)) to a fixed length vector h(t). Ideally, an RNN should be able to learn to

keep the most important aspects of the input sequence to provide a representation rich

enough to solve the task at hand. Figure 2.2 shows a representation of the computation

of an RNN. In particular, on the left it is shown a representation of an RNN, while on the

right it is shown its unfolding, that is its computation on each element of the sequence.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 2.2: Computation performed by an RNN.

Typical RNNs present output layers which exploit the information contained in h(t)

in order to make predictions. Given the input vector x(t), the weight matrices U , V

and W representing respectively the weights of input-to-hidden, hidden-to-output and

hidden-to-hidden connections, the bias terms b and c, the hidden state vector h(t), and

the non-linearities f and g, the output of a typical RNN is computed as follows:

a(t) =Wh(t−1) +Ux(t) + b

h(t) = f(a(t))

o(t) = V h(t) + c

ŷ(t) = g(o(t)).

(2.1)

The output of an RNN is the composition of several number of non-linear transforma-

tions. Unfortunately, even if each of these transformations is smooth, their composition

might not be. In particular, the derivatives through the whole composition tend to be

either very small or very large. This issue, called vanishing/exploding gradient (Bengio

et al., 1994), prevents the RNN to reach a good minimum of the loss function. Due to
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this issue, RNNs are unable to learn long-term dependencies very well.

In order to effectively learn long-term dependencies in a sequence, many extensions

to RNNs have been proposed, such as Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) units and Gated Recurrent Units (GRUs) (Chung et al., 2014),

which selectively add or remove information to their state according to particular struc-

tures called gates. Given the input vector x(t), the weight matrices Wf , Wi and Wo

representing respectively the weights of forget, input and output gates, the bias terms

bf , bi, and bo representing respectively the bias terms of forget, input and output gates

and the cell state vector ct, the output of an LSTM is computed as follows:

ft = sigmoid(Wfxt +Ufht−1 + bf )

it = sigmoid(Wixt +Uiht−1 + bi)

ot = sigmoid(Woxt +Uoht−1 + bo)

c̃t = htan(Wcxt +Ucht−1 + bc)

ct = ft ◦ ct−1 + tt ◦ c̃t
ht = ot ◦ htan(ct),

RNN-based models have been used extensively to model language sequentially, e.g.

processing words while reading them from the left to the right or vice-versa. Bidirec-

tional models have then be proposed in order to capture dependencies across the words

in a sequence in a more effective manner (Schuster and Paliwal, 1997). These kind of

models work as follows. First, they encode each word reading the sequence from the

left to the right. Then, they do the opposite, encoding each word reading the sequence

from the right to the left. Finally, they generate the final representation of each word by

concatenating the representations produced starting from both sides of the sequences.

Transformers

The Transformer (Vaswani et al., 2017) is a class of ANNs which performed excep-

tionally well in several natural language processing tasks, such as summarization and
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machine translation. Previously, RNNs were the standard approach to process sequen-

tial data such as natural language. Bahdanau et al. (2014) further improved RNNs by

equipping them with an attention mechanism, which allows the model to focus on the

most relevant parts of the sequence. Transformers remove the sequential processing

introduced by RNNs and instead leverage only a particular query-key-value attention

mechanism to simultaneously focus on the most important parts of the sequence. By

processing data in parallel, Transformers provide a higher computational efficiency and

scalability than RNNs, making it possible to train models of unprecedented size.

The Transformer has been developed according to the Sequence-To-Sequence frame-

work (Sutskever et al., 2014a) (also called Encoder-Decoder framework (Cho et al.,

2014)), which transforms a given sequence of elements, such as the sequence of words

forming a sentence, into another sequence. The Sequence-To-Sequence framework con-

sists of an Encoder, which represents the received input as a vector, and a Decoder,

which generates the desired output from the input representation. The Encoder-Decoder

framework has become popular in the field of machine translation. In that context, for

instance, the Encoder represents the English sentence ”The weather is nice” and the De-

coder receives its representation in order to generate its French translation ”Il fait beau”.

This thesis will focus on the encoder, which has the important role of summarizing the

most relevant aspects of the input in order to obtain a representation for the decoder.

Hence, when describing Transformers, we will focus on the explanation of Encoder.

Figure 2.3 shows a representation of the Encoder of a Transformer. Each block of the

Encoder consists in a stack of identical blocks, each composed of a self-attention and

a feed-forward layer. Transformers employ a residual connection around each of the

two sub-layers, followed by layer normalization (He et al., 2016). That is, the output of

each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function

implemented by the sub-layer itself. Each token of the input sentence is encoded into a

vector using an embedding algorithm. Since Transformers do not process input sequen-

tially, the token representations must contain information about their position. Hence,

they leverage a particular embedding algorithm to generate word representations hav-

ing a positional encoding (Gehring et al., 2017). These vectors first flow through a
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self-attention layer, which allows the Encoder to look at the other representations in

the sequence when encoding each token. The output of the self-attention layer is then

processed by a feed-forward ANN, which is applied to each token representation. After

being processed by the self-attention layer and the feed-forward layer, the representation

is given as input to the next block which processes it as in the previous one.

Figure 2.3: A representation of the Transformer Encoder. Figure taken from the paper
by Vaswani et al. (2017)

We describe, as follows, the self-attention mechanism exploited in Transformers. The

basic attention mechanism is called Scaled Dot-Product Attention. This building block,

which allows Transformers to weight each token of the sequence differently when read-

ing each token, is leveraged in the Multi-head Attention mechanism to focus on tokens

according to several dimensions (e.g., subject-object relationships or sequence length).

Scaled Dot-Product Attention This attention mechanism allows the network to fo-

cus on the most salient tokens of the sequence when encoding each token. Scaled

Dot-Product Attention is computed as follows. First, the embedding of each token is

multiplied by three matrices whose weights are learned during the training process in

order to generate a query, a key, and a value vector for each token. Then, the network

computes a score for each token, determining how much focus to place on each part
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of the sentence as we encode a given token. The score is computed by taking the dot-

product of the query vector of the token we are computing the representation of with the

key vector of each token in the sequence. These scores are divided by
√
dk. A Softmax

operation is applied to the scores in order to obtain positive scores which add up to 1.

The value vector of each token is then multiplied by the score for that token. Finally,

all the resulting weighted value vectors are summed in order to compute the output of

the self-attention layer for the given token. In practice, query, key, and value vectors

are packed together into matrices Q, K, and V , respectively, in order to compute them

simultaneously. Formally, Scaled Dot-Product Attention can be defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.2)

Multi-head Attention Instead of performing a single attention mechanism, Trans-

formers linearly project the queries, keys, and values h times with different linear pro-

jections whose weights are learned during the training process. Then, the attention

mechanism is performed in parallel on each of the projected versions of the query, key,

and value vectors. Finally, the outputs of the computed attention mechanisms are con-

catenated and projected again using another matrix having learned weights in order to

obtain the final values. This allows the model to focus on several dimensions of the

same parts of the sequence. Formally, Multi-head attention can be defined as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.3)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ), the projections are parameter matri-

ces WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel .

2.1.2 Computer Vision

As mentioned previously, an ANN can be used to build a classifier labeling a given

picture as depicting a dog or a cat. In order to do that, the ANN must build a repre-

sentation of the received visual data, where the representation corresponds to the output
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vector computed by a layer which is given as input to the final layer computing the ac-

tual classification. The first approaches to build image classifiers were based on ANNs.

The images received as input were usually represented by vectors containing their gray-

scale pixel intensities. Subsequently, Convolutional Neural Networks have proven to be

especially effective for building rich representations of visual data. Lately, more power-

ful methods, which extract region-level features and leverage attention to reason about

them, have been proposed. These last two approaches are described as follows.

Convolutional Neural Networks

Loosely inspired by human visual perception, Convolutional Neural Networks (CNNs)

are feed-forward ANNs which leverage particular structures called kernels to represent

different perceptors responding to various stimuli in the given data (LeCun et al., 1995).

CNNs are often faster and easier to be trained than classical ANNs since they do not

connect each neuron of a layer with each other neuron of another layer. Moreover, they

have been proven to be invariant to translation of the input data.

CNNs are especially suitable for processing images. Whereas in feed-forward ANNs the

pixels of a given image were usually flattened in a single vector containing their grey-

scale pixel intensities, CNNs receive a given image taking all the channels representing

their visual content into account (usually the red, green, and blue channels) representing

the pixels as a tensor having shape (image width, image height, 3). CNNs are usually

composed of several kind of layers, which are described as follows.

Fully-connected layer This is the basic kind of layer employed in feed-forward ANNs.

A fully-connected layer is composed of several neurons, each connected to each other

neuron of the previous layer through a weighted connection. Basically, this kind of layer

applies a linear transformation to the input vector through a weights matrix.

Convolutional layer This kind of layers relies on a specific feature detector, called

filter or kernel, which moves across the receptive fields of the image checking for the
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presence of a particular kind of (learned) feature in each receptive field. Hence, un-

like fully-connected layers, convolutional layers do not have neurons connected to each

other neuron of the previous layer. The feature detector is a two-dimensional array of

weights. The kernel is applied to an area of the image, and a dot product is calculated

between its weights and the input data. This dot product is then fed into an output array.

Then, the kernel shifts by a certain fixed number of elements, called stride, repeating the

process until it has moved across the entire image. The output of a convolutional layer is

a feature map containing the result of the several dot products performed by the kernel

across the input data. The feature map generation process is known as convolution.

Pooling layer Similar to the convolutional layer, the pooling layer reduces the spatial

size of the input data. Unlike a convolutional layer, it does not add any additional

parameter to the network. This improves the efficiency of the network by reducing the

size of the input and promotes the emergence of higher level features. There are two

types of pooling: max pooling and average pooling, which return the maximum value

and the average value, respectively, of the portion of data covered by the kernel.

Several architectures of CNNs have been proposed. Examples of these architectures are

LeNet-5 (LeCun et al., 1998), VGGNet (Simonyan and Zisserman, 2014), and ResNet

(He et al., 2016). Figure 2.4 represents the architecture of a VGGNet designed for an

image classification task. First, VGGNet applies several convolutional and max pooling

layers applied one after another. Then, it flattens the output of the last max pooling

layer into a single vector to which it applies several fully-connected layers having a

ReLU activation function. Finally, it employs a softmax function to obtain a probability

distribution over the possible classes of the classification problem.

Region-based Neural Networks

Convolutional Neural Networks have proven to be very effective in order to process

images, but they might not be very effective in taking fine-grained information into

account. Hence, methods extracting region-level features from images and employing

an attention mechanism to reason about them have been developed.
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Figure 2.4: A diagram of a VGG-16 CNN architecture.

Anderson et al. (2018a) proposed a two-stage attention mechanism which splits the at-

tention mechanism into two steps: bottom-up attention and top-down attention. The

former uses an object detection model in order to detect the most salient regions in an

image, whereas the latter attends to the most relevant regions detected by the former

mechanism during the generation of the next word in the description. The two stage

attention mechanism proposed in Anderson et al. (2018a) leverages a Faster R-CNN

trained on Visual Genome in order to detect the most salient regions. This kind of

approach obtained a really good performance, but was not able not capture the relation-

ships which occurs between the different regions in an image.

Transformers, originally proposed in the context of natural language processing, have

also been adapted to image classification. For instance, ViT (Dosovitskiy et al., 2020)

is a model based as closely as possible on the original Transformer architecture. Simi-

larly to what happens in traditional Transformers, where a sentence is represented as a

sequence of word embeddings, ViT represents an input image as a sequence of image

patches. In particular, it splits an image into a grid of square patches. Each patch is
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then flattened into a single vector containing the channels of all the pixels in the patch.

The resulting vector is then projected to a desired input dimension. Finally, A learned

position embedding is added to each patch in order to allow the model to learn about the

spatial structure of images. The attention mechanism employed in the Transformer ar-

chitecture automatically allows the model to focus on the most important regions given

each region of the image. When trained on a sufficient amount of data, ViT outper-

formed state-of-the-art CNNs with fewer computational resources. A representation

of the architecture is shown in figure 2.5, which shows the whole process of extracting

patches from the image, projecting them, concatenating them with position embeddings,

and finally giving the resulting concatenation as input to the Transformer Encoder in or-

der to obtain a representation which is given as input to an MLP, which generates the

final distribution over the possible classes of the classification problem.

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 90Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm

MLP

Norm

+L x

+

Transformer  Encoder

Figure 2.5: A representation of the ViT Transformer architecture. Figure taken from the
paper by Dosovitskiy et al. (2020).

2.2 Transfer Learning

When ANNs are trained from scratch, their weights are initialized randomly and the

values for the weights which best approximate the target function are computed through

the training algorithm from the data at hand. Through the learning process, the out-
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put layers of ANNs learn how to properly represent the input data in order to finally

generate the desired output from the given input. However, representations (i.e., output

values produced by layers) learned when representing input images in order to recog-

nize bicycles could also apply when trying to recognize motorcycles. This led to transfer

learning, which focuses on reusing representations learned while solving one problem

on a different, but related, problem. In ANNs, transfer learning is usually achieved as

follows. First, an ANN is trained on a task, e.g. on classifying pictures as bicycles or not

bicycles. Then, task-specific layers are replaced with new randomly-initialized layers

suitable for the new task. In a simple ANN classifying images, the task specific layer is

usually the last one, where each neuron represents one possible class. Finally, the result-

ing architecture is trained on the new task, e.g. on classifying pictures as motorcycles

or not motorcycles. The process of taking an ANN pre-trained on a task and training

it on a new task starting from the previously-learned weights is known as fine-tuning.

Figure 2.6 represents transfer learning, depicting the pre-training (top) of an ANN for

image classification and the fine-tuning (bottom) of the same ANN on a different image

classification problem. The weights of the layers in green can be either frozen or not.

In the latter case, they are adapted in order to suit better the new task. The final layer is

replaced in order to accommodate the new task (e.g., having neurons for the classes of

the new classification problem).

Sometimes, an ANN is also trained in order to approximate two target functions at the

same time. This is done by training the ANN through a loss function which takes into

account the error on several tasks at the same time, e.g. on classifying images as cars

or not cars and as bicycles or not bicycles. This process, which is known as multi-task

training, allows the ANN to learn more general and richer representations. Then, the

ANN can be fine-tuned on another task as explained above starting from these more

general representation previously learned through multi-task learning.

2.2.1 Natural Language Processing

In the context of Natural natural language processing, transfer learning has been orig-

inally employed as follows. An embedding algorithm was used in order to generate
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Figure 2.6: A representation of transfer learning. During pre-training (top), the network
is pre-trained on a task (e.g., an image classification task trained on ImageNet, while
during fine-tuning (bottom), the ANN is trained on a new task (e.g., an image classifica-
tion task trained on Places (Zhou et al., 2017)). The weights of the layers in red can be
either frozen or not. The final layer is replaced in order to accommodate the new task
(e.g., having neurons for the classes of the new classification problem).

word embeddings such as Word2Vec or GloVe from a large corpus. Then, the sequence

of word embeddings corresponding to the words of the input sequence was given as

input to the RNN. The weights associated to word embeddings could be either fixed or

fine-tuned during the training of the RNN in order to be adapted to the target task.

In the last years, Transformers have proven to be really suitable architectures to be pre-

trained on language modeling tasks and then fine-tuned to the target task. BERT (Bidi-

rectional Encoder Representations from Transformers) is a Transformer-based model

which presented state-of-the-art results in a wide variety of natural language processing

tasks (Devlin et al., 2018). The high performance of pre-trained Transformers led to

a breakthrough in transfer learning and natural language processing. Basically, BERT
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is Transformer pre-trained with multi-task training on two tasks involving bidirectional

training. This is in stark contrast with the previous efforts in language modeling which

usually looked at the input sequence either left-to-right or right-to-left or which com-

bined the two training directions after having performed them independently. Indeed,

BERT shows that a language model trained in a bidirectional way can have a deeper un-

derstanding of the context in the input sequence. In particular, the model is pre-trained

on two tasks: Masked Language Modeling and Next Sentence Prediction. In the former,

some percentage of the input tokens is masked randomly, and the model must predict

those masked tokens. In the latter, when choosing the sentences A and B for each pre-

training example, 50% of the time sentence B is the actual next sentence that follows

sentence A (predicting the label IsNext), and 50% of the time it is a random sentence

from the corpus (predicting the label NotNext). The model must predict whether sen-

tence B follows sentence A (predicting the label isNext) or vice-versa (NotNext). BERT

is pre-trained on a large corpus composed of sentences taken from BooksCorpus (800M

words) (Zhu et al., 2015a) and English Wikipedia (2,500M words).

2.2.2 Computer Vision

In the context of Computer vision, the pre-training of CNNs on huge datasets such

as ImageNet (Deng et al., 2009) led to a breakthrough in transfer learning, since it

brough to several state-of-the-art results in image classification (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2014; He et al., 2016) and to pre-trained architectures which

have been fine-tuned also for a wide variety of different tasks. Pre-trained CNNs are

usually employed in two different ways:

Frozen feature extractor All the weights of the pre-trained CNN are frozen, since the

CNN is used just as feature extractor. The representations computed by the CNN

are given as input to a layer (e.g. a classifier) which re-purposes them for the new

target task.

Fine-tuning of the whole model A few of the top layers of the CNN are unfrozen and

the fine-tuning jointly adapts both those layers and the newly added layer (e.g. a
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classifier). This allows the CNN to adapt the computed representations to the new

target task.

Analogously to what happened in natural language processing, transfer learning has

been employed also in Transformer-based architectures for Computer Vision. For in-

stance, the previously-described ViT model has been pre-trained on ImageNet in order

to provide a pre-trained model which can be fine-tuned on the task at hand. Through

fine-tuning on an image classification task, the pre-trained ViT model performs really

well compared to state-of-the-art approaches based on CNNs.

2.3 Multimodal Learning

Language and vision are two important modalities which humans combine a lot to un-

derstand their surroundings. However, models learning purely from textual data lacked

the processing of the rich perceptual information used by humans. Hence, many models

and tasks have been proposed in order to evaluate the capability of mixing information

coming from modalities such as language and vision. In this section, we describe, first,

the computational approaches leveraged in order to integrate language and vision and,

then, the main multimodal tasks employed in the following chapters.

Many approaches have been proposed in order to integrate information coming from

language and vision. The first methods were based on the idea of putting the represen-

tations coming from the two modalities together in single representations which were

given as input to some layers meant to find patterns in the received multimodal data.

Then, research in multimodal learning focused on attention-based methods, building ar-

chitectures which automatically focus on the most salient parts of the two modalities

when integrating them. These two approaches are defined as follows.
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2.3.1 Fusion by product or concatenation

Given the representation rL = ENCL(L) of linguistic data L through encoder ENCL

and the representation rV = ENCV (V ) of visual data V through encoder ENCV ,

the integration can be performed either by product or concatenation. In the former

case, rLV = rL · rV , i.e., the multimodal representation is obtained by multiplying the

linguistic representation rL and the visual representation rV through an element-wise

multiplication. In the latter case, rLV = [rL, rV ], where [a, b] represents the operator

concatenating representations a and b, i.e., the multimodal representation is obtained by

concatenating the linguistic representation rL and the visual representation rV . Figure

2.7 shows a representation of the process of integrating language and vision through

product (top) or concatenation (bottom). The multimodal representation eLV can then

be given as input to some layers in order to perform the multimodal task at hand.

Fusion by product

Fusion by concatenation

ENCL 

ENCV 

rL

rV

What is the 
mustache made of?

rLVx

ENCL 

ENCV 

rL

rV

What is the 
mustache made of?

rLV

Figure 2.7: A representation of the process of integrating multimodal information com-
ing from language and vision through product (top) or concatenation (bottom).
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2.3.2 Fusion by cross-modal attention

Integrating information coming from different modalities requires being able to focus on

several pieces of information and to find meaningful patterns between them. As it hap-

pened in natural language processing and computer vision, attention-based mechanisms

have been employed also in multimodal models in order to provide a more fine-grained

integration of the information coming from language and vision.

Several kinds of attention-based multimodal mechanisms have been proposed. In gen-

eral, single-stage attention mechanisms take as input linguistic and visual representa-

tions and they learn how to focus on the most salient parts of the image encoded as a

whole, without encoding the single regions independently. Two-stage attention mech-

anisms, instead, split the attention mechanism into two steps: bottom-up attention and

top-down attention. The former uses an object detection model to detect the most salient

regions in an image, whereas the latter attends to the most relevant regions detected by

the former mechanism. Transformers have also been employed in order to focus on the

most salient words and regions simultaneously through their attention mechanism.

With regards to single-stage attention mechanisms, Xu et al. (2015) proposed an ap-

proach which allowed the model to guide the generation of the description of an image

focusing on the most salient features of its encoding. In particular, when generating the

next word of the description, the authors tried both a ”hard” approach which identifies

the most important part of the image to focus on and a ”soft” approach which weights

each part of the image differently taking the encoding of multiple pieces of information

into account at the same time. Since not all the words in a caption correspond to an

image region, Lu et al. (2017) proposed a mechanism which decides when to rely on

image regions during the generation. Similar single-stage attention mechanisms have

been employed also in order to build models able to answer questions about images

(Fukui et al., 2016; Shih et al., 2016; Yang et al., 2016; Xu and Saenko, 2016) or to hold

a dialogue about images (Das et al., 2017b; Guo et al., 2019).

Splitting the attention process in two stages, the detection of image regions first and the

actual attention on the previously-detected regions, the two-stage approach proposed by
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Anderson et al. (2018a) obtained a very high performance on the 2017 VQA challenge,

whose main goal was to build models able to answer questions about images. Yao et al.

(2018) proposed a similar approach in order to generate a description of the content of

an image. In particular, the authors built a graph over the detected objects in an image

based on their spatial and semantic connections and leveraged an attention mechanism

to reason about the objects when generating a description of the content of the image.

The last years have seen an increasing popularity of models which leverage the atten-

tion mechanism used in Transformers to focus over image regions and text at the same

time. Inspired by BERT, these models are usually trained on several tasks to reach

task-agnostic multimodal representations (Li et al., 2019; Lu et al., 2019a; Tan and

Bansal, 2019; Chen et al., 2019a; Su et al., 2020; amd Nan Duan et al., 2020). Lu et al.

(2019b) proposed ViLBERT, a model which exploits the attention mechanism used in

Transformers to focus over image regions and text segments. In particular, this model

employs the self-attention mechanism over regions and over question tokens indepen-

dently and uses co-attentional transformer layers to enable the exchange of information

between modalities. ViLBERT has been extended through multi-task training involving

12 datasets (Lu et al., 2020). LXMERT is another multimodal Transformers which dif-

fers from ViLBERT by employing more multimodal pre-training tasks in order to learn

more complex relationships between images and text (Tan and Bansal, 2019).

2.4 Models

The experiments described in the following chapters rely on several models based on

different architectures. In order to evaluate the contribution of attention, we consider

both Transformers and architectures not based on attention. In order to assess the con-

tribution of multimodal learning, we take both blind architectures receiving only the

textual input and multimodal ones into account. Since the architectures not based on

attention are not the main focus of this thesis and they are rather simple, consisting of a

combination of LSTMs and CNNs, we describe the way they are adapted to the tasks at

hand directly in the following chapters. In the following sections we generally describe
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RoBERTa, a blind Transformer, and LXMERT, a multimodal one. The way they are

adapted to the tasks at hand is described in the following chapters.

2.4.1 RoBERTa

The Robustly-Optimized version of BERT (Devlin et al., 2019), RoBERTa, is a state-

of-the-art Transformer introduced by Liu et al. (2019b). RoBERTa is a classical Trans-

former model whose training has been performed selecting the parameters which led

to the best performance. RoBERTaBASE , the released model, has been pre-trained on

16GB of English text trained for 500K steps in order to perform masked language mod-

eling. Unlike BERT, RoBERTa is not trained on the next sentence prediction task, since

the authors shown that their Transformer performed better when pre-trained using only

the masked language modeling task. It has 12 self-attention layers with 12 heads each.

It uses three special tokens, namely CLS, which is placed at the beginning of the sen-

tence and which is taken to be the representation of the given sequence, SEP, which

separates sequences, and EOS, which denotes the end of the input. The representation

corresponding to the CLS token can be used as a representation of the whole sentence.

Hence, during the fine-tuning of RoBERTa, the CLS representation can be given as input

to an MLP in order to generate an answer for the task at hand.

2.4.2 LXMERT

LXMERT (Learning Cross-Modality Encoder Representations from Transformers) (Tan

and Bansal, 2019) is a pre-trained multimodal Transformer. It represents an image by

the set of position-aware object embeddings for the 36 most salient regions detected by

a Faster R-CNN and it processes the text input by position-aware randomly-initialized

word embeddings. Both the visual and linguistic representations are processed by a spe-

cialized transformer encoder based on self-attention layers; their outputs are then pro-

cessed by a cross-modality encoder that through a cross-attention mechanism generates

representations of the single modality (language and visual output) enhanced with the

other modality as well as their joint representation (cross-modality output). LXMERT
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Figure 2.8: Representation of the LXMERT architecture. Figure taken from the paper
by Tan and Bansal (2019).

has 19 attention layers: 9 and 5 self-attention layers in the language and visual encoders,

respectively, and 5 cross-attention layers. A representation of the LXMERT architec-

ture is shown in figure 2.8. As RoBERTa, LXMERT uses the special tokens CLS and

SEP. Differently from RoBERTa, LXMERT uses the special token SEP both to separate

sequences and to denote the end of the textual input. LXMERT has been pre-trained

on five tasks: masked cross-modality language modeling, masked object prediction via

RoI-feature regression, masked object prediction via detected-label classification, cross-

modality matching, and image question answering. Cross-modality language modeling

requires to predict masked words in a sentence. RoI-feature regression requires to gen-

erate the features corresponding to the visual content of some masked objects in the

image. Detected-label classification requires to predict the labels corresponding to the

category of the masked objects in the image. Cross-modality matching requires to es-

tablish whether a sentence is the caption of the given image or not. Finally, Image

Question answering requires to predict the answer of the questions about an image. As

in RoBERTa, the representation corresponding to the CLS token can be used as a repre-

sentation of the whole sentence. Hence, it can be given as input to an MLP in order to

generate an answer for the task at hand during fine-tuning.

2.5 Tasks and Datasets

Many tasks have been proposed in order to assess whether models are able to effectively

integrate information coming from language and vision. The Image Captioning (IC)
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task requires to describe the content of an image with a sentence in natural language

(Bernardi et al., 2016a). The task can be formulated both as a retrieval or a generation

task. In the former case, given an image and a set of descriptions in natural language,

the model must select the sentence which best describes the image (Hodosh et al., 2013;

Socher et al., 2014; Farhadi et al., 2010; Ordonez et al., 2011; Jia et al., 2011), whereas

in the latter case, given an image, the model must generate a sentence in natural language

which properly describes the content of the image (Kulkarni et al., 2013; Vinyals et al.,

2015; Karpathy and Fei-Fei, 2015). IC is not easy to evaluate, since many descriptions

can properly describe the content of an image. Hence, research in multimodal learning

put a lot of effort in proposing multimodal tasks which are easier to be evaluated. The

Visual Question Answering (VQA) task consists in providing an answer to a question in

natural language about an image (Sharma and Jalal, 2021). The task can be cast both as

a multiple choice task where the system has to select the answer from a list of possible

ones or as a task where the system has to generate an appropriate answer. The Visual

Dialog task requires a model to hold a dialogue with humans in natural language about

visual content (Anderson et al., 1991). Recently, several Visual Dialogue tasks have

been proposed as referential guessing games in which an agent asks questions about an

image to another agent, and the referent they have been speaking about has to be guessed

at the end of the game (de Vries et al., 2017b; Das et al., 2017d; He et al., 2017; Haber

et al., 2019; Ilinykh et al., 2019b; Udagawa and Aizawa, 2019). The next sections will

describe CLEVR, a VQA dataset, and GuessWhat?!, a visual referential game, which

are the main multimodal tasks employed in the following chapters.

2.5.1 CLEVR

CLEVR (Johnson et al., 2017a) allows to study the ability of VQA agents. It requires

compositional language and basic spatial reasoning skills. Every question in CLEVR is

derived by a Functional Program (FP) from a scene graph of the associated image. The

scene graph defines the objects and attributes in the image. The FP contains functions

corresponding to skills, e.g., querying object attributes or comparing values. Questions

are categorized by their type. CLEVR consists of five question types whose answer la-
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bels range over 15 attributes, 10 numbers, and “yes”/“no” (in total 27 labels). Figure 2.9

shows an example of an image and some questions from CLEVR. Questions evaluate

different aspects of visual reasoning such as attribute identification, counting, compar-

ison, multiple attention, and logical operations. Figure 2.9 shows some statistics from

CLEVR. In particular, it shows the number of training, validation, and test examples

(top), the comparison of question lengths for different VQA datasets (bottom left), and

the distribution of question types in CLEVR (bottom right).

Q: Are there an equal number of large things and metal spheres?
Q: What size is the brown cylinder that is left of the brown metal thing
that is left of the big sphere?
Q: There is a sphere with the same size as the metal cube; is it made
of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Figure 2.9: Example of image and questions from CLEVR. Questions evaluate different
visual reasoning skills. Figure taken from the paper by Johnson et al. (2017a).

2.5.2 GuessWhat?!

The GuessWhat?! dataset was collected via Amazon Mechanical Turk by de Vries

et al. (2017b). It is an asymmetric game involving two human participants who see

a real-world image taken from the MS-COCO dataset (Lin et al., 2014a). One of the

participants (the Oracle) is assigned a target object in the image and the other participant

(the Guesser/Questioner) has to guess it by asking Yes/No questions to the Oracle. There

are no time constraints to play the game. The game is considered successful is the target
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Figure 2.10: Top: Statistics for CLEVR. Most questions are unique and few questions
from the validation and test sets appear in the training set. Bottom left: Comparison
of question lengths for different VQA datasets. Bottom right: Distribution of question
types in CLEVR. Figure and analyses taken from the paper by Johnson et al. (2017a).

object selected by the Oracle has been correctly identified by the Guesser/Questioner.

Figure 2.11 shows an example of a dialogue from GuessWhat?!.

Questioner Oracle
1. Is it on a wooden surface? Yes

2. Is it red? No

3. Is it white? No

4. Is it a scissor? Yes

5. Is it the scissor on
the left of the picture? Yes

Figure 2.11: GuessWhat?! human dialogues are short and with a clear division of roles
between players; most of the last questions are answered positively, are long, and con-
tain details suitable to guess the target object.

The dataset contains 155K English dialogues about approximately 66K different im-

ages. The answers are respectively 52.2% No, 45.6% Yes, and 2.2% N/A (not applica-

ble); the training set contains 108K datapoints and the validation and test sets 23K each.
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Dialogues contain on average 5.1 (±3.3) question-answer (QA) pairs and the vocabu-

lary consists of around 4900 words; each game has at least 3 and at most 20 candidates.

We evaluate models using human dialogues, selecting only the games on which humans

have succeed finding the target and contain at most 10 turns (total number of dialogues

used: 90K in training and around 18K both in validation and testing).

In Chapter 3 (Greco et al., 2020) we run a careful analysis of the dataset aiming to find

features useful to better understand the performance of models. Although the overall

number of Yes/No answers in the dialogues is balanced, the shorter the dialogues, the

higher the percentage of Yes answers is: it goes from the 75% in dialogues with 2 turns

to the 50% in the 5 turn cluster to the 35% in the 10 turn cluster. Interestingly, most

questions in the last turns obtain a positive answer and these questions are on average

longer than earlier ones (see Figure 2.11 for an example). A model encoding these

questions well has almost all the information to guess the target object without actually

using the full dialogue history. Not all games are equally difficult: in shorter dialogues

the area of the target object is bigger than the one of target objects in longer dialogues,

and their target object is quite often a “person” – the most common target in the dataset;

moreover, the number of distractors in longer dialogues is much higher. Hence, the

length of a dialogue is a good proxy of the difficulty of the game. Figure 2.12 reports

the statistics of the training set; similar ones characterize the validation and the test sets.

The dialogue length is a good proxy of the level of difficulty of the game. Figure 2.13

shows that longer dialogues contain more distractors and in particular more distractors

of the same category of the target object; the latter are supposed to be especially chal-

lenging for the models, because the usual architecture of the Guesser receives the cat-

egory and coordinates of each candidate object. Moreover, the area occupied by target

objects is smaller in longer dialogues and the most representative category among target

objects (“person”) is less frequent. Finally, longer dialogues contain more words occur-

ring rarely in the training set (i.e., words appearing less than 15 times in the training

set). We will exploit these features in order to scrutinize the behaviour of models.
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Figure 2.12: Statistics of the training set (the validation and test sets have similar distri-
butions). Dialogue length refers to the number of turns. Up: The distribution of Yes/No
questions is very unbalanced across the clusters of games (the percentage of Yes an-
swers is much higher in shorter dialogues); Middle In the large majority of games,
the last question is answered positively; Bottom: The last questions are always longer
(length of questions per turn for the clusters with dialogues having 3, 5, and 8 turns).
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Pre-Trained Transformers Encoding

the History of a Visual Dialogue

In this chapter, we study the issue of visually grounded dialogue history encoding. We

compare models across several dimensions: the architecture (LSTMs vs. Transformers),

the input modalities (only language vs. language and vision), and the model background

knowledge (trained from scratch vs. pre-trained and then fine-tuned on the downstream

task). We show that pre-trained Transformers, RoBERTa and LXMERT, are able to

identify the most salient information independently of the order in which the dialogue

history is processed. Moreover, we find that RoBERTa handles the dialogue structure

to some extent; instead LXMERT can effectively ground short dialogues, but it fails in

processing longer dialogues having a more complex structure.

3.1 Introduction

Visual Dialogue tasks have a long tradition (e.g. Anderson et al., 1991). Recently, sev-

eral dialogue tasks have been proposed as referential guessing games in which an agent

This chapter describes the work by Greco et al. (2020).

34
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asks questions about an image to another agent and the referent they have been speak-

ing about has to be guessed at the end of the game (de Vries et al., 2017b; Das et al.,

2017d; He et al., 2017; Haber et al., 2019; Ilinykh et al., 2019b; Udagawa and Aizawa,

2019). Among these games, GuessWhat?! and GuessWhich (de Vries et al., 2017b;

Das et al., 2017d) are asymmetrical – the roles are fixed: one player asks questions (the

Questioner) and the other (the Oracle) answers. The game is considered successful if the

Guesser, which can be the Questioner itself or a third player, selects the correct target.

Most Visual Dialogue systems proposed in the literature share the encoder-decoder

architecture (Sutskever et al., 2014b) and are evaluated using the task-success of the

Guesser. By using this metric, multiple components are evaluated at once: the ability

of the Questioner to ask informative questions, of the Oracle to answer them, of the En-

coder to produce a visually grounded representation of the dialogue history and of the

Guesser to select the most probable target object given the image and dialogue history.

We disentangle the compressed task-success evaluation and focus on the ability of the

Encoder to produce a dialogue hidden state representation that encodes the information

necessary for the Guesser to select the target object. Hence, we use the dialogue history

generated by humans playing the referential game so to be sure of the quality of the

questions and of the answers. We run our analysis on GuessWhat?! since its dialogues

are quite simple: a sequence of short questions answered by Yes or No containing on

average 30.1 (± 17.6) tokens per dialogue. The simplicity of the dialogue structure

makes the dataset suitable to be used as a diagnostic dataset.

In Sankar et al. (2019), the authors have shown that neural models are not sensitive to

the order of turns in dialogues and conclude they do not use the history effectively. In

GuessWhat?! dialogues the order in which questions have been asked is not crucial: we

would be able to guess the target object even if the question-answer pairs in Figure 2.11

were provided in the reversed order. Indeed, we are able to use salient information

independently of the turns where it occurs. We wonder whether the same holds for

neural models trained to solve the GuessWhat?! task. As the example in the figure

shows, the last question humans ask is quite rich in detail about the target object and is

answered positively. We exploit these features of the dataset to run our in-depth analysis.
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We compare encoders with respect to the architecture (Recurrent Neural Networks vs.

Transformers), the input modalities (only language vs. language and vision), and the

model background knowledge (trained from scratch vs. pre-trained and then fine-tuned

on the downstream task). Our analysis shows that:

• Trasformers are less sensitive than Recurrent Neural Network based models to

ther order in which QA pairs are provided;

• pre-trained Transformers detect salient information, within the dialogue history,

independently of the position in which it is provided;

• LXMERT outperforms RoBERTa on shorter dialogues, but it struggles in process-

ing longer ones where the dialogue structure plays a major role.

3.2 Related Work

Scrutinizing Visual Dialogues Encoding Interesting exploratory analysis has been

carried out in order to understand VQA systems and highlight their weaknesses and

strengths, (e.g. Johnson et al., 2017c; Shekhar et al., 2017a; Suhr et al., 2017; Kafle and

Kanan, 2017). However, less is known about how well grounded neural conversational

models are able to effectively encode the received dialogue history.

In Sankar et al. (2019), the authors study how neural dialogue models encode the dia-

logue history when generating the next utterance. They show that neither recurrent nor

transformer based architectures are sensitive to perturbations in the dialogue history and

that Transformers are less sensitive than recurrent models to perturbations that scramble

the conversational structure; furthermore, their findings suggest that models enhanced

with attention mechanisms use more information from the dialogue history than their

vanilla counterpart. We take inspiration from this study in order to understand how well

state-of-the-art models encode the visually grounded dialogues generated by humans

while playing the role of the Guesser in the GuessWhat?! game.
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In Kaushik and Lipton (2018), the authors show that in many reading comprehension

datasets, that presumably require the combination of both questions and passages to

predict the correct answer, models can achieve quite a good accuracy by using only

part of the information provided. We investigate the role of each turn in GuessWhat?!

human dialogues and to what extent models encode the strategy seen during training.

SOTA LSTM Based Models on GuessWhat?! After the introduction of the super-

vised baseline model (de Vries et al., 2017b), several models have been proposed to

play the GuessWhat?! game. They exploit either some form of reinforcement learn-

ing (Sang-Woo et al., 2019; Zhang et al., 2018b; Zhao and Tresp, 2018; Zhang et al.,

2018a; Gan et al., 2019; Yang et al., 2019; Pang and Wang, 2020) or cooperative learn-

ing (Shekhar et al., 2019; Pang and Wang, 2020); in both cases, the model is first trained

with the supervised learning regime and then the new paradigm is applied. This two-

step process has been shown to reach higher task success than the supervised approach

when the Questioner and Oracle models are put to play together. Since our focus is on

the Guesser and we are evaluating it on human dialogues, we will compare models that

have undergone only the supervised training step. We compare these recurrent models

(based on LSTMs) against models based on Transformers (Vaswani et al., 2017).

Transformer Based Models Vaswani et al. (2017) showed the power of the atten-

tion mechanisms at the core of Transformers. The last years have seen an increasing

popularity of these models trained on several tasks to reach task-agnostic multimodal

representations (Li et al., 2019; Lu et al., 2019a; Tan and Bansal, 2019; Chen et al.,

2019a; Su et al., 2020; amd Nan Duan et al., 2020). ViLBERT (Lu et al., 2019a) has

been recently extended by means of multi-task training involving 12 datasets which

include GuessWhat?! (Lu et al., 2020) and has been fine-tuned to play the Answerer

of VisDial (Murahari et al., 2019a). Among these universal multimodal models, we

choose LXMERT (Tan and Bansal, 2019). Clark et al. (2019) propose methods for

directly analyzing the attention heads aiming to understand whether they specialize in

some specific foundational aspect (like syntactic relations) functional to the overall suc-

cess of the model. We take inspiration from their work in order to shed light on how
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Transformers, that we adapt to play GuessWhat?!, encode the dialogues.

3.3 Dataset

We rely on GuessWhat?!, a referential game involving a dialogue about images pre-

viously described in Section 2.5.2. In particular, given the human dialogue history, the

image, and a list of candidate objects, we are interested in assessing whether multimodal

models are able to select the object the dialogue is talking about.

3.4 Models

All the evaluated models share the skeleton as illustrated in Figure 3.1: an encoder

paired with a Guesser. For the latter, all models use the module proposed in de Vries

et al. (2017b). Candidate objects are represented by the embeddings obtained via a

MLP starting from the category and spatial coordinates of each candidate object. The

obtained representations are used to compute dot products with the hidden dialogue

state produced by an encoder. The scores of each candidate object are given to a soft-

max classifier in order to choose the object with the highest probability. The Guesser

is trained in a supervised learning paradigm, receiving the complete human dialogue

history at once. The models we compare differ in how the hidden dialogue state is

computed. We compare LSTMs vs. Transformers when receiving only the language

input (henceforth, Blind models) or both the language and the visual input (henceforth,

Multimodal models).

3.4.1 Language-only Encoders

LSTM As in de Vries et al. (2017b), the representations of the candidates are fused

with the last hidden state obtained by an LSTM which processes only the dialogue

history.
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Is it the cat? No
Is it the bottle? No
Is it the pc? Yes

History Hidden 
dialogue state

Image
bottle pos

. . . .
softmax( )
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Figure 3.1: Shared Encoder-Guesser skeleton. The Guesser receives the category labels
(e.g., “bottle”) and the spatial coordinates (pos) of each candidate object. Multimodal
encoders receive both the image and the dialogue history, whereas blind models receive
only the latter.

RoBERTa In the architecture of the model described above, we replace the LSTM

with RoBERTa (Liu et al., 2019b).1 We use RoBERTaBASE which has been pre-trained

on 16GB of English text for 500K steps in order to perform the masked language mod-

eling task. We give the output corresponding to the CLS token to a linear layer and a

tanh activation function to obtain the hidden state which is given to the Guesser. To

study the impact of the pre-training phase, we have compared the publicly available

pre-trained model, which we fine-tuned on GuessWhat?! (RoBERTa), against its coun-

terpart trained from scratch only on the game (RoBERTa-S).

3.4.2 Multimodal Encoders

V-LSTM We enhance the LSTM model described above with the visual modality by

concatenating the linguistic and visual representation and scaling its result with an MLP;

the result is passed through a linear layer and a tanh activation function to obtain the

hidden state which is used as input for the Guesser modules. We use a frozen ResNet-

152 pre-trained on ImageNet (He et al., 2016) to extract the visual vectors.

1We have also tried BERT, but we obtained a higher accuracy with RoBERTa.
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LXMERT In order to evaluate the performance of a multimodal pre-trained Trans-

former, we employ LXMERT (Tan and Bansal, 2019). We process the representation

corresponding to the CLS token as in RoBERTa. Similarly, we consider both the pre-

trained version (LXMERT) and its counterpart trained from scratch (LXMERT-S).

3.5 Experiments

We compare the models described above using human dialogues aiming to shed light

on how the encoders capture the information that is salient to guess the target object.

3.5.1 Task Success

As we can see in Table 3.1, the pre-trained Transformers LXMERT and RoBERTa ob-

tain the highest results, with the multimodal model scoring slightly higher (69.2 vs.

67.9).2 The high accuracy obtained by RoBERTa shows that the dialogue history per

se is quite informative to select the right target object. If we go back to the example in

Figure 2.11, we realize it is possible to succeed in that game if we are given the dialogue

only and are asked to select the target object (the scissor on the left) among candidates

for which we are told the category and the coordinates – as it is the case for the Guesser.

The comparison between the pre-trained version of these models with their from-scratch

counterparts highligths the role of the pre-training in language understanding (RoBERTa

vs. RoBERTa-S ) and in language grounding (LXMERT vs. LXMERT-S). To better

understand the difference between the models, Table 3.1 reports also the accuracy by

clusters of games based on the dialogue length. Quite interestingly LXMERT performs

very well on short dialogues: it reaches 80.5% accuracy on 3-turn dialogues, but it has

a rather big drop when dialogues get longer. The difference between LXMERT and

LXMERT-S is minimal for the 8-turn cluster. Instead, RoBERTa is less affected by

the length of the dialogues. This difference between the two pre-trained transformers
2The model proposed in Lu et al. (2020) based on ViLBERT obtains an accuracy on GuessWhat?!

with human dialogues of 65.04% when trained together with the other 11 tasks and 62.81% when trained
only on it.
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LSTM RoBERTa-S RoBERTa V-LSTM LXMERT-S LXMERT
All 64.7 64.2 67.9 64.5 64.4 69.2
3 72.5 72.7 75.3 71.9 72.7 80.5
5 59.3 58.3 60.1 59.3 58.9 63.1
8 47.3 45.1 51.0 47.2 46.1 45.0

Table 3.1: Model comparison on the accuracy results for all games, and for those of
3/5/8 dialogue length.
suggests that LXMERT is good in exploiting language grounding when the dialogue

(and maybe also the image) is not too complex, while RoBERTa can handle the dialogue

structure to some extent.

In the following, we are running an in-depth analysis to understand whether models are

able to identify salient information independently of the position in which they occur.

3.5.2 Are Models Sensitive to the Strategy Seen during Training?

In Section 3.3, we have seen that human dialogues tend to share a specific strategy, i.e.

questions that are asked in first turns are rather short whereas those in the last turns

provide relevant details about the most probable target object. We wonder whether the

models under analysis become sensitive to the above-mentioned strategy and learn to

focus on some turns more than others rather than on the actual salient QA pair.

Inspired by Sankar et al. (2019), we perturb the dialogue history in the test set by re-

versing the order of turns from the last to the first one. Differently from them, given the

nature of the GuessWhat?! dialogue history, we value positively models that are robust

to this change in the dialogue history order. In the following, we refer to the dialogues

provided in the order asked by humans as Ground Truth (GT) and to the dialogues pro-

vided in the reverse order as Reversed.

Our experiment (Table 3.2) shows that Transformers are less sensitive than LSTMs to

the order in which QA pairs are provided. Interestingly, the pre-training phase seems

to mitigate the effect of the change of the order even more. Indeed, RoBERTa has a

drop of just 1.4, whereas the accuracy of its from-scratch counterpart drops of 6.4. The

difference is even more noticeable in the case of LXMERT: while LXMERT has a drop
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GT Reversed

B
L

IN
D LSTM 64.7 56.0

RoBERTa-S 64.2 57.8
RoBERTa 67.9 66.5

M
M

V-LSTM 64.5 51.3
LXMERT-S 64.4 57.8
LXMERT 69.2 65.1

Table 3.2: Accuracy obtained on the test set containing dialogues in the Ground Truth
order (GT) vs. the reversed order (Reversed).

of 4.1, the accuracy of its from-scratch counterpart drops of 6.6%. In other words, (pre-

trained) Transformers seem to be able to identify salient information independently of

the position in which it is provided within the dialogue history.

3.5.3 The Role of the Last Question

Table 3.3 reports the results of the models when receiving all the turns of the dialogue

history, when receiving the dialogue history without the last turn, and when receiving

only the last turn. As we can see all models undergo a rather big drop in accuracy when

removing the last question. It is worth noting that RoBERTa outperforms other models

when removing the last turn, confirming that RoBERTa is able to better encode the full

dialogue history and not only parts of it. This holds for different dialogue lengths as

shown in the Table. Interestingly, LXMERT performs quite well in short dialogues also

when given only the last question: it reaches already 68.6% in the 3-turn cluster, namely

+7.6 than RoBERTa. Instead, with longer dialogues it does not manage to exploit the

last question so well reaching an accuracy closer to RoBERTa’s (32.3 vs. 30.1). By

comparing the accuracy of each model when receiving only the last turn and when

receiving all turns except the last one, we can notice an interesting pattern: whereas in

short dialogues models obtain a rather high accuracy when receiving either only the last

question or only the previous turns, they are able to profit of the last turn much less in

longer dialogues. This could be due to the fact that in short dialogues the last question

describes the target object without relying on too many information stated far away on

previous turns.
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Model 3-Q 5-Q 8-Q
All W/o last Last All W/o last Last All W/o last Last

LSTM 72.5 53.4 56.9 59.3 46.8 39.3 47.3 38.4 26.7
RoBERTa-S 72.7 55.4 55.3 58.3 44.9 37.4 45.0 38.9 27.6
RoBERTa 75.3 58.2 61.0 60.1 49.3 39.4 51.0 42.0 30.1
V-LSTM 71.9 53.8 53.0 59.3 43.7 34.0 47.2 36.5 21.9
LXMERT-S 72.7 55.4 56.7 58.9 46.9 38.7 46.1 39.7 28.8
LXMERT 80.5 56.8 68.6 63.1 47.7 46.0 45.0 37.7 32.3

Table 3.3: Accuracy of the models when receiving all turns of the dialogue history and
when removing the last turn (W/o last) or receiving only the last turn (Last) for dialogues
with 3, 5, and 8 turns.

3.5.4 How Attention is Distributed across Turns

So far we have seen that the last turn is usually answered positively (Section 3.3) and

that it is quite informative to detect the target object (Section 3.5.1). We wonder whether

this is reflected on how models distribute their attention across turns within a dialogue.

To this end, we analyze how much each turn contributes to the overall self-attention

within a dialogue by summing the attention of each token within a turn. We run this

analysis for LXMERT and RoBERTa in their various versions: all models put more

attention on the last turn when the GT order of turns is given.

In Table 3.2, we have seen that Transformers are more robust than the other models

when the dialogue history is presented in the reversed order (the first QA pair of the GT

is presented as the last turn and the last QA pair is presented as first turn). Our analysis

of the attention heads of RoBERTa and LXMERT shows that these models, both in their

from scratch and pre-trained version, focus more on the question asked last also in the

reversed test set where it is presented in the first position. This shows they are still able

to identify the most salient information. In Figure 3.2, we report the attention per turn

of LXMERT-S when receiving the GT and the reversed test set in 5-turn dialogues.

3.5.5 Qualitative Evaluation

The quantitative analysis reported so far shows that the pre-trained transformers, LXMERT

and RoBERTa, overall have a similar performance, but that LXMERT is much better in

exploiting the last question in short dialogues and fails encoding the information pro-
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Figure 3.2: Attention assigned by LXMERT-S to each turn in a dialogue when the
dialogue history is given in the GT order (from QA1 to QA5) or in the reversed order
(from QA5 to QA1).

vided by long dialogues. RoBERTa instead is affected less by the dialogue length and

takes less adventage of the informative question asked in the last turn by humans. In or-

der to gain a deeper understanding about the differences between these two models, we

analyzed games which are solved successfully by RoBERTa and not by LXMERT and

vice-versa. Dialogues solved by RoBERTa and not by LXMERT have a mean length

of 5.5 (±2.3), whereas dialogues belonging to the opposite case have a mean length of

4.5 (±2.0). This confirms the hypothesis that RoBERTa encodes longer dialogues better

than LXMERT. The qualitative analysis shows that LXMERT has an advantage when

dealing with shorter dialogues that require to rely on vision.

In Figure 3.3, we show two examples of dialogues one which has been solved by

LXMERT and not by RoBERTa (left) and on solved by RoBERTa but not by LXMERT

(right). In the dialogue on the left, the model needs to ground the question “Is he wear-

ing blue?” in the image to properly process it. LXMERT succeeds in this game. This

suggests that though the Guesser does not see the candidate visual representation it man-

ages to profit of the language grounding ability of the encoder. In the dialogue on the

right, the model needs to properly solve the anaphora in the last question “Is it in the

back?” connecting the pronoun to the “car” mentioned in the second turn. LXMERT

fails establishing such connection whereas RoBERTa seems to succeed in solving the

anaphora.
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Questioner Oracle
1. Is it a person? Yes
2. Is he in the foreground? No
3. Is he wearing blue? Yes

Questioner Oracle
1. Is it a sign? No
2. Is it a car? Yes
3. Is it white? No
4. Is it in the middle? No
5. Is it in the back? Yes

Figure 3.3: A game solved successfully by LXMERT and not by RoBERTa (left) and a
game solved by RoBERTa and not by LXMERT (right).

3.6 Conclusion

Our comparative analysis has shown that Trasformers are less sensitive than LSTMs to

the order in which QA pairs are provided and that their pre-trained versions are even

stronger in detecting salient information, within the dialogue history, independently of

the position in which it is provided.

We also shown that RoBERTa is the encoder providing the Guesser with the most in-

formative representation of the dialogue history. Its advantage is particularly strong in

longer dialogues. On the other hand, LXMERT greatly outperforms all the other mod-

els on 3-turn dialogues: indeed, it succeeds in providing the Guesser with a grounded

representation of the dialogue history when the latter consists of a few turns while it

fails in doing so for longer dialogues. All our models currently rely on categories to

represent candidate objects in the Guesser. It would be interesting to see how models

would perform when they have to rely on visual information rather than categories.
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3.7 Summary

So far, we discovered that:

+ Pre-Trained Transformers understand polar question-answer pairs;

+ Pre-Trained Transformers pinpoint the most important dialogue turns;

+ Pre-training (more than the attention mechanism) is the feature which makes the

biggest difference in accuracy with respect to the other models.
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Pre-trained Transformers Grounding

Different Spatial Questions

In this chapter, we study the grounding skills required in order to answer spatial ques-

tions about a target object in an image. We propose a classification for spatial questions

dividing them into absolute, relational, and group questions. We build an answerer

model based on a pre-trained multimodal Transformer and we compare it with its coun-

terpart trained from scratch and a baseline with and without visual features of the scene.

We are interested in studying how the attention mechanism of the pre-trained multi-

modal Transformer is used to answer spatial questions since they require paying atten-

tion on more than one region simultaneously and spotting the relation holding among

them. We show that the model based on a pre-trained multimodal Transformer outper-

forms the baselines by a large extent. By analyzing the errors and the attention mecha-

nism of the multimodal pre-trained Transformer, we find that our classification helps to

gain a better understanding of the skills required to answer different spatial questions.

47
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Figure 4.1: A vast amount of questions asked by humans in the GuessWhat?!
game (de Vries et al., 2017a) are spatial. We classify them as absolute, relational,
and group based on how they many objects are involved and how they are related. The
red box marks the object(s) involved in the question, while the green box marks the
target of the game. Relational and group questions need more than one object, whereas
absolute do not.

4.1 Introduction

Visual Dialogues are a useful testbed to study how models ground natural language

and in particular how they ground spatial language, which is the focus of our analysis.

This chapter describes the work by Testoni et al. (2020).
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Visual Dialogues have been the aim of early work on natural language understanding

(NLU) (Winograd, 1972) and are now studied by a very active community at the in-

terplay between computer vision and computational linguistics (e.g. Baldridge et al.,

2018; Ilinykh et al., 2019b; Haber et al., 2019). Recently, important progress has been

made on visual dialogue systems thanks to the release of datasets like VisDial (Das

et al., 2017a) and GuessWhat?! (de Vries et al., 2017a). The former contains chit-chat

conversations about an image whereas the latter is a visual game, hence its dialogues

are goal-oriented. In both cases, one agent asks questions and the other, which we call

the Oracle, answers. For VisDial most of the work focused on the answerer, but in-

depth evaluation has been carried out on the questioner too (e.g. Murahari et al., 2019b;

Testoni et al., 2019). For GuessWhat?!, instead, work has been done mostly, if not only,

on the questioner. Current models trained with reinforcement learning achieve high task

success; they adapt to the oracle limitations and end-up asking questions that are lin-

guistically simpler than those asked by humans (Shekhar et al., 2019; Pang and Wang,

2020).

It is interesting to understand where current multimodal NLU models stand with respect

to this task: answering questions asked by humans in a goal oriented visual dialogue.

This chapter addresses this question by evaluating how the Oracle model of the Guess-

What?! game answers questions asked by humans while playing the game.

We rely on the GuessWhat?! visual referential game described in Section 2.5.2 and we

focus on the role of the Oracle, which answers questions about a target object in the

image. Shekhar et al. (2019) show that most of the questions in the dataset are about the

entity of the target (“Is it a female?”) or its location (“is it the first one?”). Mazuecos

et al. (2020) show that the baseline model, commonly used for the Guesswhat?! task

since its introduction in de Vries et al. (2017a), has almost human-like accuracy on

the entity questions and a much lower accuracy on questions about attributes. In this

chapter, we focus on spatial questions and classify them into three groups: absolute,

relational, and group questions as illustrated in Figure 4.1.

An unpleasant aspect of the baseline model is that it receives the gold standard entity of

the target (that is, the category label, e.g. “giraffe” or “boat”) as input. Furthermore, it
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answers questions without seeing either the image or the visual features of the target, but

instead it simply relies on the category label of the target and its coordinates. Important

progress on multimodal encoders has been obtained since the GuessWhat?! release;

hence, we study the effect of using models that ground the question into the image

and do not have access to the gold standard category label of the target. We adapt a

multimodal universal encoder, LXMERT (Tan and Bansal, 2019), to play the role of the

Oracle and compare it with the baseline model.

It is known that grounding spatial expressions is challenging for neural networks since

quite often they require models to put attention on more regions simultaneously and

spot the relation holding among them (e.g., the car and the boat in Figure 4.1, mid-

dle). LXMERT is a transformer-based neural network and as such it heavily exploits

attention-based mechanisms. In this chapter, we run a qualitative analysis of the atten-

tion LXMERT exhibits for the different types of location questions and run an in-depth

error analysis of its results. To sum up, we make the following contributions:

• We adapt LXMERT to play the role of the Oracle of the GuessWhat?! game

obtaining an overall accuracy of 82.21%, an increase of 6.27% with respect to the

usual baseline;

• We find that LXMERT improves over the baseline also on spatial questions (+9.70%),

but they remain a large source of errors also for this model – with 77.00% accu-

racy;

• We classify spatial questions into three sub-types and use this classification to

annotate the subset of spatial questions in the GuessWhat?! test set. The fine-

grained evaluation shows that the hardest spatial questions are the relational and

group ones;

• We run an in-depth qualitative analysis of LXMERT cross-modal attention and

an analysis of its errors on each question sub-type. The analysis shows that

LXMERT attention differs between absolute and relational questions as expected,

and that some spatial questions need the dialogue history to be interpreted cor-

rectly.
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The chapter is organized as follows. Section 4.2 reviews previous work on visual ques-

tion answering and on spatial referring expressions. Section 4.3 presents the models

providing information on how we adapt LXMERT for the Oracle task. Section 4.4

describes the dataset and our classification of spatial questions. In Section 4.5 we com-

pare the accuracy of the models reporting a fine-grained evaluation by question type

and zoom into the subset of spatial questions. We further analyzed this subset through a

manual inspection of LXMERT attention and errors in Section 4.6, before drawing our

conclusions in Section 4.7.

4.2 Related Work

After the introduction of the supervised baseline models (de Vries et al., 2017a), several

models have been proposed for the Questioner, which are mostly based on reinforcement

learning (Sang-Woo et al., 2019; Zhang et al., 2018b; Zhao and Tresp, 2018; Zhang

et al., 2018a; Gan et al., 2019; Yang et al., 2019; Pang and Wang, 2020). For these

models, the role of the Oracle is even more salient than for models based on supervised

or cooperative learning (Shekhar et al., 2019) since they are reinforced to ask those

questions the Oracle is good at answering. Despite this important role of the Oracle, no

work has been carried out to evaluate and improve it. We aim to fill this gap.

Shekhar et al. (2019) show that GuessWhat?! human players ask quite a lot spatial ques-

tions. It has been observed that capturing the spatial relation about objects is challenging

for neural network models. Kelleher and Dobnik (2017) argue that Convolutional Neu-

ral Network (CNN) do not ground spatial information properly: since they discard lo-

cation information through the pooling mechanism, their embeddings can only capture

rough relative positions of objects within a scene. In line with this claim, Collell and

Moens (2018) show that linguistic features are more spatially informative than CNN

visual features. New multimodal models, like LXMERT, start from positional aware

embeddings. We therefore study how well they handle the spatial questions asked by

GuessWhat?! players.

Spatial expressions have been deeply studied within the referring expression genera-
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tion community. In this area, earlier work (Paraboni et al., 2007) has suggested that,

in ordered domains (e.g., a document divided into sections and subsections), referring

expressions that include spatial information, even when redundant, lead to a significant

reduction in the amount of search that is needed to identify the referent. It has been

argued that spatial information reduces the cognitive load (measured by eye tracking)

necessary for resolving a referring expression (Paraboni et al., 2017). In this research

area Krahmer and van Deemter (2012); Ghanimifard and Dobnik (2017) distinguish be-

tween spatial referring expressions that involve another object in the description (e.g.

“the rabbit in the hat”) from those that do not (e.g. “the rabbit on the left”). The first

group of expressions is known as relational, while we shall refer to the second one as

absolute. A further distinction is made between referring expressions that are singular

(e.g. “the rabbit in the hat”) and those that are plural (e.g. “the three rabbits on the

table”) and refer to a group (Lønning, 1997; Gatt and van Deemter, 2007; Krahmer and

van Deemter, 2012).

In this chapter, we classify GuessWhat?! spatial questions using absolute, relational

and group distinctions and examine how LXMERT performs for each type of spatial

question. We also conduct an error analysis and an attention analysis taking these cate-

gories into consideration.

Recent work by Agarwal et al. (2020) shows that in current visual dialogue datasets

the dialogue history rarely matters. The authors ask crowdsourcers whether they can

confidently answer a question by looking at the image and the question, without seeing

the dialogue history. In our qualitative analysis we check whether history plays a role

for the spatial questions of the GuessWhat?! game that LXMERT fails to answer.

4.3 Models

In this section we present the models that we compare. We also explain how we adapted

LXMERT to the Oracle task. The models are trained on successful games.
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LSTM is the baseline model proposed in de Vries et al. (2017a). It does not have

access to the raw image features. It receives as input embeddings of the target object’s

category, its spatial coordinates, and one question encoded by a dedicated LSTM. These

three embeddings are concatenated and fed to a Multi-Layer Perceptron (MLP) that

gives an answer (Yes or No).

V-LSTM We enhance the LSTM model described above with the visual modality

and we remove the information about the target object category. We extract the vi-

sual vectors corresponding to the input image and the crop of the target object using a

frozen ResNet-152 network pre-trained on ImageNet (He et al., 2016) and we pass them

through a linear layer and a tanh activation function. We concatenate these scaled repre-

sentations to the embeddings of the target object’s spatial coordinates and the question:

the resulting vector is fed to an MLP to obtain the answer, as it happens in the LSTM

model.

LXMERT We employ LXMERT as our pre-trained multimodal Transformer (Tan and

Bansal, 2019). We process the output corresponding to the CLS token. We consider both

the pre-trained version (LXMERT) and the one trained from scratch (LXMERT-S).1

4.4 The Dataset

We rely on GuessWhat?!, a referential game involving a dialogue about images previ-

ously described in section 2.5.2. In particular, given a question, an image, and a target

object, we are interested in assessing whether multimodal models are able to properly

answer the question about the target object in the image, playing the role of the Oracle.

Shekhar et al. (2019) propose a classification of the questions based on their focus dis-

tinguishing questions which ask about the entity of the target (“Is it an animal?” or “Is

1We have also evaluated a simplified version of LXMERT-S in which we use 6 self (4 language and
2 visual) and 2 cross-modal attention layers. The model behaves similarly to the more complex version
trained from scratch.
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Single label Multi labels

Entity 39269 39269
Not classified 7925 7925

A
T

T
R
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U

T
E

Spatial 29845 39250
Color 7145 15403
Action 3063 7645
Size 532 1364
Texture 538 901
Shape 166 301

Table 4.1: Question type distribution in successful games following the classification
proposed in Shekhar et al. (2019) where a question can be assigned to more than one
attribute type (multiple labels); the Single label column reports the number of questions
which have been assigned to only one type.

it a dog?”) or an attribute of it. A question can focus on just one attribute (e.g., “Is it the

black dog”? or “Is it black?”) in which case it is assigned just to one attribute question

type (color in the examples) or about more attributes (e.g., “does it have orange pillows

on it?”) in which case it is assigned to more attribute question types (to both color and

spatial information in the example.) Table 4.1 reports their distribution in the human-

human dialogues giving the numbers of questions assigned to one or more types (multi

label) or to just one type (single label).

We conjecture that the spatial question type includes questions posing different chal-

lenges to multimodal models. Krahmer and van Deemter (2012) divide spatial expres-

sions into relational (e.g. “the rabbit in the hat”), that specifies the location of the

referent of a noun phrase (the target, “rabbit”) relative to another object (the landmark,

“hat”), and absolute that focus only on the target by providing locative information

about it (e.g. “the rabbit on the left”). A third spatial expression that has received atten-

tion within the REG community are group referring expressions whose target is a group

of entities (e.g. “the three rabbits on the table”) or some specific entity of a the group to

which the expression refers by ordering them (e.g. “the second rabbit from the left”).

We adapt such classification to the GuessWhat?! spatial questions and classify them into

four types: relational, absolute, group and other. To distinguish these types we have

leveraged syntactic and lexical characteristics specific to each. Relational questions

usually include a prepositional phrase followed by a noun phrase that includes either
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% Example

Relational 31.9 Is it the pen behind the PC?
Absolute 31.8 Is it the one on the left?
Group 17.3 Is it among the 4 women?
Other 19.0 Can you sleep on it?

Table 4.2: Sub-type spatial questions distribution in successful games of questions an-
notated with only the spatial label in the test set (total: 29845).

a pronoun (e.g. “Is there a sink directly above it?”) or an object word (e.g. “is it

the pen behind the laptop?”). Absolute spatial questions (e.g. “the one on the left?”)

instead contain a location word either in the x axis (e.g. right, middle, left), or the y

(top, bottom), or the z (e.g. front, back) axis. We also consider absolute those questions

that include a spatial adjective in its superlative form (e.g. “the leftmost one?”). Finally,

we consider group questions those containing a number which may indicate order (e.g.

“right to left, is it the first one?”) or groups (e.g. “in the back among four women?”).

We have automatically annotated spatial questions by identifying nouns, prepositions

and number using the Part of Speech tagger Stanza Qi et al. (2020). When a question is

not assigned to any of the three groups, we include it in the “Other” category.2 We tried

identifying objects using the entity recognizers included in Stanford core NLP (Manning

et al., 2014) and Stanza (Qi et al., 2020) but the coverage was not good.

In the next section, we will first compare models using the multi-label classification re-

ported in Table 4.1, then we will zoom into the spatial questions which together with the

entity questions constitute the large majority of questions asked by humans. In order to

understand strength and limits of multimodal models in answering spatial questions, we

focus on those which are assigned only to the spatial question type to avoid confounding

effects. Table 4.2 reports number of such sub-set.

2Examples of questions following into the “Other” category are: “Is it the tree outside?” – i.e. an
elliptical question which could be completed as “Is it the tree outside the fenced garden?” – or “Can you
sleep on it?” which is not about a spatial property that occurs in the image but an afforded one.
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LSTM V-LSTM LXMERT-S LXMERT

Entity 93.37 83.24 (-10.13) 88.64 (-4.73) 91.09 (-2.28)
Spatial 67.30 66.40 (-0.90) 71.31 (+4.01) 77.00 (+9.70)
Color 61.64 68.06 (+6.42) 70.51 (+8.87) 76.42 (+14.78)
Action 64.32 65.44 (+1.12) 70.23 (+5.91) 77.16 (+12.84)
Size 60.41 62.76 (+2.35) 67.23 (+6.82) 75.44 (+15.03)
Texture 69.92 66.15 (-3.77) 71.92 (+2.00) 77.47 (+7.55)
Shape 68.44 64.12 (-4.32) 70.76 (+2.32) 74.42 (+5.98)
Not classified 75.02 70.45 (-4.57) 74.94 (-0.08) 82.18 (+7.16)

Total 75.94 72.70 (-3.24) 77.41 (+1.47) 82.21 (+6.27)

Table 4.3: Accuracy of the models on the successful games by question type based on
the multi label assignment. Values in parenthesis report the comparison with LSTM.

4.5 Experiments

4.5.1 Evaluation by Question Type

de Vries et al. (2017a) show that the “blind” version of the LSTM model performs bet-

ter that the version receiving the visual features. This result is heavily dependent on the

question type distribution in human-human dialogues. As we have seen, entity ques-

tions are a great proportion of the questions humans ask. The “blind” baseline model is

facilitated in answering them, since it is given the category of the target object. Follow-

ing Mazuecos et al. (2020), we evaluate models accuracy by question types. As we can

see from Table 4.3, the higher overall accuracy reached by the “blind” LSTM model is

indeed mostly due to the “entity” questions for which it reaches 94% (questions like:

“is it a vehicle?”). As expected, when removing the category (V-LSTM) the accuracy

on answering questions about entities decreases to a large degree, but the use of vi-

sual features helps the model to answer color questions better. The replacement of the

LXMERT architecture, together with the use of positional aware embedding represen-

tations of the image, bring an important boost in the accuracy: LXMERT trained from

scratch outperforms the LSTM based model on all types of questions. The pre-training

phase further increases the performance in important ways.
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Absolute Relational Group

LSTM 76.4 67.1 63.3
V-LSTM 75.2 63.5 62.8
LXMERT-S 80.5 69.6 68.4
LXMERT 83.4 77.2 71.6

Table 4.4: Accuracy of the sub-type of spatial questions (successful games, questions
assigned only one type)

4.5.2 Evaluation on Spatial Questions

Above we have seen that LXMERT outperforms the other models on the spatial ques-

tions. Our fine-grained classification sheds light on an interesting point: its main ad-

vantage comes from the relational questions (Table 4.4). Absolute questions require

cross-modal attention only to align a word with its referent, whereas relational ques-

tions are more challenging: the model has to locate the regions corresponding to the

two related words and understand the relation holding among them. The group ques-

tions may require “counting” skills that go beyond the scope of this chapter.

4.6 Qualitative Analysis

As a first step towards a deeper understanding of LXMERT performance, we use a linear

logistic regression model for the task of predicting whether a question was answered

correctly. In Shekhar et al. (2018) it has been shown that unsuccessful games contain

more objects in the image than successful ones, and that the target size area is smaller.

We use these two features as predictor variables together with the length of the question

and the turn in which it was asked in the full dialogue. We observe that the number of

objects in the image and the question turn play a significant role in predicting the model

behaviour. This might be due to the fact that models do not receive the dialogue history

as input. Below we run an error analysis based on the three spatial sub-type questions

described above to check whether indeed this could be a source of error. After the error

analysis, we study whether LXMERT uses its cross-modal attention differently across

these three groups of questions.
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4.6.1 Error Analysis

We did a manual error analysis of 20% of LXMERT errors on spatial questions. We

tagged emergent error categories by following a qualitative annotation methodology.

Below we describe our findings by classifying them in the three types of spatial ques-

tions that we consider throughout the chapter.

We found that absolute and group questions have more errors related to the missing di-

alogue history than relational questions even though we explicitly allow for relational

questions that include anaphoric pronouns. For these two categories, around 50% of er-

rors are related to missing dialogue history. Dialogue history dependency in the dataset

is generally not lexicalized with explicit pronouns but left implicit through ellipsis (e.g.

“in the middle?”). Figure 4.2 shows an example of this. Question 5 could be answered

with “yes” if asked at the beginning of the dialogue (“middle” would refer to the middle

of the image) but its answer is “no” due to history (“middle” refers to the middle of the

group of oranges). In most of these dialogues, the category of the target is left implicit

because it is established in previous questions (e.g., “orange”). But also other infor-

mation is implicit. For example, “the last single one?” does not say that the search is

evolving from right to left. In these cases, the meaning of the question is only correctly

interpretable in the dialogue context.

Human question Human answer
1. It is a fruit? yes
2. It is the orange? yes
3. One of them I suppose? yes
4. Is it to our right? no
5. In the middle? no
6. The last single one? yes

Figure 4.2: Sample image and dialogue from the GuessWhat?! dataset. The red boxes
mark the objects involved in the questions, while the green box marks the actual referent.
LXMERT incorrectly answers ”yes” to question 5. LXMERT, like all Oracles, does not
have access to the dialogue history. It probably interprets the question as ”is the target in
the middle of the picture?”. The image and dialogue illustrates the history dependence
of questions.

History dependence, as illustrated in Figure 4.2, is hard to detect even for human anno-
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tators. Using the presence of the pronoun to detect whether a question needs the history

in order to be properly answered, as it has been done in Agarwal et al. (2020), might be

misleading. Our examples show that ellipses might create more context dependencies

and that there are questions which could be apparently answered even when given in

isolation but they would be answered differently based on the context they are in.

For absolute only questions, we found the following errors. Questions related to the

z-axis of the picture (e.g. “is it in the background?”) seem to be harder for the model

than those questions related to the x-axis of the picture (e.g. “is it on the left?”). The

errors that do occur on the x-axis are either related to the fact that the dialogue history is

necessary in order to interpret the question as in Figure 4.2, or that the target is neither on

the left nor on the right of the x-axis. In this dataset the adjective left and right behave as

vague adjectives. Questions that include superlatives (e.g.“the rightmost book?) cause

many errors. As well as questions that combine two or more of these characteristics

(e.g. “is it the animal at the very front on the left ?”). Finally, the ambiguity of the word

“middle”, which could be used for any axis, seems to confuse the model.

For group questions, the second most frequent errors corresponds to questions grouping

in one of the three axes. The term ”row” is often used to group the target with other

objects, especially when images are overcrowded with objects belonging to the same

category. However, the term is an ambiguous one, as it can refer to any of the three

axes and its meaning is often dependent on which interpretation is more salient in the

image. Furthermore, inverse x-axis properties (e.g., ”third girl from right?”) also seem

to be problematic. Another frequent error type includes questions that require counting

above three (e.g., ”seventh bus from the left?”). People can immediately and precisely

identify that an image contains 1, 2, 3 or 4 items by a simple glance, this ability is called

subitizing (Kaufman et al., 1949; Piazza et al., 2002). Identifying the quantity of a larger

number of objects takes considerably longer and involves counting for humans. It seems

models such as LXMERT are able to do subitizing, but not counting. Other problematic

group questions are multi-type ones, for instance belonging also to the relational type

(e.g., ”are there two of them on the branch?”); and questions using entities outside the

image as reference, such as the viewers (e.g., ”is it in the first room closer to us?”).
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Layer Absolute Relational Group

0 3.9 4.1 3.3
1 4.2 4.6 4.1
2 3.8 4.5 4.0
3 3.7 4.0 3.7
4 1.3 2.2 1.9

Table 4.5: Language to Vision attention in LXMERT: Number of regions of the image
considered salient in the last layer from the CLS token – viz. regions with an attention
value higher than the 0.05 threshold.
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0.04
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0.050.03
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is it the bus on the left? No is it the boat next to a car? No is it one of the two in the back? Yes

Figure 4.3: Attentions from the CLS: in absolute questions attention is mostly on the
only object the question refers to (the left bus, 0.13) and the target object (0.64) (left);
in the relational questions attentions spread between the two related objects (car and
boat, 0.12 each) and the target object (the boat on the back, 0.9) (middle); in the group
questions attentions goes to the entity of the referred group (0.08 and 0.13) and the
target (0.37) (right).

For relational questions we find that a source of errors is when the target and the land-

mark bounding boxes overlap or one is included in the other (“is it the clock behind the

person?”). Also when the landmark is a part of another object instead of being an object

with well delimited borders the model seems to get confused (“is it under his feet?”).

Questions that include non projective prepositions seem harder (“is it the person near

the bicycle?”) than those whose prepositions indicate the direction of the relation. An-

other source of errors are questions in which the landmark is large and no clear borders

are visible (“is it on the water?”). Finally, those questions that require OCR (optical

character recognition) are problematic (“does it have words on it?”).

4.6.2 LXMERT’s Attention

Here we aim to understand how LXMERT uses attention mechanisms to answer spatial

questions. We focus our analysis on the cross-attention layers from language to vision.
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Recall that, in our adaptation of LXMERT to the Oracle task, the crop of the target is

given as the 36th visual embedding together with the most salient regions of the image

detected by Faster R-CNN. We are interested in understanding how it exploits the target

visual representation to guide attention.

The entropy of the attention maps shows that the model in the first attention layers dis-

tributes attention across all regions (its entropy is close to the maximum possible level),

at layer 2 it learns to focus its attention on some regions of the image and on the crop

of the target. Finally, at the last layer, the attention on the CLS (the embedding given

to the classifier to select the answer) reveals an interesting difference among question

types: the number of regions considered salient in the absolute questions is lower than

the one of salient regions in the group and relational questions. Table 4.5 reports the

numbers of regions with an attention value higher than 0.05.3 We have used different

thresholds to compute the number of top-valued regions and the same pattern emerges.

From a manual inspection, we have seen that the higher number of salient regions in

the relational questions often is due to the fact that they refer to more candidate objects,

differently from the absolute ones which usually refer to fewer or even just one object.

Figure 4.3 illustrates how LXMERT uses its attention in three sub-type of spatial ques-

tions. As we can see, when it interprets relational questions involving two objects, it

“looks” both at the target (the boat) and the landmark (the car); in the example it an-

swers the question negatively since the target of the game is the boat marked by the

green box and not the one to which the question refers to. Similarly, when interpreting

a group question, it looks at the referred group (the two giraffes); in the example it an-

swers the question positively since the target of the game is indeed within the referred

group. By looking at the attention maps, we noticed that interesting patterns emerge

when looking at the attentions from the CLS token (Figure 4.3 marks the regions con-

sidered more salient from the CLS token). Other tokens put attention mostly or only on

the target object region.

3If the attention is equally distributed among all the 36 regions, their attention value would be 0.02
(viz. 1/36).
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4.7 Conclusion

In this chapter we tackle the problem of grounding spatial questions in the GuessWhat?!

visual dialogue game. We adapt LXMERT to play the role of the Oracle of the Guess-

What?! game reaching an overall accuracy of 82.21%. This result outperforms the

widely used baseline model by 6.27%. The gain is even higher for spatial questions,

where LXMERT outperforms the baseline by 9.70%. In order to perform an in-depth

analysis, we classify spatial questions into three sub-types and use this classification to

annotate the subset of spatial questions in the GuessWhat?! test set. The fine-grained

evaluation shows that the hardest spatial questions are the relational and group ones.

We perform an in-depth analysis of LXMERT cross-modal attention and an qualitative

analysis of the errors on each question sub-type. First of all, we find out that LXMERT

puts attention on more regions when processing relational questions compared to abso-

lute and group questions. Secondly, the qualitative analysis highlights the importance

of having access to the dialogue history in order to answer some spatial questions. We

leave this for future work.

4.8 Summary

So far, we discovered that:

+ Pre-Trained Transformers bring a huge improvement in the task of answering

spatial questions about a target object in an image;

+ Pre-Trained Transformers pinpoint the most important regions in the image;

+ Pre-Training makes the biggest difference with respect to the other models;

− Further improvements can be obtained for group questions.
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Pre-Trained Transformers Encoding

Positive and Negative Answers

Selecting the target object in a referential visual dialogue requires to understand each ut-

terance in the dialogue at a fine-grained level. In the case of GuessWhat?!, this involves

identifying questions and answers in each utterance, and exploiting the information that

they convey. Models should leverage both positive and negative answers. We take

GuessWhat?! as test-bed and evaluate to which extent guessers based on pre-trained

Transformers profit from positively and negatively answered polar questions. Moreover,

in order to get a better grasp of models’ results, we select a controlled sample of games

and run a crowd-sourcing experiment with humans subjects. We evaluate models and

humans against the same settings and use the comparison to better interpret the models’

results. We show that pre-Trained Transformers are able to understand the structure of

a dialogue. However, while humans profit from negatively answered questions to solve

the task, models struggle in grounding negation, and some of them barely use it. It is

worth noting that when the language signal is poorly informative, visual features help

encoding the negative information. Finally, the experiments with human subjects put

us in the position of comparing humans and models’ predictions and get a grasp about

which models make errors that are more human-like and as such more plausible.
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5.1 Introduction

Negation is often neglected by computational studies of natural language understand-

ing, in particular when using the successful neural network models. Very recently, a

series of work have highlighted that negation is under-represented in existing natural

language inference benchmarks (Hossain et al., 2020b) and that Pretrained Language

Models have difficulty distinguishing a sentence from its negated form in fill-in-the-

blank tests (Kassner and Schütze, 2020). This weakness of Language Models could

have a strong impact on their success in real-life applications. For instance, Hossain

et al. (2020a) show that the lack of a proper understanding of negation is an important

source of error in machine translation and similarly, it would impact the quality of other

applications based on natural language understanding, such as text summarization or

personal assistants for health care or other uses. A recent contribution of AI to the soci-

ety is the development of visual dialogue systems built on Pretrained Language Models.

Clearly, they are an important tool for instance as personal assistants of visually im-

paired people (Gurari et al., 2018a), but again their impressive achievements would be

vanished if they fail to distinguish negative and affirmative information.

Admittedly, modelling negation is an ambitious goal, and even humans have a harder

time understanding negative sentences than positive ones (Clark and Chase, 1972; Car-

penter and Just, 1975). However, it has been shown that the presence of supportive

context mitigates the processing cost of negation. In particular, this happens within di-

alogues (Dale and Duran, 2011), and when a visual context is given (Nordmeyer and

Frank, 2014). Based on these findings, we argue that Visual Dialogues are a good

starting point for making progress towards the ambitious but crucial goal of developing

neural network models that can understand negation.

Visual Dialogues can be chit-chat (Das et al., 2017a) or task-oriented (de Vries et al.,

2017b; Ilinykh et al., 2019b; Haber et al., 2019; Ilinykh et al., 2019a). Task-oriented

This chapter describes the work by (Testoni et al., 2021).
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Figure 5.1: Examples of dialogues from two asymmetric and partially observable visual
dialogue data (PhotoBook and Meet Up! (Haber et al., 2019; Ilinykh et al., 2019a)) and
a symmetric visual dialogue in which the answerer sees the image and the questioner
does not see it (Das et al., 2017a; Chattopadhyay et al., 2017). For all datasets, we
selected exchanges containing negation, the focus of our study.

dialogues are easier to evaluate since their performance can be judged in terms of their

task-success, hence we focus on this type of dialogues which can be further divided as

following: the two agents can have access to the same visual information (de Vries

et al., 2017b), share only part of it (Haber et al., 2019; Ilinykh et al., 2019a) or only one

agent has access to the image (Chattopadhyay et al., 2017). Moreover, dialogues can be

symmetric (Haber et al., 2019), or asymmetric, with one agent asking questions and the

other answering it (de Vries et al., 2017b; Das et al., 2017a; Chattopadhyay et al., 2017).

Finally, the dialogue turns can contain different speech acts (Ilinykh et al., 2019b; Haber

et al., 2019; Ilinykh et al., 2019a) or only question answer pairs (de Vries et al., 2017b;

Das et al., 2017a; Chattopadhyay et al., 2017). The differences between the various type

of dialogues are illustrated in Figure 5.1. As we can see symmetric games with partially

observable data (PhotoBook and Meet up! (Haber et al., 2019; Ilinykh et al., 2019a)) sol-

licitate more complex exchanges than symmetric ones (Visual Dialogue, GuessWhich

– the referential game built from it (Das et al., 2017a; Chattopadhyay et al., 2017), and

GuessWhat?! (de Vries et al., 2017b) – the latter is illustrated in Figure 5.2). Given the

difficulty negation poses to models, we take the scenario which is less complex from

a dialogue perspective and in which questions are always grounded in the image: the

one in which agents have access to the same visual information, only one agent can

ask questions, and the questions are all of the same type. Hence, we take GuessWhat?!

as case-study and focus on the referential grounded guessing task: a Guesser receives

an asymmetric dialogue, consisting of Yes/No-questions over an image, a list of candi-
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dates and has to guess the target object the dialogue is about. In this setting, negation is

heavily present as the answer to a binary question. As such it functions as a pointer to

the alternative set of the negated expression; in other words it should be interpreted as

pointing to the set of all the candidates objects which do not have the queried property.

GuessWhat?! dialogues have been collected by letting two humans play the game. As

illustrated in Figure 5.2, such dialogues are quite simple: a sequence of rather short

questions answered by “Yes” or “No” containing on average 30.1 (SD ± 17.6) tokens

per dialogue. The dialogue length differs across the games since the questioner decides

when he/she can stop asking questions and is ready to guess the target. To evaluate the

extent models understand negatively answered questions, we take the human dialogues

as input to the guesser. We select successful games, in other words those dialogues

in which human players have succeeded in guessing the target object at the end of the

game. We conjecture that within these dialogues a crucial role is played by the last

turn whose role is to create a singleton alternative set and that this goal is achieved

differently when the question is answered positively or negatively. In the former case,

the question tends to almost fully describe the target object, whereas in the latter case

it conclusively identifies the target object by excluding those candidates which most

likely are not the target (Figure 5.2). To validate this conjecture, we run an online

experiment with humans which set the ground for better evaluating the results obtained

by models. We let humans and computational models perform the same task on the same

controlled sample set. We compare encoders with respect to the architecture (Recurrent

Neural Networks vs. Transformers), the input modalities (only language vs. language

and vision) and the model background knowledge (trained from scratch vs. pre-trained

and then fine-tuned on the downstream task). Our analysis shows that:

• While humans profit from negatively answered questions to solve the task, models

struggle in grounding negation, and some of them barely use it;

• In No-turns, when the language signal is poorly informative, visual features help

in processing the QA pair.

We hope that these results will stimulate more work on the processing of (grounded)
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Figure 5.2: Two samples of GuessWhat?! human dialogues ending with a positive (left)
and a negative (right) turn.

negation and that the data we collected through our online experiment and its annotation

will be a valuable contribution to such research direction.1

5.2 Related Work

Scrutinizing Visual Dialogue Encoding Sankar et al. (2019) study how neural di-

alogue models encode the dialogue history when generating the next utterance. They

show that neither recurrent nor transformer based architectures are sensitive to pertur-

bations in the dialogue history and that Transformers are less sensitive than recurrent

models to perturbations that scramble the conversational structure; furthermore, their

findings suggest that models enhanced with attention mechanisms use more information

from the dialogue history than their vanilla counterpart. We follow them in the choice

of the architectures we compare, but we change the focus of the analysis by studying

whether the polarity of the answer (Yes vs. No) affects the encoding of the information

provided by the question-answer pair.

Kaushik and Lipton (2018) show that in many reading comprehension datasets, that pre-

sumably require the combination of both questions and passages to predict the correct

answer, models can achieve quite a good accuracy by using only part of the information

1https://github.com/albertotestoni/annotation_human_gw

https://github.com/albertotestoni/annotation_human_gw
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provided. Similarly to this work, we investigate how much models use the questions

as well as the answers, provided by the Oracle, to select the target object among the

possible candidates.

As shown in Chapter 3 (Greco et al., 2020), pre-trained transformers detect salient infor-

mation in the dialogue history independently of the position in which it occurs. We build

on their study to dive into how encoders represent positively vs. negatively answered

questions within a visual dialogue.

SOTA LSTM-based Models on GuessWhat?! After the introduction of the super-

vised baseline model (de Vries et al., 2017b), several models have been proposed. Zhao

and Tresp (2018) have used attention mechanisms based on Memory Networks (Sukhbaatar

et al., 2015). Shekhar et al. (2019) have proposed a model that is jointly trained to ask

questions and guess the target. Building on the supervised learning step, all these mod-

els have been further trained with either some form of reinforcement learning (Zhang

et al., 2018b; Zhao and Tresp, 2018; Yang et al., 2019; Pang and Wang, 2020) or coop-

erative learning (Shekhar et al., 2019; Pang and Wang, 2020); this two-step process has

been shown to reach higher task success than the supervised approach. Since our focus

is on the Guesser and we are evaluating it on human dialogues, we will compare models

that have undergone only the supervised training step.

Transformer-based Models The last years have seen the increasing popularity of

transformer-based models pre-trained on several tasks to learn task-agnostic multimodal

representations (Li et al., 2019; Lu et al., 2019a; Tan and Bansal, 2019; Chen et al.,

2019a; Su et al., 2020; amd Nan Duan et al., 2020). ViLBERT (Lu et al., 2019a) has

been recently extended by means of multi-task training involving 12 datasets which in-

clude GuessWhat?! (Lu et al., 2020) and has been fine-tuned to play the Answerer of

VisDial (Murahari et al., 2019a). In Chapter 3 (Greco et al., 2020) we have adapted the

pre-trained transformer, LXMERT (Tan and Bansal, 2019), to the GuessWhat?! guess-

ing task. Given the high accuracy achieved, we choose LXMERT as pre-trained trans-

former.
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Visually Grounded Negation Negation was already listed by Winograd among the

linguistic phenomena a Grounded Conversational System should be able to interpret (Wino-

grad, 1972). Significant progress has been obtained in the development of conversa-

tional systems based on neural network architecture; however, little is known about

how these models interpret negation. Nordmeyer and Frank (2014) show that process-

ing negation can be easier for humans if a visual context creates pragmatic expectations

that motivate its use. However, it is unknown whether this holds for multimodal models.

Suhr et al. (2019) show that SOTA models tested on visual reasoning often fail in prop-

erly grounding negative utterances. Gokhale et al. (2020) show that models have harder

time in answering visual questions containing negation. Both studies look at negation as

a logical operation, it reverses the truth value of the negated utterance. However, Oaks-

ford (2002) show that humans often use negation not as a logical operator but rather as

a way to create an alternative set of the negated expressions. This is exactly the role of

the negative answer in the GuessWhat?! game. We are not aware of any study on Visual

Dialogue that have tackled this issue.

5.3 Task and Dataset

In this chapter, we run an in-depth analysis on how models integrate Yes/No answers

into the question to solve the GuessWhat?! guessing task. We run a comparative anal-

ysis to evaluate the role of language priors and visual grounding, and we run a crowd-

sourcing experiment with subjects on a controlled sample of the games. Using a con-

trolled sample set and knowing about humans’ performance give us a better way to

interpret the results obtained by the models on the full test set. Below we describe the

task and training/validation set and the test sets we use through out the experiments.

We rely on GuessWhat?!, a referential game involving a dialogue about images pre-

viously described in section 2.5.2. Our focus is on multimodal encoding of a visual

dialogue we focus on the following visual guessing task: given a human dialogue, con-

sisting of Yes/No questions and their answers, an image and a list of possible candidate

objects, the agent has to select the object the dialogue is about. In 2.5.2, it has been
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shown that human dialogue length is a good proxy of the guessing task difficulty, where

length is measured in terms of number of turns. Indeed, in shorter dialogues the area

of the target object is bigger than in longer dialogues, and in short dialogues the tar-

get object is quite often a “person” – the most common target category in the dataset;

moreover, the number of distractors in longer dialogues is much higher.. For instance

in Figure 5.2 the dialogue on the left is of length 5 (it consists of five turns) whereas the

one on the right is of length 3. In the following, we use “turn” to refer to the position

(of just the question or the answer or of the QA pair) within the dialogue.

Full dataset We evaluate models using human dialogues, selecting only the games on

which human players have succeeded finding the target and contain at most 10 turns

(total number of dialogues used: 90K in training and around 18K both in validation and

testing). Dialogues contain on average 4.5 Question-Answer (QA) pairs, the vocabulary

consists of 4901 words, and games have on average 8 candidates.2 The answer distribu-

tion is the following: 52.2% No, 45.6% Yes, and 2.2% N/A (not applicable). We divide

the full test set into games whose dialogue ends in a Yes- vs. in a No-turn and obtain

the Yes-set and No-set, whose statistics are reported in Table 5.1. As we can see, the

two sets contain dialogues of the same average length, and similar number of candidate

objects, hence their games are expected to be of similar difficulty. The last turns in these

two subsets are expected to play a rather different role (as illustrated by the example in

Figure 5.2): a Yes-question in the last turn is rather informative on its own, whereas a

last turn answered negatively quite often needs the information gathered in the previous

turns to be informative. On the other hand, we should note that last turns containing a

negative answer are expected to be rather informative together with the dialogue history

to guess the target. Hence, they are an interesting test-bed for our research question.

Controlled Sample To compare models’ results against humans’ ones, we run an an-

notation experiment on a sample of games we carefully select. We consider dialogues

consisting of 4- and 6-turns, and select those containing an equal number of Yes/No an-

swers. Moreover, to control for the level of difficulty of the game, we select only games

which have a maximum of 10 candidates. We obtain a subset with a balanced overall

distribution of the two types of polar answers; it contains 1491 games, of which 1327
2The dataset of human dialogues is available at https://guesswhat.ai/download.

https://guesswhat.ai/download
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Nr. Games Av. Dialogue Av. nr candidates
length

Full test set 18840 4.5 8
Yes-set 16366 4.5 8
No-set 2350 4.5 7.8
Controlled Sample 300 4.5 6.1
Yes-set 150 4.5 6.1
No-set 150 4.3 6.1

Table 5.1: Statistics on the full test set and on the Controlled test set; both divided into
the Yes- (resp. No-) subsets obtained by selecting only dialogues with a positively (resp.
negatively) answered question in the last turn.

(resp. 164) contain in the last turn a question answered positively (resp. negatively).

From these games, we randomly select 300 games (image, target) from the Yes- and

No- test sets (150 each). In this way, we obtain a subset balanced also with respect

of the polarity of the last question. We believe games in this sample set are equally

difficult, considering the criteria discussed above.

5.4 Models

Following Chapter 3 (Greco et al., 2020), all the guesser models we evaluate share the

skeleton illustrated in Figure 5.3: an encoder paired with a Guesser module. For the lat-

ter, all models use the module proposed in de Vries et al. (2017b). Candidate objects are

represented by the embeddings obtained via a Multi-Layer Perceptron (MLP) starting

from the category and spatial coordinates of each candidate object. The representations

so obtained are used to compute dot products with the hidden dialogue state produced

by an encoder. The scores of each candidate object are given to a softmax classifier to

choose the object with the highest probability. The Guesser is trained in a supervised

learning paradigm, receiving the complete human dialogue history at once. The models

we compare differ in how the hidden dialogue state is computed. We compare LSTM

vs. Transformers when receiving only the language input (Language-only, henceforth,

Blind models) or both the language and the visual input (Multimodal, henceforth, MM

models).
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Figure 5.3: Shared Encoder-Guesser skeleton. The Guesser receives the category labels
(e.g., “bottle”) and the spatial coordinates (pos) of each candidate object. Multimodal
encoders receive both the image and the dialogue history, whereas blind models receive
only the latter.

5.4.1 Language-only Encoders

LSTM As in de Vries et al. (2017b), the representations of the candidates are fused with

the last hidden state obtained by an LSTM which processes only the dialogue history.

RoBERTa In the architecture of the model described above, we replace the LSTM with

RoBERTa (Liu et al., 2019b).3 We use RoBERTaBASE which has been pre-trained on

160GB of English text trained for 500K steps to perform masked language modeling.

RoBERTa was pre-trained on several text corpora containing rather long utterances:

BookCorpus (Zhu et al., 2015b) + English Wikipedia (as the original BERT model),

CC-NEWS (Nagel, 2016), OPENWEBTEXT (Gokaslan and Cohen, 2019), and STO-

RIES (Trinh and Le, 2018). It has 12 self-attention layers with 12 heads each. It uses

three special tokens, namely CLS, which is taken to be the representation of the given

sequence, SEP, which separates sequences, and EOS, which denotes the end of the input.

We give the output corresponding to the CLS token to a linear layer and a tanh activation

function to obtain the hidden state which is given to the Guesser. To study the impact

of the pre-training phase, we have compared the publicly available pre-trained model,

which we fine-tuned on GuessWhat?! (RoBERTa), against its counterpart trained from

scratch only on the game (RoBERTa-S).

3We have also tried BERT, but we obtained a higher accuracy with RoBERTa.
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5.4.2 Multimodal Encoders

V-LSTM We enhance the LSTM model described above with the visual modality by

concatenating the linguistic and visual representation and scaling its result with an MLP;

the result is passed through a linear layer and a tanh activation function to obtain the

hidden state which is used as input for the Guesser module. We use a frozen ResNet-152

pre-trained on ImageNet (He et al., 2016) to extract the visual vectors.

LXMERT In order evaluate the performance of a universal multimodal encoder, we

employ LXMERT (Tan and Bansal, 2019). It represents an image by the set of position-

aware object embeddings for the 36 most salient regions detected by a Faster R-CNN

and it processes the text input by position-aware randomly-initialized word embeddings.

LXMERT is pre-trained on datasets containing rather short utterances: MSCOCO (Lin

et al., 2014a), Visual Genome (Krishna et al., 2017a), VQA v2.0 (Antol et al., 2015a),

GQA balanced version (Hudson and Manning, 2019), and VG-QA (Zhu et al., 2016).

Both the visual and linguistic representations are processed by a specialized transformer

encoder based on self-attention layers; their outputs are then processed by a cross-

modality encoder that, through a cross-attention mechanism, generates representations

of the single modality (language and visual output) enhanced with the other modality

as well as their joint representation (cross-modality output). Like RoBERTa, LXMERT

uses the special tokens CLS and SEP. Differently from RoBERTa, LXMERT uses the

special token SEP both to separate sequences and to denote the end of the textual input.

LXMERT has been pre-trained on five tasks.4 It has 19 attention layers: 9 and 5 self-

attention layers in the language and visual encoders, respectively and 5 cross-attention

layers. We process the output corresponding to the CLS token as in RoBERTa. Sim-

ilarly, we consider both the pre-trained version (LXMERT) and the one trained from

scratch (LXMERT-S).5

4Masked cross-modality language modeling, masked object prediction via RoI-feature regression,
masked object prediction via detected-label classification, cross-modality matching, and image question
answering.

5We use the code available from https://github.com/claudiogreco/aixia2021

https://github.com/claudiogreco/aixia2021
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5.5 Experiments on the Full Test set

We aim to understand whether models encode Yes/No answers and properly integrate

them into the question. If answers play a role in the performance of the models in

guessing the target object, removing them from the dialogues should cause a drop in

the task accuracy. Following this conjecture, we evaluate models (at test time, without

additional training) when receiving only the questions from the dialogues (without the

answers). Moreover, as commented above, the last turn in the Yes-set vs. No-set is

expected to play a rather different role. In particular, already alone a positively answered

question in the last turn is expected to be rather informative whereas a last turn answered

negatively is not. On the other hand, last turns containing a negative answer are expected

to enrich the dialogue history and help to guess the target. Hence, in the following, we

evaluate models aiming to understand the role of the last turn.

5.5.1 Accuracy results

Only Questions We evaluate models when receiving dialogues containing only the

questions.6 As expected, all models show an important drop as we can see from Ta-

ble 5.2. Blind models have higher accuracy than the multimodal counterpart when

receiving only the question, maybe because during training they learn to exploit the

language surface more. Moreover, the pre-training phase helps to exploit the keywords

in the questions as shown by the difference between the pre-trained and from scratch

versions of both transformer based models. These results show that all models take the

answers into account to some extent, and thus it is important to study their impact on

the performance of the models.

Dialogues with a Yes- vs No- answer in the last turn We now investigate how the

polarity of the final answer in the dialogue affects the performance in the guessing task.

Models reach a rather lower accuracy on the No-set, suggesting that models have harder

time interpreting dialogues ending with a negative answer (Table 5.2). Differently from

what one would expect, it seems the pre-trained transformer that does not have access
6We replaced all the answers with the “unknown” [UNK] token.
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Full dialogue Only Q Full dialogue
all games all games Yes-set No-set

Random 12.5 12.5 16.4 16.4

B
L

IN
D LSTM 64.7 47.9 67.0 49.0

RoBERTa-S 64.2 43.7 66.6 48.1
RoBERTa 67.9 51.7 69.6 54.5

M
M

V-LSTM 64.5 46.2 67.0 48.3
LXMERT-S 64.4 32.0 66.6 49.5
LXMERT 69.2 44.8 71.9 50.9

Table 5.2: Full test set: Task Accuracy obtained by models when receiving: a) only the
questions (Only Q); b) the full dialogue in the Yes-set vs. No-set, viz. games ending
with a Yes-turn vs. a No-turn. All differences between RoBERTa and LXMERT are
statistically significant.

Yes-set No-set
W/o Last Last W/o Last Last

LSTM 48.3 51.8 39.9 24.5
RoBERTa-S 49.8 50.7 39.6 21.8
RoBERTa 53.5 55.6 42.5* 23.3

V-LSTM 48.6 47.3 37.8 20.7
LXMERT-S 48.4 51.7 41.0 22.2
LXMERT 49.9 61.2 41.9* 26.6

Table 5.3: Full test set: Accuracy comparison when giving to the model the dia-
logue without the last turn (W/o Last) or with only the last turn (Last). (The * marks
RoBERTa’s and LXMERT’s scores whose differences are statistically not significant.)

to the visual representation of the “alternative set” (RoBERTa) performs better than the

multimodal model, LXMERT, in the challenging No-set games. It is not clear, however,

where the advantage of RoBERTa comes from. Hence, in the next section, we aim to

understand these results better by using the controlled sample and comparing models

against the humans’ performance, with a particular focus on the role of the last dialogue

turn.

The role of the last turn To analyze the role of the last turn, we compute models’

accuracy when receiving the dialogues without the last turn or with only the last turn.

The drop obtained from the setting in which models have access to the full dialogue

quantifies the role of the last turn. First of all, as shown in Table 5.3, when removing the

last turn in the Yes-set, LXMERT has a higher drop in accuracy than RoBERTa: -22.0%

(from 71.9% to 49.9%) vs. -16.1% (from 69.6% to 53.5%); the fact that LXMERT relies
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on the last turn a lot might be due to LXMERT having harder time than RoBERTa in

encoding the dialogue history, as observed in Chapter 3 (Greco et al., 2020). When

only the last turn is provided, LXMERT profits from the pre-training phase more than

RoBERTa. Recall that LXMERT has seen shorter text than RoBERTa during training,

e.g. MS-COCO captions vs. Wikipedia text. This difference could be behind such

results. In the No-set, LXMERT processes the last turn better than RoBERTa (it reaches

26.6 accuracy when receiving only the last turn, +3.3 than RoBERTa), but again it has

more difficulty in integrating such information with that gathered through the dialogue

history (it scores -3.4% than RoBERTa when receiving the full dialogue). Finally, as

expected, when receiving only the last turn, models obtain a high accuracy when the

answer is positive (Yes-set) and are near to chance level when it is negative (No-set).

Interestingly, in the No-set, RoBERTa and LXMERT have a rather similar accuracy

when the last turn is not given and LXMERT does slightly better than the language

encoder when receiving only the last turn. These results suggest that the advantage of

RoBERTa over LXMERT highlighted in Table 5.2 is due to a better processing of the

whole dialogue history, while LXMERT exploits better shorter sequences such as the

last turn taken individually in the No-Set (Table 5.3).

Tests of Statistical Significance To validate our findings about the comparison between

RoBERTa and LXMERT, we have run the McNemar’s test with a significance level of

0.05. We use an asterisk to signal scores whose differences is not significant (Table 5.2

and 5.3).

5.5.2 Guesser’s Probability Distribution

We now analyze how the guesser module assigns probabilities to the target object across

the turns to understand better the role of positive and negative answers at a more fine-

grained level. We compute how the probability assigned by the Guesser to the target

object P (o) changes after each turn (P (o)Ti+i
−P (o)Ti

) and compare turns Ti with a Yes,

No or N/A answer. We expect it is easier to use the Yes-turns than the No ones, but we

hope models are able to benefit from the questions answered negatively more than those

answered by N/A. Moreover, we focus on the games in which the Guesser succeeds to
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All games All successful games
Full dialogue history Last turn

Ti : Y es Ti : No Ti : N/A Ti : Y es Ti : No Ti : N/A

LSTM 14.5 2.9 2.3 26.3 16.2 6.3
RoBERTa-S 12.7 3.5 1.9 24.6 16.4 1.1
RoBERTa 12.3 5.9 1.4 22.9 18.8 1.1

V-LSTM 14.0 3.1 2.9 23.7 13.7 6.7
LXMERT-S 12.3 4.4 2.1 24.8 19.3 0.7
LXMERT 16.4 4.1 1.4 30.0 24.9 3.2

Table 5.4: Change across consecutive turns in the probability assigned to the target
after Yes- vs. No- vs. N/A-turns, i.e., P (o)Ti+1

− P (o)Ti
(full dialogue history in the

full test set) and before/after the last turn (Last turn in games on which the model has
succeeded).

select the target object, and quantify the effect of the last turn on the probability assigned

to the target. We expect the change in the last turn of the No-set to be much higher than

No-turns in average, whereas this should not happen with last turn in the Yes-set.

Although the average probability assigned to the target is similar before a Yes-turn and

a No-tun for all models7, questions answered with Yes bring a much higher increase of

probability than questions answered with No – which for LSTM have on average the

same impact as those answered by N/A (2.9 vs. 2.3) (Table 5.4).8 Again, RoBERTa

is the model that seems to profit of the negative turn more: the probability the guesser

assigns to the target object after a No-turn increases of 5.9 vs. 4.1 when using LXMERT

as encoder. However, when we focus on the last turn (Table 5.4-right), LXMERT is

the model for which the negative answer brings a higher increase to the target object.

In the following, by zooming into the controlled sample we aim to get a more accurate

comparison of models with respect to the specific issue of how they encode negatively

answered questions.

7The difference is lower than 10%.
8In Table 5.4 we report the results for all the dialogues. Similar patterns have been seen when com-

paring the models on games with a given number of candidate objects.
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5.5.3 Summary

In short, the experiments run so far show that all models take the answer of the asymmet-

ric GuessWhat?! dialogues into account. The pre-trained encoders are the best models

over all games and are on par with one another in processing positively answered ques-

tions. But, the results on the Yes-set when removing the last turn or when giving only

the last turn shows that LXMERT profits from the last Yes-turn more than RoBERTa.

We conjecture this is due to the fact that LXMERT has a harder time encoding the di-

alogue history. The overall accuracy obtained on the No-set suggests that RoBERTa

encodes the negatively answered questions better than LXMERT. However, an in-depth

analysis of the Guesser probability distribution shows that the Guesser profits from the

last turn in the No-set more when it is based on LXMERT than on RoBERTa. From

the analyses presented so far, it emerges that the models we considered have different

strengths and weaknesses, depending on many factors. To establish an upper-bound for

models’ performance and to assess the severity of the errors made by the models, in the

following we present an in-depth analysis we carried out with human annotators playing

the same guessing task of the models.

5.6 Controlled Sample: Humans and Models

In order to interpret models’ performance on encoding Yes/No-turns, we evaluated hu-

mans’ performance on the controlled games sample described in Section 5.3. These

results set an upper-bound for model performance, and give us a powerful tool to better

scrutinize our results.

5.6.1 Experiments and Results with Human Annotators

We asked human annotators to perform the GuessWhat?! guessing task on a controlled

sample of test set games. Similarly to what discussed in Section 5.5, we evaluate several

settings: we provide annotators with the full dialogue, the dialogue without the last
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Figure 5.4: Prolific interface: Humans were given a dialogue, an image with colored
bounding boxes, and a numbered list of candidates with colors matching those of the
bounding boxes. They had to use the keyboard device to choose the target.

turns, or only the last turn. Moreover, to check the average informativeness of Yes- No-

turns, we add the setting in which we remove from the dialogues all turns of the same

polarity.

Data collection Through Prolific,9 we collected complete annotations from 48 subjects

who were paid Euro 8.27/hour. Each participant annotated 75 games from one of the

four settings. In total, we have collected 3600 human answers. Each setting has received

annotation from 3 participants. Participants were asked to be native English speakers.

Participants were given an image with bounding boxes associated with each candidate

object, together with a progressive ID number, as illustrated in Figure 5.4. They ex-

press their guess by pressing on the device’s keyboard the number corresponding to the

chosen object. Before starting the experiment, they were shown three trial games for

which the correct answer was displayed in case the annotator chose the wrong target.

We added two control games in each setting, i.e., games with a full dialogue history

and few candidate objects. Participants were told there were control games and that

they would have been excluded from the data collection in case the wrong answer was

given for those games. Only one annotator wrongly guessed the control games and was

therefore excluded. We recorded the time taken by each participant to complete the

experiment. On average, humans took 12.23 seconds for each datapoint in the group

A (removing turns), 15.55 seconds for group B (without last turn), 10.52 seconds for

9https://www.prolific.co/

https://www.prolific.co/
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group C (only last turn), and finally 20.26 for group D (full dialogue). We found no

statistically significant correlation between the time taken to guess the target and the

success in solving the task.

Tests of Statistical Significance As we did in the previous section, we validate the

accuracy results by running a McNemar’s test with a significance level of 0.05 (Table

5.5 and 5.7). Table 5.6 reports the times taken by humans to play games belonging to

the different groups we have analyzed. The differences within groups are not normally

distributed – Shapiro–Wilk test. Hence, to check the validity of such comparisons we

have run a Wilcoxon rank-sum statistic for two samples using 0.05 as significance level.

Again, we use asterisks to signal the results whose difference is not statistically signifi-

cant.

Results with Humans As mentioned above, we focus on games on which human play-

ers have been successful in guessing the target object. It has to be noted that during the

GuessWhat?! data collection, each game was played only once and the target object was

guessed by the same player who asked the questions. Hence we do not know whether

the same dialogue-image would be equally informative for another player to succeed

in the game neither we know the level of uncertainty behind the choice made by the

successful player. With these questions in mind, in Table 5.5 we report the accuracy

obtained by humans in our controlled experiment by considering a game successfully

solved if (a) at least one participant correctly identifies the target object among the list of

candidates (the typical GuessWhat?! accuracy evaluation setting, modulo the fact that

in our case the questions are already asked) and (b) at least two participants guess the

target correctly (the most standard and solid evaluation); we refer to these two accuracy

metrics as minority (MIN) and majority (MAJ) schema, respectively.

Given that we are working with games on which GuessWhat?! human players succeed

guessing the target, the fact we do not obtain 100% accuracy in the group D (complete

dialogues) is by itself interesting. The difference between the two schema shows that,

also in the games successfully solved by human players in the GuessWhat?! dataset,

there is a margin of uncertainty. As we see from the Table 5.5 (Group D, full dialogue),

98% of the games ending with a Yes-turn could be guessed by at least one participant
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A) Removing turns

M
A

J Only Yes 66.00
Only No 46.00

M
IN Only Yes 80.67

Only No 72.67

B) W/o last C) only last D) Full dialogue

M
A

J Yes-set 75.33 71.33 86.67*
No-set 49.33 30.67 80.67*

M
IN Yes-set 92.00 88.00 98.00

No-set 64.67 58.00 90.00

Table 5.5: Humans’ performance on controlled sample: percentage of games guessed
correctly by at least two participants (MAJ) vs. by at least one participant (MIN). (* not
significant)

Group Description Average time/token (s)
A only yes turns 0.45
A only no turns 0.57
B without last (yes) 0.94*
B without last (no) 0.79*
C only last (yes) 1.20
C only last (no) 2.53
D full dial ending with yes 0.72
D full dial ending with no 0.85

Table 5.6: Average time (seconds) taken by humans to solve games belonging to the
different groups analyzed. Normalized with respect to the number of token in the text;
only successful games are considered. (* not significant)

(minority schema) whereas 86.67% of them were guessed correctly by at least two par-

ticipants (majority schema). Games ending with a No-turn are more difficult: 90% (resp.

80.67%) of the games could be guessed based on the minority (resp. majority) schema.

However, whereas the difference between the Yes- vs No-set in the minority schema is

significant it is not so in the majority schema. This suggests that, for humans, the level of

difficulty of the two subsets is similar. The results on Group A (removing turns) shows

that on average Yes-turns are more informative than No-turns. As expected, the last turn

in the Yes-set is quite informative: with only the last turn (Group C), humans’ accuracy

drops of only 10% (resp. 15.34%) reaching 88% (resp. 71.33%) accuracy in the minor-

ity (resp. majority) schema. Furthermore, the last turn in the Yes-set is quite redundant

with the information provided by the previous turns: when receiving the dialogue with-

out the last turns (Group B), humans’ accuracy drops of only 6% (resp. 11.34%) in the

minority (resp. majority) schema. Instead, the last turn in the No-set seems to provide

further information that needs to be integrated with those received in the previous turns:
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without the last turn the accuracy on the No-set drops of 25.33% (resp. 31.34%). All in

all, these results show that also for humans gathering information from the No-turn is

harder than with the Yes-turn, yet the last turn in the No-set is informative and humans

manage to profit from it to succeed in the task relatively well. This result highlights the

value of negation in visual dialogues, and show why it is an important requirement for

computational models to properly process it.

To measure the processing cost of negative turns, we have analyzed the average time

taken by human to correctly solve games belonging to the four categories we discussed

so far.

Table 5.6 shows that interpreting questions answered positively is faster than interpret-

ing the ones answered negatively, and this result holds for all settings. In particular, pro-

cessing positively-answered questions takes less than processing negatively-answered

ones (group A), and a final positive turn is processed much faster than a negative final

turn (group C). Interestingly, in the Yes-set guessing the target is faster when receiv-

ing the full dialogue than when receiving the dialogue without the last turn (0.72 vs.

0.94 seconds/token, p-value < 0.05), this might be due to what observed above, namely

the last Yes-turn summarises the salient information collected till that point and hence

speeds up the choice. Whereas the negative answer in the last turn brings a boost in per-

formance, it does not affect significantly the time taken by human annotators to process

the dialogue (0.79 vs. 0.85 seconds/token, p-value > 0.05). These results show that

the time taken by human participants to solve the game mirrors the processing cost of

negation, which is also influenced by the context (dialogue) in which it appears.

Results Humans vs. Models We now evaluate the models on the same controlled sam-

ple of games we used with human annotators. In Table 5.7, we report the task accuracy

obtained by models when removing all the Yes turns (remaining with only No-turns)

or all the No-turns (remaining with only Yes-turns). As can be seen from the table, the

performance of the two best models is rather similar: both in the full dialogue and in

the only Yes-turns the difference between their results is not significant. Similarly to

humans, models accuracy drops less when receiving only the Yes-turns than when re-

ceiving only the No-turns. However, models’ overall accuracy when receiving the full
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Full dialogue Removing turns
Only No-turns Only Yes-turns

Random 16.5 16.5 16.5

B
L

IN
D LSTM 57.0 30.67 48.00

RoBERTa-S 54.66 29.33 50.00
RoBERTa 60.0* 35.33 52.00**

M
M

V-LSTM 55.66 25.33 50.66
LXMERT-S 54.33 32.66 48.00
LXMERT 59.67* 25.33 56.66**

Human (MAJ) 83.67 46.00 66.00

Table 5.7: Controlled Sample. Removing turns: comparison of the task accuracy when
models receive the full dialogue vs. only the No- vs. only the Yes-turns. Human accu-
racy computed with the majority vote. (*, ** not significant)

Yes-set No-set
Full dialogue W/o last Only last Full dialogue W/o last Only last

B
L

IN
D LSTM 68.00 55.30 51.30 46.00 34.00 30.00

RoBERTa-S 64.67 49.33 48.67 44.67 39.33 27.33
RoBERTa 71.33 55.33 63.33 48.67 40.67 22.00

M
M

V-LSTM 60.67 49.33 49.33 50.67 34.67 16.67
LXMERT-S 61.33 50.00 47.33 47.33 36.00 22.00
LXMERT 71.33 53.33 60.67 48.00 46.00 31.33

Humans (MAJ) 86.67 75.33 71.33 80.67 49.33 30.67

Table 5.8: Controlled Sample. Without the last turn, Only the last turn, Full Dialogue:
accuracy comparison to highlight the role of the last turn when it contains a positive
(Yes-set) vs negative (No-set) answer.

dialogue is far from the human upper-bound even when using the majority vote schema.

As we can see in Table 5.8 this rather big difference between models and humans is

due to the No-set: while humans correctly succeed in 80.67% of the games ending in a

No-turn, models reach at most the 50%. It is thus clear that if it is true that negation has

a higher processing cost for both humans and computational models, the latter struggle

to profit from negatively answered questions.

5.6.2 Comparison with humans’ errors

In the following, we run an error analysis by comparing models and humans on their

failures. We expect that a model that properly grounds the dialogues is likely to make
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Removing turns W/o last Only last Full dialogue
V-LSTM 80.65 73.56 78.61 53.38
LXMERT-S 82.12 71.35 81.12 59.12
LXMERT 83.05 77.48 85.19 58.68
RoBERTa-S 82.87 73.65 80.65 55.88
RoBERTa 83.43 72.44 82.56 55.00

Table 5.9: Error Analysis: Percentage of games human failed among those failed by
each model.

human-like mistakes. To this end, among the games failed by a model, we check how

many of them have been failed by at least one human annotator (Table 5.9); moreover,

in the games in which a model and at least one participant failed, we check whether

the error made by the model and the participant is exactly the same, i.e., if they have

chosen the same (wrong) candidate object (Table 5.10). As we can see from Table 5.9,

LXMERT is the model whose failed games are most similar to the ones failed by hu-

man annotators. However, if we look (in a more fine-grained way) at the exact candi-

date objects they select, we found that RoBERTa is the model whose errors are more

human-like for most of the settings (Table 5.10). This analysis highlights how human

annotations help interpret models’ results and evaluate the quality of their predictions.

In Figure 5.5, we report a game in which both models and humans failed to guess the

target when the last turn was not given; interestingly, at that stage, with only the first

three turns, the selection made by RoBERTa and humans could be valid. This shows

that checking when models and humans make the same mistakes gives a hint about

which errors are plausible. From our qualitative analysis, it seems that RoBERTa takes

spatial questions into account more than LXMERT, maybe because it exploits the spatial

coordinates of the candidate objects whereas LXMERT overrides that information with

the one it receives from the visual features. More in-depth analysis is required to assess

what factors most influence the outcome of the models.

5.6.3 Summary

The evaluation of models on the controlled sample confirms that RoBERTa and LXMERT

behave rather similarly on the Yes-set across all settings. More interestingly, it shows
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Removing turns W/o last Only last Full dialogue
V-LSTM 45.33 48.44 41.14 49.30
LXMERT-S 52.38 52.46 42.77 51.85
LXMERT 51.70 58.12 47.10 49.30
RoBERTa-S 57.33 51.22 46.67 44.74
RoBERTa 60.99 51.33 53.52 53.03

Table 5.10: Error Analysis: Percentage of games in which each model does the same
mistake made by humans (i.e., by selecting the same wrong candidate object as a human
annotator).

Figure 5.5: Errors made by humans and computational models when receiving dialogues
without the last turn.

that in the No-set LXMERT is closer to humans than RoBERTa considering the accu-

racy in the task. LXMERT seems to be failing in the integration of the last No-turn

with the dialogue history: its accuracy is similar to humans in the settings without last

and only last turn, but it is far from them when the whole dialogue is given. Moreover,

visual features seem to be of more help in the No-set than in the Yes-set: in the Yes-set

across the controlled groups, the blind models do better or similar to their multimodal

counterpart, whereas on the No-set the opposite holds. Finally, our error analysis re-

veals that RoBERTa is the model whose predictions are most human-like when it fails

to identify the target object.

5.7 Discussion and Conclusion

In the current AI research, driven by the success of language models and neural network

architectures, negation is under-studied. Dialogue history and visual context have been
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shown to facilitate the processing of negation in humans. Hence, we took negation

in visual dialogues as our object of investigation and studied how SOTA multimodal

models profit from negatively answered questions (No-turns) in the GuessWhat?! game.

Such negative information is informative for humans to succeed in the game, and this

holds in particular when the No-turn occurs as the last one of a game in which the human

player has been successful in guessing the target. Therefore, we focus attention on the

subset of dialogues ending with a No-turn and compare them with those ending with

a Yes-turn. Our results show that SOTA models’ performances on these two sub-sets

is rather different, eg., LXMERT obtains 71.9% vs. 50.9% accuracy in the Yes- vs.

No-set, respectively (Table 5.2). To better interpret these results, we have run an online

experiment with humans: we carefully selected a controlled sample of games and asked

subjects to play the role of the guesser. We evaluated models’ behaviour on such a

controlled sample of games and used humans’ results to better interpret the success

and failures of models. The analysis shows that humans are much faster in processing

positively answered questions than negatively answered ones. Yet, they do profit from

the latter to succeed in the referential guessing task reaching 80.67% accuracy in the

No-set – on which models guess correctly barely the 50% (Table 5.8). This shows that

models are far away from the human ability to ground negation and we believe efforts

should be put to reduce this important gap between humans and models’ performance.

Our findings can help design models which could ground negation better than current

SOTA models. First of all, our comparison between the accuracy obtained by LXMERT

and RoBERTa in the various settings (Tables 5.2, 5.3 and 5.8) suggests that LXMERT

grounding of negation within a dialogue could be improved by pre-training it on longer

text. One could consider adding task-oriented dialogues in the pre-training phase.

Moreover, our comparison of models’ and humans’ errors leads us to conjecture that

LXMERT fails to exploit the spatial information provided in the dialogue, this could be

behind the fact that though it grounds negation in short texts better than RoBERTa, the

latter’s mistakes are more human-like, since humans rely on such information to locate

and identify the target object. This limitation of the LXMERT based Guesser could

be overcome by building a model that exploits the image regions received as input to

perform the task, similarly to what has been recently proposed in Tu et al. (2021) for
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another multimodal model. Finally, (Hosseini et al., 2021) shows that pre-trained lan-

guage models can better understand negation if trained with an unlikelihood objective.

This is a first important step ahead in modelling negation in the neural network-era, but

the model’s performance on entailment judgments involving negation is still low. Cog-

nitive sciences findings on human processing of negation show that humans profit from

expectations driven by the visual context to process negative information quickly and

effectively (Nordmeyer and Frank, 2014); we believe that models should be trained to

exploit more such expecations and that a (multimodal) communicative setting can help

bring a boost for learning to encode (grounded) negation.

The results we obtain do not always provide conclusive answers, but we believe they

convincingly show the weakness of current multimodal encoders in processing negation

and represent a starting point towards future research. We started from the observation

that dialogue history and visual context makes the processing of negation easier for

humans. To fully understand whether this can be the case for models too, a comparison

on processing negation in language-only vs multimodal settings should be carried out.

To this end, the study could be extended to other dasesets in which the visual input is

not shared or only partially shared by the agents, such as VisDial, PhotoBook and Meet

up! (Haber et al., 2019; Ilinykh et al., 2019a) or language-only task-oriented dialogues

(Wu et al., 2020). Moreover, negative information can be conveyed in different ways,

but we have studied only the easiest: a straightforward negative answer to a binary

question. It would be interesting to explore the use of negation in declarative sentences

and in more complex interactions. Finally, though our study builds on observations

about the information gain the guesser accumulates through the dialogue at each turn,

we have taken the dialogues as static blocks. A study about how humans and models

incrementally gain information through the dialogue should be run to better understand

their behaviour.

To conclude, our findings have theoretical and also practical implications: for humans,

negatively answered questions can be as informative as affirmatively answered ones; a

system that is not able to properly handle negation may be detrimental in real-world sce-

narios. More research should be done on the issue to better understand whether neural
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network architectures can learn to ground negation on the alternative set it activates. To

this end, we might need to single out various issues that are entangled in our analysis.

First of all, it would be beneficial to have a multimodal dataset designed for this pur-

pose. Secondly, when evaluating universal encoders the difference in the pre-training

data is a confounder that should be avoided. Finally, it would be useful to have a large-

scale human behavioural experiment that takes into account the incremental information

gain at the core of a task-oriented dialogue exchange. We believe such data to be cru-

cial both for training models to properly ground negation and for evaluating not only

their task success but also their inside mechanisms as advocated for instance by Zhang

et al. (2019). Once models learn to encode negation in grounded contexts, the next step

will be to transfer such skills to language-only settings by exploiting transfer learning

methods (Ruder, 2019).

5.8 Summary

So far, we discovered that:

+ Pre-Trained Transformers seem to understand the structure of a dialogue, identi-

fying questions and answers;

− However, they struggle with negation, since they seem to identify the target object

mostly thanks to positively answered questions;

− They perform much worse than humans, who are able to profit also from nega-

tively answered questions.
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Pre-trained Transformers Integrating

Complementary Multimodal

Information

Current multimodal learning tasks often require them to combine redundant information

provided by language and vision. Inspired by real-life communicative contexts, we

propose a novel task where either modality is necessary but not sufficient to make a

correct prediction. In this chapter, we first build a dataset of images and corresponding

sentences provided by human participants. Second, we evaluate multimodal pre-trained

Transformers on the benchmark and we compare their performance against other models

and human speakers. We show that, while the task is relatively easy for humans, best-

performing models such as pre-trained Transformers struggle to achieve similar results.

This chapter describes the work by (Pezzelle et al., 2020).

89



90 Chapter 6.

6.1 Introduction

Human communication, in real-life situations, is multimodal (Kress, 2010): To convey

and understand a message uttered in natural language, people build on what is present

in the multimodal context surrounding them. As such, speakers do not need to “repeat”

something that is already provided by the environment; similarly, listeners leverage in-

formation from various modalities, such as vision, to interpret the linguistic message.

Integrating information from multiple modalities is indeed crucial for attention and per-

ception (Partan and Marler, 1999) since combined information from concurrent modal-

ities can give rise to different messages (McGurk and MacDonald, 1976).

The argument that language and vision convey different, possibly complementary as-

pects of meaning has been largely made to motivate the need for multimodal semantic

representations of words (Baroni, 2016; Beinborn et al., 2018). However, computational

approaches to language and vision typically do not fully explore this complementarity.

To illustrate, given an image (e.g., the one depicted in Figure 6.1), popular tasks involve

describing it in natural language, e.g., “A tennis player about to hit the ball” (Image

Captioning; see Bernardi et al., 2016b); answering questions that are grounded in it,

e.g., Q: “What sport is he playing?”, A: “Tennis” (Visual Question Answering; see

Antol et al., 2015a); having a dialogue on its entities, e.g., Q: “Is the person holding a

racket?”, A: “Yes.” (visually-grounded dialogue; see De Vries et al., 2017; Das et al.,

2017c). While all these tasks challenge models to perform visual grounding, i.e., an ef-

fective alignment of language and vision, none of them require a genuine combination

of complementary information provided by the two modalities. All the information is

fully available in the visual scene, and language is used to describe or retrieve it.

In this work, we propose a novel benchmark, Be Different to Be Better (in short, BD2BB),

where the different, complementary information provided by the two modalities should

push models develop a better, richer multimodal representation. As illustrated in Fig-

ure 6.1, models are asked to choose, among a set of candidate actions, the one a person

who sees the visual context depicted by the image would do based on a certain in-

tention (i.e., their goal, attitude or feeling). Crucially, the resulting multimodal input
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I will play baseball with the men
I will play a game of tennis with the man
I will compare images of me hitting the tennis ball
I will play baseball with the women
I will applaud my favourite tennis player of all time

If I have tons of energy

IMAGE

INTENTION

CANDIDATE ACTIONS

Figure 6.1: One real sample of our proposed task. Given an image depicting, e.g., a ten-
nis player during a match and the intention “If I have tons of energy”, the task involves
choosing, from a list of 5 candidate actions, the target action that unequivocally applies
to the combined multimodal input: “I will play a game of tennis with the man”. The
task is challening: a model exploiting a language or vision bias could fall into the trap
of decoy actions containing words highlighted in blue or orange, respectively. There-
fore, selecting the target action requires models perform a genuine integration of the
two modalities, whose information is complementary. Best viewed in color.

(the sum of the image and the intention) will be richer compared to that conveyed by

either modality in isolation; in fact, the two modalities convey complementary or non-

redundant information (Partan and Marler, 1999).

To illustrate, a model that only relies on the (non-grounded) linguistic information con-

veyed by the intention, i.e., “If I have tons of energy”, might consider as equally plau-

sible any actions that have to do with playing a sport, e.g., “I will play baseball with the

men” or “I will play a game of tennis with the man”. Similarly, a model that only relies

on the visual information conveyed by the image—a tennis player during a match—

might consider as equally plausible any actions that have to do with ‘tennis’ and/or

‘player’, e.g., “I will applaud my favourite tennis player of all time” or “I will play

a game of tennis with the man”. In contrast, a model that genuinely combines infor-

mation conveyed by both modalities should be able to select the target action, namely

the only one that is both consistent with the intention and grounded in the image, i.e.,

“I will play a game of tennis with the man”. Moreover, similarly to real-life commu-

nicative scenarios, in our approach different language inputs modulate differently the

same visual context, and this gives rise to various multimodal messages. To illustrate, if

the image in Figure 6.1 is paired with the intention “If I am tired watching”, the target

action “I will play a game of tennis with the man” is no longer valid. Indeed, the target
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action in this context is “I will leave the tennis court” (see Figure 6.3).

Our work has the following key contributions:

• We introduce a novel multimodal benchmark: the set of∼ 10K 〈image, intention, action〉
datapoints collected via crowdsourcing and enriched with meta-annotation; the

multiple choice task, BD2BB, which requires proper integration of language and

vision and is specifically aimed at testing SoA pretrained multimodal models. The

benchmark, together with the code and trained models, is available at: https:

//sites.google.com/view/bd2bb;

• We test various models (including the SoA multimodal, transformer-based LXMERT;

Tan and Bansal, 2019) and show that, while BD2BB is a relatively easy task for

humans (∼ 80% acc.), best systems struggle to achieve a similar performance

(∼ 60% acc.);

• We extensively analyze the results and show the advantage of exploiting multi-

modal pretrained representations. This confirms they are effective, but not enough

to solve the task.

6.2 Related Work

Since the introduction of the earliest multimodal tasks, such as Image Captioning (IC;

see Bernardi et al., 2016b) and Visual Question Answering (VQA; Antol et al., 2015a),

a plethora of tasks dealing with language and vision have been proposed. In parallel,

baseline models have been replaced by more powerful attention-based systems (Ander-

son et al., 2018b) and, more recently, by transformer-based architectures pretrained on

several tasks (Tan and Bansal, 2019; Lu et al., 2019b; Chen et al., 2019b). These latter

models build on multimodal representations that are meant to be task-agnostic; as such,

they can be transferred to virtually any other multimodal task with minimal fine-tuning.

Our work contribute to these two lines of research by (1) introducing a novel multimodal

task, and (2) by evaluating a SoA multimodal encoder on it.

https://sites.google.com/view/bd2bb
https://sites.google.com/view/bd2bb
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Multimodal tasks VQA was originally proposed to overcome the challenge of quan-

titatively evaluate IC models. Driven by VQA, several datasets have been proposed to

minimize the bias observed in natural images (Goyal et al., 2017; Ray et al., 2019);

to force models to “reason” over a joint visual and linguistic input (Johnson et al.,

2017b; Suhr et al., 2019); to deal with objects’ attributes and relations (Krishna et al.,

2017b); to encompass more diverse (Zhu et al., 2016) and goal-oriented questions and

answers (Gurari et al., 2018b). At the same time, some work proposed higher-level

evaluations of VQA models and showed their limitations (Hodosh and Hockenmaier,

2016; Shekhar et al., 2017b); similarly, recent attention has been paid to understand

what makes a question “difficult” for a model (Bhattacharya et al., 2019; Terao et al.,

2020). Despite impressive progress, current approaches to VQA do not tackle one cru-

cial limitation of the task: the answer to a question is given by the alignment of language

and vision rather than their complementary integration.

Moving from objects to actions, several tasks have been proposed to mimic more real-

istic settings where a higher degree of integration between modalities is required. One

is visual storytelling (Huang et al., 2016; Gonzalez-Rico and Pineda, 2018; Lukin et al.,

2018), where models have to understand the action depicted in each photo and their

relations to generate a story. Similar abilities are required in the task of generating non-

grounded, human-like questions about an image (Mostafazadeh et al., 2016; Jain et al.,

2017), and in that of asking discriminative questions over pairs of similar scenes (Li

et al., 2017). Related tasks are also those of predicting motivations of visually-grounded

actions (Vondrick et al., 2016) or generating explanations for a given answer (Park et al.,

2018; Hendricks et al., 2018).

An even higher level of understanding of vision and language is required in the tasks

of filling the blank with the correct answer (Yu et al., 2015); answering questions from

videos and subtitles (Lei et al., 2018); having a dialogue on objects (De Vries et al.,

2017; Das et al., 2017c) or events (Mostafazadeh et al., 2017); answering and justi-

fying commonsense questions (Zellers et al., 2019). However, all these tasks require

making commonsense inferences over the two modalities rather than integrating their

complementary information to answer a grounded question.
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More akin to ours are the approaches by Iyyer et al. (2017), which aims to predict the

subsequent scene and dialogue in a comic strip, and Kruk et al. (2019), where the goal is

to compute the communicative intent of a social media post. Though they both require

a challenging integration of language and vision, these tasks (as well as the type of data

they use) are crucially different from BD2BB, where the task is to predict the action that

is consequent to a given intention based on the image.

Transformer-based multimodal models Developing universal multimodal encoders

whose pretrained representations are suitable for virtually any multimodal task is a cru-

cial challenge. Inspired by the success of BERT, several pre-trained Transformers have

been recently proposed in the domain of language and vision (Lu et al., 2019b; Tan

and Bansal, 2019; Chen et al., 2019b; Su et al., 2020; amd Nan Duan et al., 2020).

While these architectures achieve state-of-the-art performance in many tasks, their nov-

elty and complexity leave several questions open, and further work is needed to better

understand, e.g., which layers are more suitable for transferability (Tamkin et al., 2020),

or what is the relation between pretraining and downstream tasks (Zamir et al., 2018;

Singh et al., 2020). Moreover, to prove they are readily applicable to novel multimodal

benchmarks, pretrained universal encoders should be ideally effective with only mini-

mal fine-tuning on the target tasks.

In this light, we believe that more efforts should be put in developing datasets that are

challenging and yet relatively small, in line with the ‘diagnostic’ datasets proposed for

VQA (Johnson et al., 2017b) and the easy vs. hard subsets introduced by Akula et al.

(2020) for visual referring expression recognition. Our contribution follows this line of

thought.

6.3 Data

In this section, we describe how we collected intentions and actions through crowd-

sourcing, and the subsequent phase of data meta-annotation. Consistently with our

purposes, we needed images that elicit goals and feelings (the intentions) in the annota-
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Figure 6.2: Data collection. Examples of good (top) and bad (bottom) annotations
provided to participants in the task instructions. Errors and corresponding warnings are
shown to make participants familiarize with the tool.

tors, as well as consequent actions. To this end, we used the partition of the MS-COCO

dataset (Lin et al., 2014b) provided by Vondrick et al. (2016),1 where each of the 10, 191

images depicts at least one person. This choice was aimed to make the participants’ task

more natural: indeed, the presence of people in the image allows more possibilities of

interaction, and therefore guarantees that some actions can be performed in that situa-

tion.

6.3.1 Data Collection

We set up an annotation tool on Figure-Eight2 (see Figure 6.2) where annotators were

shown an image and asked to imagine themselves being in that situation, as ideal ob-

servers not represented in the picture. We instructed them to carefully look at the image

and think about 1) an intention, i.e., how they might feel/behave if they were in that

situation; 2) an action, i.e., what they would do based on that feeling/behavior. Inten-

tions and actions were typed in free form by participants in two separate text boxes; by

instructions, their sentences had to complete the provided opening words If I. . . and

I will. . . , respectively. To ensure that intentions conveyed information that was com-

plementary (non-redundant) to that by the image, participants were instructed not to

1http://visiond1.cs.umbc.edu/webpage/codedata/intention/
motivations_clean.zip

2https://www.figure-eight.com/

http://visiond1.cs.umbc.edu/webpage/codedata/intention/motivations_clean.zip
http://visiond1.cs.umbc.edu/webpage/codedata/intention/motivations_clean.zip
https://www.figure-eight.com/
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 If I want to be on a spotlight

 If I want to give encouragement

 If I want to make my dream come true

 If I have tons of energy

 If I get tired of watching

1.

2.

3.

4.

5.

 I will stay behind the player

 I will applaud the player

 I will have to win the tennis match

 I will play a game of tennis with the man

 I will leave the tennis court

1.

2.

3.

4.

5.

INTENTIONS ACTIONS

Figure 6.3: Five 〈intention, action〉 tuples provided by 5 unique participants for the
image in Figure 6.1.

mention any of the entities (people, objects, etc.) shown in the image. In contrast, to

ensure that actions contained information that was grounded in the image, participants

were asked to mention at least one visible entity when writing their action (see errors

and warnings in Figure 6.2).3.

We randomly selected ∼ 3.6K images from the split by Vondrick et al. (2016) and, for

each of them, we collected on average 5 〈intention, action〉 tuples by 5 participants. In

total,∼ 18K unique 〈image, intention, action〉 datapoints were collected. Participants

were recruited from native-English countries only. Overall, 477 annotators (based on the

IP) took part in the data collection; on average, each of them provided 38 annotations.

Participants were paid 0.04$ per tuple.4 In total, the data collection costed ∼ 900$.

A few filtering steps were needed to get rid of datapoints with invalid annotations. First,

we discarded those datapoints where intentions and/or actions were either not in En-

glish (e.g., bot-generated Lorem Ipsum sequences) or nonsense strings (e.g., random

sequences of characters). This step was done semi-manually and filtered out ∼ 3K dat-

apoints. Second, we removed datapoints where the action did not contain any noun nor

pronoun. After this, we were left with 12, 457 valid datapoints.

To illustrate the type of data collected, Figure 6.3 reports the 5 〈intention, action〉
tuples provided by 5 annotators for the image in Figure 6.1. As can be noted, the same

visual context elicits different intentions, which in turn give rise to different possible

actions. Crucially, no intentions refer to anything that is visible in the image, which
3Further details on data collection and meta-annotation, dataset and models are given in the appendix
4This corresponds to a hourly wage of around 8$/hour.
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makes them suitable for virtually any visual context. As for the actions, in contrast,

they all 1) mention at least one entity that is grounded in the given scene, e.g., “player”

or “tennis court”, which makes them plausible only for sports contexts, particularly

‘tennis’; 2) match their corresponding intention, but not (or to a much lesser extent) the

others; i.e., different intentions trigger different actions, and the verb in the action is a

proxy for such diversity. Below, we describe the meta-annotation process we performed

to categorize each datapoint with respect to: 1) the topic of its action, e.g., ‘tennis’; and

2) the argument structure of the verbs in its action.

6.3.2 Meta-Annotation

Topic For each of the 12, 457 datapoints, we built a 512-d semantic representation of

its action using the off-the-shelf Universal Sentence Encoder (USE; Cer et al., 2018).

We then run a k-means clustering algorithm over these vectors and obtained 60 topic

clusters.5 By manual inspection, 54 clusters were found to consistently group together

actions revolving on the same topic, e.g., ‘tennis’ or ‘birthday’, in a way that it was

easy to label them using such terms. Since for the remaining 6 clusters this was not

straightforward due to the presence of rather disconnected actions, we filtered these

clusters out. We further polished the 54 clusters (a) by manually moving actions to

clusters that fit them better, and (b) by removing actions that were not in line with the

cluster topic. Moreover, we removed actions that did not comply with the instructions

provided to annotators during the data collection. After these steps, we were left with

10, 287 〈image, intention, action〉 datapoints.

Argument structure Using the Stanford NLP Parser (Chen and Manning, 2014), we

annotated the actions in each of the 10, 287 topic-categorized datapoints by means of a

4-code annotation schema. In particular, from each parsed action we extracted its main

verb (code1) and its direct or indirect object (code2). Moreover, when present, the verb

of the coordinate or subordinated sentence was also extracted (code3), as well as other

5The best number of clusters was chosen based on the Elbow method, which relies on cluster consis-
tency.
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nouns in any complement position of the main or secondary verb (code4).6 All the out-

puts by the parser were manually checked and fixed where needed. Given the action “I

will swing the racket to hit the ball”, for example, we thus obtained the following ar-

gument structure annotation: 〈swing〉 (code1), 〈racket〉 (code2), 〈hit〉 (code3), 〈ball〉
(code4). As can be seen, this simplified representation of the action provides informa-

tion on both its verbs (that are consequent to the intention) and nouns (grounded in the

image). The 10, 287 annotated datapoints were used to build the dataset for our task.

6.4 Task

We introduce the Be Different to Be Better (BD2BB) task, where the different, i.e., com-

plementary information provided by the two modalities should push models develop a

better, i.e., richer multimodal representation. To evaluate these abilities, we frame our

task as a multiple-choice problem (similar qto Antol et al., 2015a; Yu et al., 2015; Zhu

et al., 2016) where either modality is necessary but not sufficient to perform a correct

prediction. The task is the following (see Figure 6.1): given an image and a corre-

sponding intention, the model has to choose the correct action over a set of 5 candidate

actions. We refer to the correct action as the target action; to the wrong actions as the

decoy actions. Similarly to Chao et al. (2018), decoy actions are carefully selected to be

as plausible as possible when evaluated against either the intention (2 decoys) or the im-

age (the other 2) only. Below, we explain how language-based and image-based decoys

were selected based on the meta-annotation.

Language-based decoys For each of the 10, 287 〈image, intention, action〉 data-

points, we randomly selected a number of datapoints from the entire data that had the

following criteria: 1) their action belonged to a different topic cluster than the one in-

cluding the target action; 2) their action did not share any noun with the target action,

i.e., their 〈code2〉 and 〈code4〉 were different. We then computed a similarity score be-

tween the target action and each of these selected actions by means of the cosine of their

6While verbs were lemmatized, we did not do so for nouns due to the visual difference between, e.g.,
player and players.
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I: If I want to protect myself, I will. . . If I want to enjoy the sun, I will. . . If I want to get the blood pumping, I will. . . If I want to be noticed, I will. . .

L: sit on my skateboard instead of actually riding it take a huge bite out of my sandwich take a ride on the aerial tramway put on a costume and join the parade
L: wear jeans when racing on a skateboard take a bite of the burger ride a horse in the rodeo join the men on the street
T: wear a helmet while riding my motor bike eat my food on the roof patio ride a motorcycle wear a sign
V: look at the motorcycle display use my phone to order from a take out menu seat next to a bike and read a book at least match my colors to look fancy
V: challenge the people to a race assist the group with cutting food help the person who has fallen off their bike teach him how to tie a tie

Figure 6.4: Four samples from our dataset. I: Intention; T: Target action; L/V:
Language-/Vision-based decoys.

#samples (%) #img #int #act #t-act #d-act avg int len avg act len
train 2102 (20%) 1517 1683 5063 2102 4228 22.15 35.34
val 4082 (40%) 2447 2772 6082 3567 4133 20.76 36.20
test 4081 (40%) 2425 2720 6108 3561 4138 20.49 36.00
total 10265 (100%) 3215 6192 8751 8738 6339 20.94 35.94

Table 6.1: Descriptive statistics of the dataset including, from left to right: 1) # (and
%) of unique samples; 2) # of unique images; 3) # of unique intentions; 4) # of unique
actions; 5) # of unique target actions; 6) # of unique decoy actions; 7) average number
of tokens in intentions; 8) average number of tokens in actions.

USE representations. We ranked these scores and selected as our language decoys the

two with the highest similarity. This way, we obtained language-based decoys that are

semantically very similar to the target action, but are on a different topic and do not

share any noun with it.

Vision-based decoys For each datapoint, we randomly selected a number of data-

points from the entire data that had the following criteria: 1) their action belonged to the

same topic cluster of the target one; 2) their action did not share any verb with the target

action, i.e., their 〈code1〉 and 〈code3〉 were different. We then ranked these actions with

respect to their USE similarity with the target one, and selected as our vision-based de-

coys the two with the lowest score. This way, we obtained vision-based decoys that are

about the same topic of the target action; at the same time, they do not share any verbs

with it and are semantically different.
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6.4.1 Dataset

Our final dataset includes 10, 265 samples7 as the ones depicted in Figure 6.4: each sam-

ple consists of a unique 〈image, intention, action〉 datapoint paired with 4 carefully-

selected decoy actions. Consistently with our purpose of making BD2BB a challenging

benchmark for pretrained multimodal architectures (see Section 6.1), we split the dataset

into “unusual” train/val/test partitions; i.e., we selected 20% samples for training; the re-

maining for validation (40%) and test (40%). We propose having small training data and

larger validation and test sets should become a standard, as pretrained models already

build on a massive amount of data.

Table 6.1 reports the descriptive statistics of the dataset, including the number of unique

images, intentions and actions per split, and the average length of the sentences. All the

experiments reported in the chapter are performed on these splits.

6.5 Experiments

To test the importance of combining information from the two modalities and the in-

dependent contribution of either modality, we experiment with 3 settings of the BD2BB

task: L, where the target action among the 5 candidates has to be guessed based on the

intention only; V, where only the image is provided; LV, where both the image and the

intention are provided. For each setting of the task, we evaluate the performance of (1)

a simple baseline trained from scratch on the task; (2) a state-of-art transformer-based

pretrained model fine-tuned on the task; (3) the same transformer-based model trained

from scratch on the task. Moreover, results by models are compared to (4) human per-

formance.

7For 22 datapoints it was not possible to find all the decoys, hence they were discarded during the
creation of the dataset.
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6.5.1 Models

Baseline For each 〈image, intention, action〉 datapoint in the sample, baselineLV

builds a multimodal representation by concatenating the 2048-d visual features of the

image (extracted from a pretrained ResNet-101; ?) with the 300-d embedding of the

intention and the 300-d embedding of the action. Embeddings for both the intention and

the action are obtained by summing the GloVe embeddings (Pennington et al., 2014)

of the words in them. The concatenated features are linearly projected into a vector

(8192-d), passed through ReLU, and linearly projected into a single value. Softmax

probabilities are computed over the 5 sample’s candidate values. The baselineL only

concatenates intention and action embeddings (600-d representation); baselineV con-

catenates the visual features with the action embedding (2348-d). Finally, to account

for any bias due to unavoidable association and repetition patterns among the actions,

we test a version of the baseline which only encodes the actions. We refer to it as

actions-only.

RoBERTa In setting L, we employ RoBERTa (Liu et al., 2019a), which achieves

best-performing performance in the challenging multiple-choice SWAG task (Zellers

et al., 2018). We adapt RoBERTaBASE to our task as following: for each of the 5

〈image, intention, action〉 datapoints in the sample, RoBERTa encodes the input as

a sequence composed by 〈CLS〉, the intention, 〈SEP 〉, the action, and 〈EOS〉. The

encoding corresponding to the 〈CLS〉 token (768-d) is passed through Tanh, linearly

projected into a vector (768-d), passed to Dropout (Srivastava et al., 2014), and linearly

projected into a single value. Softmax probabilities are computed over the 5 sample’s

candidate values. As mentioned above, we evaluate two model versions: RoBERTaL,

pretrained and fine-tuned on our task, and RoBERTasL, trained from scratch on BD2BB.

LXMERT In settings LV and V, we employ LXMERT (Tan and Bansal, 2019) Like

RoBERTa, LXMERT uses the special tokens 〈CLS〉 and 〈SEP 〉 but, differently from

RoBERTa, here 〈SEP 〉 is used both to separate sequences and to denote the end of the

textual input. Hence, we take this into account when adapting LXMERT to our task.
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Similar to RoBERTa, we use the encoding corresponding to 〈CLS〉 (768-d) to obtain

a probability distribution over the 5 sample’s candidate values. For each task setting,

we evaluate each model in two versions, i.e., pretrained model fine-tuned on our task

(LXMERTLV and LXMERTV ); trained from scratch (LXMERTs
LV and LXMERTs

V ).

Experimental setup For baseline models, we perform hyperparameter search on learn-

ing rate, Dropout, and hidden size; as for transformer-based models, we use the best

configurations reported in the source papers (reproducibility details in the appendix).

All models are trained with 3 random seeds for 50 epochs with Adam (Kingma and

Ba, 2015) minimizing a Cross Entropy Loss between the probability distribution over

the 5 sample’s candidate actions and the ground-truth action. For each of the 3 runs, we

consider the model with the highest validation accuracy. Average accuracy and standard

deviation over 3 runs is computed.

6.5.2 Human Evaluation

We randomly extracted 300 unique samples from the dataset and split them into 3 par-

titions including 100 samples each. For each partition, we collected judgments by 3

participants in each setting of the task: L, V, and LV. Crucially, participants did the task

only once per partition; i.e., they judged each sample only in one of the 3 task settings.

Using Quiz Maker,8 we collected 2, 700 unique responses from 11 subjects who par-

ticipated on a voluntary basis. For each setting of the task, we counted as ‘correctly

predicted’ the samples where at least 2 out of 3 annotators converged on the target ac-

tion. Moreover, for each task setting we computed the ‘best’ accuracy, i.e., the average

of the 3 participants who achieved the highest accuracy in each split.

8https://www.quiz-maker.com

https://www.quiz-maker.com
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model accuracy
val ± std test ± std

S
C

R
A

T
C

H actions-only 44.0 ± 0.4 44.6 ± 0.8
baselineL 45.3 ± 0.9 45.9 ± 0.9
baselineV 45.8 ± 0.8 46.1 ± 0.8
baselineLV 48.6 ± 0.9 49.0 ± 0.9

S
C

R
A

T
C

H RoBERTasL 47.0 ± 0.2 47.2 ± 0.1
LXMERTs

V 30.9 ± 0.9 31.8 ± 0.4
LXMERTs

LV 50.4 ± 0.3 51.3 ± 0.4
P

R
E

T
R

A
IN RoBERTaL 55.9 ± 0.9 56.2 ± 1.3

LXMERTV 59.1 ± 0.2 59.2 ± 0.6
LXMERTLV 62.8 ± 2.3 62.2 ± 2.2
humansL 50.0 (best 54.0)
humansV 72.3 (best 73.7)
humansLV 79.0 (best 82.3)
chance 20.0 20.0

Table 6.2: Results for the 3 settings: L, V, and LV. s refers to transformer-based models
trained from scratch. For each model, we report average accuracy and std over 3 runs.
Human accuracy is computed over 300 samples (we report values based on both major-
ity vote, i.e., 2 out of 3, and average of best participants; see 6.5.2).

6.6 Results

Results by both models and humans are reported in Table 6.2. Several key observations

can be made.

Multimodal integration is the key. The overall best-performing model in BD2BB is

LXMERTLV (62.2%), which outperforms the other pretrained models, i.e., RoBERTaL

(56.2%) and LXMERTV (59.2%). On the one hand, this shows that disposing of both

modalities is beneficial to perform the task. This is in line with the results by human par-

ticipants, who achieve the highest accuracy in the multimodal setting (79% vs. 50% of L

and 72.3% of V). On the other hand, the finding that LXMERTV surpasses RoBERTaL

(+3%) confirms that the image provides more information compared to the intention.

This, again, is consistent with human results, where the gap between V and LV (−7%)

is much smaller compared to that between L and LV (−29%). For humans, this visual

advantage is likely due to (MS-COCO) images depicting complex events that elicit a

broad range of aspects related to people’s experience of the world. As for the models,
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it confirms that LXMERT, thanks to its massive pretraining, is effective in extracting

fine-grained information from images.

Models are far from humans. Humans achieve around 80% accuracy (‘best’ 82%)

on the multimodal version of the task. This is a high result, in line with previous work

with a similar setup (consider, e.g., SWAG, where ‘expert’ human accuracy is around

85% with 4 choices, i.e., chance level at 25%; Zellers et al., 2018). At the same time, the

non-perfect human accuracy reveals that the benchmark is challenging due to the careful

selection of plausible decoys. Compared to humans, the best-performing LXMERTLV

achieves much lower results (−17%), which indicates that BD2BB is challenging and

far from being solved. Since the gap between best-performing models and human par-

ticipants in unimodal settings is smaller (−13% in V and −6% in L), the biggest com-

putational challenge lies in the integration of complementary information from different

modalities.

Pretrained is better. Pretrained models neatly outperform the baseline in all the ver-

sions of the task9 and, more interestingly, also all their counterparts trained from scratch.

As can be seen in Table 6.2, indeed, transformer-based models trained from scratch

achieve results that are only slightly better than those by the baseline in both LV and

L; as for V, LXMERTs
V turns out to perform worse than the baselinesV (and even worse

than the actions-only baseline). This clearly shows that these architectures are very ef-

fective when building on their pretraining, but suffer when challenged to learn a task

from scratch with relatively few samples.

6.7 Analysis

Best models’ errors We perform an analysis on the errors made by the 3 pretrained

models to check whether they fall more often into the language-based or vision-based

9It should be noted that the baselines are only slightly better than actions-only; this suggests that these
models are only marginally capable of extracting (and combining) relevant information for the task from
the image and the intention.
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I: If I am in the mood to act silly, I will. . . If I don’t like this, I will. . .

L: attend a dinner like this man holding a gift sit next to the woman on the bench
L: buy him a cake and invite his friends to party get my face painted
T: act silly with this man and eat cake avert my eyes from the man who looks silly
V: help my child cut their cake teach him how to tie a tie
V: have cake with soldiers wear a costume and march in a parade

Figure 6.5: Two samples where humans give the correct answer in the LV setting—but
neither in L nor in V. LXMERTLV picks the correct answer (blue) in the left sample,
a wrong one (red) in the right sample. I: Intention; T: Target action; L/V: Language-
/Vision-based decoys. Best viewed in color.

decoys. To do so, we focus on each model’s best run, and compute the proportion

of wrong predictions in the test set that belong to one or the other decoy type. For

comparison, a model that makes modality-balanced wrong predictions should fall into

language-/vision-based decoys 50% of the times. Quite surprisingly, RoBERTaL has

only a moderate bias toward language-based decoys: in fact, only 60.2% of its errors are

of this type. As for LXMERTV , no bias at all is observed toward the vision-based decoys

(48.6%). Finally, the best-performing LXMERTLV is shown to be halfway between

these models, with only a slight preference for language-based (55.1%) over vision-

based decoys (44.9%).

In Figure 6.5, we report two cherrypicked examples where LXMERTLV either correctly

predicts the target action (left) or choses a wrong one, in this case a vision-based decoy

(right). It is worth mentioning that these two cases are challenging: for both of them,

human annotators were able to pick the correct action only in the multimodal version of

the task—but neither in L nor in V. As can be seen, in the leftmost example the model
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model accuracy humans
hard test ± std

RoBERTaL 55.1 ± 1.6 56.5
LXMERTV 56.9 ± 0.8 73.9
LXMERTLV 58.3 ± 2.7 78.3

Table 6.3: Accuracy of the pretrained transformer-based models on the hard samples of
the test set. Human accuracy is computed over 92 samples.

does a good job in combining complementary information from language and vision. In

the rigthmost one, instead, it picks an action that is very much plausible based on the

image, but not in presence of the given intention containing a negation (don’t). Taken

together, these analyses indicate that no simple strategies can be exploited by models

to detect and rule out decoy types. Language- and vision-based decoys are equally

challenging, and combining complementary information is needed to solve the task.

Hard test To explore the robustness of the pretrained models, we check how well they

perform on a subset of the test set where several features of the samples were unseen

in training. In particular, neither the image nor the intention were seen in training;

moreover, the target action could be seen as a decoy but never as the target. In Table 6.3

we report the results by the 3 pretrained models on this subset (1, 505 samples); we

refer to it as the hard test. As can be seen, all models experience a small decrease in

accuracy compared to the whole test set—while humans do not. This indicates that the

hard test is indeed more challenging. However, pretrained models are overall robust

to unseen features. In line with the standard test set, LXMERTLV still outperforms the

unimodal models, though its drop in performance (−4%) is more pronounced compared

to them (−1/2%). This suggests that part of the advantage of the multimodal system

over the unimodal ones is due to its fine-tuning. Indeed, pretraining on its own is not

enough to properly combine complementary information from the intention and the

image. Finally, since humans do not perform worse in these samples, the performance

gap with LXMERTLV increases to ∼ 20%.
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6.8 Conclusion

Inspired by real-life communicative contexts where language and vision are non-redundant,

we proposed a novel benchmark to challenge models to combine complementary mul-

timodal information. This is a crucial ability that, we believe, our benchmark will con-

tribute push further. In particular, recently proposed universal multimodal encoders can

greatly benefit from relatively small but challenging resources as is BD2BB, which can

be used to shed light on model abilities and help developing architectures which exhibit

more human-like skills.

Here, we evaluated LXMERT and showed that it struggles to achieve results that are

comparable to those by humans. In the future, we plan to evaluate other multimodal

encoders on it, and to contribute to the development of better multimodal systems.

6.9 Summary

So far, we discovered that:

+ Pre-Trained Transformers can, to some extent, integrate complementary multi-

modal information;

+ Pre-trained models are much better than models trained from scratch;

− However, their accuracy is still far from human performance.



Chapter 7

Impact of Task Difficulty on Transfer

Learning of Neural Multimodal Models

In this chapter, we study the impact of task difficulty on the ability of multimodal mod-

els to transfer previously-acquired knowledge to new tasks and to not forget what they

have previously learned in VQA. In particular, motivated by evidence from psycholin-

guistics, we devise a set of linguistically-informed VQA tasks which differ by the types

of questions involved (Wh-questions and polar questions). Then, we assess whether the

order in which a child acquires question types facilitates transfer learning and mitigates

forgetting. Our results show that training models on easier tasks first improves accuracy

on the following tasks and mitigates forgetting of the previously-learned ones.

7.1 Introduction

Neural models are incapable of continuously learning new tasks, as they forget how to

perform the previously-learned ones. This problem, called catastrophic forgetting, is

prominent in ANNs (McClelland et al., 1995). Continual Learning (CL) addresses this

This chapter describes the work by Greco et al. (2019).
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Wh-q: y ∈ {metal, blue, sphere,..,large} 
Q: What is the material of the large 
object that is the same shape as the tiny 
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Yes/No-q: y ∈ {Yes, No} 
Q: Does the cyan ball have the same 
material as the large object behind the 
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CLEVR (Johnson et al., 2017)
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Figure 7.1: Overview of our linguistically-informed CL setup for VQA.

problem by trying to equip models with the capability to continuously learn new tasks

over time in order to build models which are able to transfer previous knowledge to

new tasks without forgetting what they have previously learned (Ring, 1997). CL has

received considerable attention in Computer Vision (e.g., Zenke et al., 2017; Kirkpatrick

et al., 2017), but far less attention within Natural Language Processing.

We investigate CL in the context of multimodal models for VQA (Antol et al., 2015b)

motivated by evidence from psycholinguistics. Evidence from child language acquisi-

tion indicates that children learn Wh-questions before polar (Yes/No) questions (Morad-

lou and Ginzburg, 2016; Moradlou et al., 2018). Motivated by this finding, we design a

set of linguistically-informed experiments: i) to investigate whether the order in which

children acquire question types facilitates transfer learning and mitigates catastrophic

forgetting of neural models; ii) to measure how far two well-known CL approaches help

to overcome the problem (Robins, 1995; Kirkpatrick et al., 2017)
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Contributions: Our study contributes to the literature on CL in Natural Language

Processing. In particular: i) we introduce a CL setup based on linguistically-informed

task pairs which differ with respect to question types and level of difficulty; ii) we

show the importance of task order, an often overlooked aspect, and observe asymmetric

synergetic effects; iii) our results show that training models on easier tasks first improves

accuracy on the following tasks and mitigates forgetting of the previously-learned ones;

iv) moreover, our VQA model suffers from extreme forgetting; rehearsal gives better

results than a regularization-based method. Our error analysis shows that the latter

approach encounters problems even in discerning Task A after having been trained on

Task B. Our study opens the door to deeper investigations of CL on linguistic skills with

different levels of difficulty based of psycholinguistics findings.

7.2 Task Setup

As a first step towards understanding the connection between linguistic skills and the

impact on CL, we design a set of experiments within VQA where tasks differ with re-

spect to the type of question and the level of difficulty according to the psycholinguistics

literature. The overall setup is illustrated in Figure 7.1 and described next.

Dataset We rely on CLEVR, a diagnostic VQA dataset previously described in section

2.5.1 in order to build our multimodal tasks. In particular, we select CLEVR since it

provides different question types testing several abilities of multimodal models.

Multimodal Tasks We select the CLEVR sub-tasks ‘query attribute’ and ‘equal attribute’

with attributes color, shape, material, and size. The two types of questions differ by an-

swer type y ∈ Y:

• Wh-questions (Wh-q): Questions about the attribute of an object, e.g., “What is the

material of the large object. . . ?”, where y ∈ {blue, cube, small, . . . ,metal} spans

over |color| = 8, |shape| = 3, |size| = 2 and |material| = 2 (in total |Y| = 15).
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• Yes/No questions (Y/N-q): Questions that compare objects with respect to an at-

tribute, e.g., “Does the cyan ball have the same material as . . . ?”, with y ∈ {yes, no}
(in total |Y| = 2).

Task Order We learn Task A followed by Task B (TASKA→TASKB), but experiment

with both directions, i.e., by first assigning Wh-q to Task A and Y/N-q to Task B, and

vice versa. We expect that the inherent difficulty of a task and the order in which tasks

are learned have an impact on CL.

Single-head Evaluation CL methods can be tested in two ways. We opt for a single-

head evaluation setup (see Fig. 7.1, lower) with an output space over labels for all tasks

(here: all CLEVR labels). In contrast, in a multi-head setup predictions are restricted

to task labels, as the task identifier is provided. Single-head is more difficult yet more

realistic (Chaudhry et al., 2018).

7.3 Models and Experiments

VQA Model We take the model proposed by Yang et al. (2016) as a starting point,

using the code released by Johnson et al. (2017d) (LSTM+CNN+SA). Questions are

encoded with an RNN with LSTM units. Images are encoded with a ResNet-101 CNN

pre-trained on ImageNet (He et al., 2016). The two representations are combined us-

ing Spatial Attention (SA) (Yang et al., 2016) to focus on the most salient objects and

properties in the image and text. The final answer distribution is predicted with a MLP.

Baselines In order to measure catastrophic forgetting, we first consider per-task base-

lines: a random baseline (i.e., random stratified sample of the label distribution per task)

and the results of a model trained independently on each task (i.e., over task-specific Y).

For CL, we report again a random baseline (this time a random stratified sample draw-

ing predictions according to the answer distribution of both tasks), and we consider the

Naive and Cumulative baselines proposed by Maltoni and Lomonaco (2018). The Naive
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model is fine-tuned across tasks: It is first trained on Task A and then on Task B starting

from the previously-learned parameters. The Cumulative model is trained from scratch

on the training sets of both Task A and Task B. The performance of this model is a kind

of upper bound, since it is the performance that a CL model should try to achieve.

Continual Learning Models In CL there are two broad families of methods: those

that assume memory and access to explicit previous knowledge (instances), and those

that have only access to compressed knowledge, such as previously-learned parameters.

These two families correspond to rehearsal and regularization, respectively. A widely-

used regularization-based approach is Elastic Weight Consolidation (EWC, Kirkpatrick

et al., 2017). A regularization term, parametrized by λ, is added to the loss function

aiming the model to converge to parameters where it has a low error for both tasks.

In the Rehearsal approach (Robins, 1995), the model is first trained on Task A, then

the parameters are fine-tuned through batches taken from a dataset containing a small

number of examples of Task A and the training set of Task B. The selection of training

examples of Task A is done through uniform sampling.

Data and Training Details Since CLEVR has no published ground-truth answers for

the test set, we split the original validation set into a validation and a test set. In order

to avoid performance impact due to different training data sizes, we down-sample the

training sets to the same size (Y/N-q data size), resulting in 125,654 training instances

per task. The validation and test sets contain, respectively, 26,960 and 26,774 data

points for Wh-q and 13,417 and 13,681 data points for Y/N-q.

For the baselines, we select the model which reaches maximum accuracy on the valida-

tion set of each task. For CL, we choose the model with the highest CL score, which

is computed according to the validation set of each task pair. Details on the chosen

hyper-parameters and evaluation metrics are provided in the appendix.
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7.4 Results and Analysis

The main results are provided in Table 7.1. There are several take-aways.

Task Difficulty The results of the per-task models (cf. first two rows in Table 7.1)

show that there is a large performance gap between the two tasks. Wh-q is easier (.81)

than Y/N-q (.52), regardless of the fact that a priori the latter should be easier (as shown

by the respective task-specific random baselines). The Y/N-q task-specific model per-

forms only slightly above chance (.52, in line with what Johnson et al. (2017a) report

for ‘equal attribute’ questions). This shows that despite the limited output space of

the Y/N-q task, such type of questions in CLEVR are complex and require reasoning

skills (Johnson et al., 2017a).

Catastrophic Forgetting We observe that extreme forgetting is at play. Naive forgets

the previously learned skill completely: When tested on Task A after having been fine-

tuned on Task B, it achieves 0.0 accuracy on the first task for both directions (I and II,

cf. Table 7.1 lower). The Cumulative model by nature cannot forget, since it is trained

on both tasks simultaneously, achieving .81 and .74 on Wh-q and Y/N-q, respectively.

Interestingly, we observe an asymmetric synergetic effect. Being exposed to the Wh-q

task helps the Cumulative model improve on Y/N-q, reaching results beyond the task-

specific model (from .52 to .74). The effect is not symmetric as the accuracy on Wh-q

does not further increase.

Does CL Help? Current CL methods show only limiting (or no) effect. EWC per-

forms bad overall: In the II) setup (Y/N→WH, harder task first), EWC does not yield

any improvement over the Naive model; in the WH→Y/N setup, the model’s result on

Task A is above chance level (.25 vs. .04) but far off per-task performance (.81). The

Rehearsal model forgets less than Naive and EWC in both setups: In the Y/N→WH

setup, it is above chance level (.51 vs. .25) reaching per-task random baseline results on

Y/N questions (i.e., the model is able to identify Task A, despite the harder single-head
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Random (per-task) WH: 0.09 Y/N: 0.50
LSTM+CNN+SA WH: 0.81 Y/N 0.52

CL SETUPS: I)WH→Y/N II) Y/N→WH

Wh Y/N Y/N Wh
Random (both tasks) 0.04 0.25 0.25 0.04
Naive 0.00 0.61 0.00 0.81
EWC 0.25 0.51 0.00 0.83
Rehearsal 0.75 0.51 0.51 0.80
Cumulative 0.81 0.74 0.74 0.81

Table 7.1: Mean accuracy over 3 runs: Trained on each task independently (first two
rows; per-task label space Y) vs. CL setups (single-head label space over all Y).

50 0 50
40

20

0

20

40

Wh

25 0 25 50

20

0

20

40

60
Cumulative

25 0 25 50

20

0

20

40

EWC

25 0 25

40

20

0

20

40

Rehearsal

equal_color
equal_material

equal_shape
equal_size

query_color
query_material

query_shape
query_size

Figure 7.2: Analysis of the neuron activations on the penultimate hidden layer for the I)
WH → Y/N setup. “equal {shape,color,material,size}” refers to Y/N-q, “query {..}”
refers to WH-questions.

setting, in contrast to the Naive and EWC models). There is no boost derived from being

exposed to the Wh-q task in any of the two setups.

Task Order The results in Table 7.1 show that the order of tasks plays an important

role: WH→Y/N facilitates CL more than the opposite order: we notice an higher perfor-

mance on the second task and less forgetting on the first task when WH is learned first.

This confirms psycholinguistic evidence. Overall, Rehearsal works better than EWC,

but mitigates forgetting only to a limiting degree.

Analysis In order to get a deeper understanding of the models, we analyze the penul-

timate hidden layer on a sample of 512 questions from the test sets of both tasks (cf.

Fig. 7.2) and relate the representations to confusion matrices of the whole test sets (pro-
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vided in the appendix) and test results (Table 7.1).

First of all, the model which has been trained on Wh-q is able to discriminate Wh-

questions about different attributes very well. That is reflected in an overall high accu-

racy (.81). It otherwise clusters all instances from the other task (Y/N-q, which it has

not been trained on) around Wh-questions related to size.

The Cumulative model, in contrast, is able to further tease the different kinds of Y/N

questions apart. Questions about different attributes become distinguishable in the plot,

although overall Y/N questions remain closer together than the clusters for Wh-q. This

is in line with the lower performance of Cumulative on Y/N-q. Our examination of

the confusion matrices confirms that the two question types are never confused by the

Cumulative model. In contrast, the Naive model is very prone to this type of mistake.

As for the CL models, Fig. 7.2 (two rightmost plots) shows that EWC learns represen-

tations which are rather similar to those learned by the model trained on Wh-q inde-

pendently: Y/N questions result in a big hard-to-distinguish “blob”, and are confused

with Wh-q about size, as visible in Fig. 7.2 and the confusion matrix analysis (in the

appendix). In contrast, Rehearsal remembers how to distinguish among all kinds of

Wh-q and between Wh-q and Y/N-q. The error analysis confirms that the model hardly

makes any mistakes related to task confusion. However, despite the higher performance

than EWC, Rehearsal is still not able to discern well between different kinds of Y/N-q.

7.5 Related Work

Early work on life-long learning Chen et al. (2015); Mitchell et al. (2015) is related to

ours, but typically concerns a single task (e.g., relation extraction). Lee (2017) aims to

transfer conversational skills from a synthetic domain to a customer-specific application

in dialogue agents, while Yogatama et al. (2019) show that current models for different

Natural Language Processing tasks do not properly reuse previously-learned knowledge.

CL has been mostly studied in Computer Vision. To the best of our knowledge, little

has been done on forgetting in the context of VQA. A study on forgetting in the VQA
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which is the closest to ours is Perez et al. (2018). They show that their model forgets

after being fine-tuned on data including images with objects of colors other than those

previously seen. We took this work as starting point and extended it in order to consider

different types of questions and to test different CL methods beyond fine-tuning.

7.6 Conclusion

We assessed to what extent training models on a curriculum of increasingly complex

tasks improves transfer learning and mitigates catastrophic forgetting in the context of

VQA. In order to train the model on tasks having different difficulty, we built two tasks

involving different linguistic characteristics which are known to be learned sequentially

by children and on which multimodal models reach different performance.

We show that the order in which models learn tasks is important, WH→Y/N facilitates

continual learning more than the opposite order, thereby confirming psycholinguistic

evidence. Moreover, our results show that dramatic forgetting is at play in VQA, and we

empirically found Rehearsal to work better than a regularization-based method (EWC).

Moreover, our error analysis highlights the importance of taking the kind of mistakes

made by the models into account: ideally, a model which does not detect Task A after

having been exposed to Task B should be penalized more than a model that answers

Task A with wrong task-related labels, but is still capable of identifying the task. Most

importantly, our study revealed that differences in the inherent difficulty of the tasks at

hand can have a strong impact on CL. Regularization-based methods like EWC seem to

work less well when they are applied to tasks with different levels of difficulty, as in our

experiments. We reserve a deeper investigation of this aspect to future research.

7.7 Summary

So far, we discovered that:
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+ Training a neural multimodal model on a curriculum of increasingly complex

tasks improves transfer learning and mitigates catastrophic forgetting;

− However, dramatic forgetting is still at play in neural multimodal models.
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Conclusion

In this thesis, we investigated to what extent pre-trained Transformers effectively lever-

age pre-training and attention mechanisms, two of their major strengths, while dealing

with multimodal tasks requiring to merge different pieces of information.

In the first place, we focused on the ability of pre-trained Transformers to detect salient

information in either language modality or vision modality while grounding one into

the other. In order to investigate that, we compared the performance of pre-trained

Transformers, in a GuessWhat?! visual dialogue task, with the performance of Trans-

formers trained from scratch and other not-attention-based models. Models receiving

both the linguistic and visual modalities or the linguistic modality only (textual input).

In this regard, the main outcomes of our research were that pre-trained Transformers

greatly outperformed other models mostly due to their pre-training when they had to

deal with referential guessing games. Indeed, they detect the most salient information

and understand the structure of questions/answers in the dialogue history and identify

regions in questions about an object in the image. Moreover, pre-trained Transformers

were able to identify the most salient information in the dialogue history through their

attention mechanism regardless of the order of the dialogue turns. However, the atten-

tion mechanism, at least if not associated with pre-training, did not bring a huge gain

in accuracy, since non pre-trained Transformers did not outperform not-attention-based

models trained from scratch. Although pre-trained Transformers reached a high perfor-
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mance with respect to the other models, they struggled to obtain the same performance

when compared to humans. We noticed that they were not able to effectively understand

negative answers in a dialogue history in order to select the object the dialogue referred

to. Moreover, they were not able to leverage their attention mechanism when answering

spatial questions involving groups of objects in the image.

In the second place, we focused on the ability of pre-trained Transformers to combine

complementary information coming from language and vision. In order to do that,

first, we built an ad hoc task which requires to guess the most plausible action based

on complementary linguistic and visual cues. Then, we compared the performance of

pre-trained Transformers with the performance of Transformers trained from scratch

and other not-attention-based models on the ad hoc built task. The previously-noticed

pattern emerged in this study too: pre-trained Transformers outperformed other models

mostly due to their pre-training. However, their performance is still weak compared to

humans. This shows that state-of-the-art multimodal models still need to be improved

in order to effectively integrate language and vision.

In our research, we were also interested in mitigating the issue of catastrophic forget-

ting, which affects both classical computational models and pre-trained Transformers.

Indeed, ideally, models should be not only able to transfer their knowledge to new tasks,

but also to avoid forgetting how to solve previously-solved tasks after having learned a

new task. We investigated this parallel issue by assessing whether a better control of

tasks’ order helps to mitigate catastrophic forgetting in visual question answering tasks

involving polar and Wh questions about images. We proved that training models on

a curriculum of increasingly complex tasks mitigate forgetting and improves transfer.

However, dramatic forgetting is still at place in neural multimodal models.

8.1 Contribution and Perspectives

Generally, our work aimed to assess whether pre-trained multimodal models are as

“good” as they seem for merging language and vision. We believe that a better un-

derstanding of the way models integrate the two modalities is essential for a future
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improvement of the performance of pre-trained models. In order to study their strengths

and weaknesses, we proposed:

• A new setting to evaluate the ability of computational models to deal with nega-

tion in visual dialogue. Since models seem to struggle with negation, the designed

setting may be a useful tool to going deeper on this crucial issue;

• A classification of spatial questions about objects in images which enables to iden-

tify strengths and weaknesses of computational models (e.g., identifying spatially

single entities in groups in our experiment). This classification can be further used

to investigate how different models or the same models in different conditions deal

with spatial information;

• A task and a dataset to evaluate the ability of these models to integrate different

modalities (language and vision in our task) that convey different but complemen-

tary information;

• An adaptation of pre-trained Transformers to solve referential visual tasks (iden-

tifying or answering questions about a target object in an image).

This research has many future directions:

• More research should be done on the issue to better understand whether compu-

tational models can learn to ground negation. Consequently, working on solving

this crucial problem is needed. Moreover, given that models learn to encode nega-

tion in grounded contexts, the next step will be to transfer such skills to language-

only settings by exploiting transfer learning methods;

• Since pre-trained models struggle to perform comparably to humans, an evalu-

ation of other multimodal encoders may contribute to the development of better

multimodal systems.

Finally, a less direct but crucial future direction of this study is to investigate how agents

having different background knowledge adapt their language in order to improve their
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knowledge by learning from each other. We are currently working on developing these

abilities.
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Appendix

9.1 Chapter 3

In our experiments, we used the GuessWhat?! dataset (http://guesswhat.ai/

download). The dataset contains 155000 English dialogues about approximately

66000 different images. The training split contains 108000 datapoints, the validation

split 23000 datapoints, and the test split 23000 datapoints. We considered only the dia-

logues corresponding to the games succeeded by humans and having less or equal than

10 turns.

For training LSTM based models we adapted the source codes available at https://

github.com/shekharRavi/Beyond-Task-Success-NAACL2019 and at https:

//github.com/GuessWhatGame/guesswhat/. For training transformer based

models we adapted the source code available at https://github.com/huggingface/

transformers. The scripts for all the experiments and the modified models will be

made available upon acceptance. For all models, we used the same hyperparameters of

the original works. When adapting Transformers to the GuessWhat?! task, we scaled

the representation of the CLS token from 768 to 512. We used PyTorch 1.0.1 for all

models except for LSTM, for which we have used Tensorflow 1.3. All models are

trained with Adam optimizer. For transformer based models we used a batch size equal

to 16, a weight decay equal to 0.01, gradient clipping equal to 5, and a learning rate
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which is warmed up over the first 10% iterations to a peak value of 0.00001 and then

linearly decayed.

Regarding the infrastructure, we used 1 Titan V GPU. LSTM based models took about

15 hours for completing 100 training epochs. Transformer based models took about

4 days for completing 25 training epochs. Each experiment took about 10 minutes to

evaluate the best trained models.

Details on the best epoch, the validation accuracy, and the number of parameters of each

model are reported in Table 9.1.

Model Best epoch Validation accuracy Parameters
LSTM 19 65.6 5,030,144
RoBERTa 7 68.7 125,460,992
RoBERTa-S 14 64.7 125,460,992
V-LSTM 9 65.2 10,952,818
LXMERT-S 16 65.2 208,900,978
LXMERT 12 70.0 208,900,978

Table 9.1: Epoch, validation accuracy, and number of parameters for best models.

9.2 Chapter 5

9.2.1 Game examples

It seems that RoBERTa takes spatial questions into account more than LXMERT, maybe

because it exploits the spatial coordinates of the candidate objects whereas LXMERT

overrides that information with the one it receives from the visual features. An example

of dialogue where RoBERTa shows its strength on spatial questions is shown in figure

9.1. In this dialogue, models receive only the last turn and RoBERTa successfully ex-

ploits the spatial information of the last turn to correctly guess the fork which is the

closest candidate to the camera, whereas LXMERT selects the wrong target.

LXMERT seems, instead, to shine when grounding questions which involve to recog-

nize objects in the image. For instance, figure 9.2 shows an example of game where

LXMERT correctly guesses the baby on the right, but RoBERTa does not.
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is a person? No
is a knife? No
is a fork? Yes
near us on the plate? Yes

RoBERTa/Human

LXMERT

Figure 9.1: Example of game where RoBERTa correctly guesses the object, but
LXMERT does not.

Is it a Person? Yes
Is inside bus? No
Is the lady wearing white t-shirt? No
Is it the baby? Yes

LXMERT/Human

RoBERTa

Figure 9.2: Example of game where LXMERT correctly guesses the object, but
RoBERTa does not.

As highlighted in the experiments, it seems that the mistakes done by RoBERTa are

more human-like. An example pointing out this phenomenon is shown in figure 9.3,

where models and one human receiving the whole dialogue except for the last turn

selects the wrong target in the image. Reading the dialogue, it is clear that the target is

not on the bike on the right side of the image. Nevertheless, LXMERT wrongly guesses

the person on that bike. Roberta and one human, instead, guess the person standing on

the left part of the image as the target, but they are wrong since the dialogue specifies

that the target is on the bike.
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Is it a person? Yes
On the bike? Yes
On the right side bike? No
Is it the front person on the left side? No

Roberta/Human

LXMERT

Target

Figure 9.3: Example of game where models and humans are all wrong, but RoBERTa
does the same mistake performed by one human.

Figure 9.4: Data collection. Examples of good/bad annotations provided to participants
at the beginning of the task. Note that the errors and corresponding warnings are shown
to make them familiarize with the tool.

9.3 Chapter 6

9.3.1 Further Details on Data (Sec. 3)

Data Collection

Crowdsourcers are presented with detailed instructions and examples before starting

with the annotation task. First, we introduce the task and provide them with some

details to familiarize with the annotation tool. Then, we give them instructions regarding

the constraints to be observed, i.e., for intentions: (1) to use present tense and (2) do
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not mention any of the entities depicted in the image; for actions: (1) to use present

tense and (2) do mention entities that are visible in the image. To make instructions

and constraints clearer, we show them several examples of good/bad annotations (see

Figure 9.4). Moreover, to make sure participants are performing the task properly (and,

crucially, to avoid collecting fake data from automatic bots), a verification question is

asked at the beginning of each image’s annotation phase. The verification question has

multiple correct answers, and only by picking one of these answers participants can

proceed with the annotation phase.

In addition, we add two sanity checks to the collected intentions. We check that (1)

they have a lenght of at least 5 tokens; if this is not the case, participants are shown a

warning and asked to fix their sentence; (2) they do not contain any noun referring to

an entity that is grounded in the image; this is checked by means of a simple heuristic

which extracts all the nouns from a given image’s MS-COCO captions. Nouns with a

frequency of 2 occurrences or more are not allowed, and when typing them turkers are

warned to modify their sentence.

BD2BB Dataset Statistics

As described in the chapter, the final BD2BB dataset includes 10, 265 samples, where

each sample includes a 〈image, intention, target action〉 triple associated with 4 se-

lected decoy actions. These triples were provided by 430 unique annotators. In partic-

ular, 253 were from the USA, 111 from the United Kingdom, 53 from Canada, 6 from

Ireland, 5 from New Zealand, 2 from Australia. Each of them provided, on average,

23.87 〈image, intention, target action〉 tuples contained in the dataset (min 1, max

192).

Each sample contains 5 actions. On average, these actions were provided by 4.90 unique

annotators (min 3, max 5); moreover, they were collected for 4.96 (min 3, max 5) unique

images, i.e., decoy actions in each sample refer to different images than the target one

in most of the cases.
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Figure 9.5: Data collection. One annotation sample presented to participants. Given an
image, participants are asked to provide an intention and an action. To ensure they are
doing the task properly, a verification question is asked preliminarily. Answering the
question correctly (multiple correct answers) leads to the annotation phase.

Meta-Annotation

Topics We manually inspectioned the 60 clusters obtained through k-means clustering

and removed 6 clusters for which we could not identify a coherent topic. Examples of

the action for each of the remaining 54 clusters with their corresponding label we have

assigned are provided in Table 9.2.

Numeric 4-Code Annotation We organize our data through a two-step system of

wordcodes using codes to mark the syntatic class and the word-type.

With the Stanford NLP parser Chen and Manning (2014) we extract from each action

syntatic information and mark: 1) the main verb: “code1”; 2) the direct or indirect ob-

ject of the main verb, as well as other complements related to the main verb: “code2”;

3) the second verb - if present (i.e. the verb of the coordinated or subordinated sen-

tence): “code3”; 4) the object of the second verb - if present: “code4”. In this case, we

considered not only the direct object of the second verb but also all the words referring

to an object grounded in the corresponding image, that specifies the action expressed

by the sentence. This way, for each action in which it was possible, we have a word
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labels action example code1 code2 code3 code4
tennis grab my tennis raquet firmly and hit the ball grab racket hit ball
food grab some delicious food grab food
cake cut the cake cut cake
snacks purchase a hot dog purchase hotdog
actions with ball hit the ball as hard as i can hit ball
skateboard 1 go skateboarding go skateboard
bikes and motos take a ride on the motorbike ride motorbike
skateboard 4 pull off this skateboard trick pull off trick
surf grab my surfboard and join the woman grab surfboard join woman
phone call someone for a chat call someone
interact with people join these people and talk join people talk
baseball 2 yell at the batter to distract him yell batter distract batter
sport audience watch this game watch game
approaching women try to get the woman’s attention get attention
pizza order a slice of pizza order pizza
ski use my ski poles judiciously use ski poles
drink i will drink my drink and watch people walk by drink drink watch people
kids move the baby so i can use the computer move baby use computer
cooking help those women to cook help women cook
videogames grab an extra remote and join the game grab remote join game
pets take a piece of cake and give it to the dog take cake give dog
clothing wear my sun glasses wear glasses
relax i would look for a seat to rest look for seat
umbrella use the pink umbrella use umbrella
urban activities try to cross the street to investigate the trams cross street investigate trams
laptop i will use that laptop the best way use laptop
baseball 3 i will play as batter in a game of baseball play game
baseball 1 watch a baseball game watch baseball game
team sports i play a soccer game play soccer
frisbee 2 join a frisbee team join team
birthday i will sing happy birthday to the girl sing happy birthday girl
water sports grab my board and ride the waves grab board ride wave
photo to go to the bathroom to get a selfie go to bathroom get selfie
zoo animals ride an elephant ride elephant
public transports i will get on the bus and take a trip get on bus take trip
skateboard 2 will sit on the wall and watch the skateboarder sit wall watch skateboarder
frisbee 1 i will leave these men to play their little frisbee game leave men play frisbee
wii play a wii game play wii
bedtime instead go into my room and lay down go room lay
manual work / hobbies use the scissors to make oragmi use scissors make origami
animals farm watch the man shear the sheep watch man shear sheep
good intentions get the right job get job
kite enjoy watching the people fly their kites enjoy watch people
horse riding ride a horse ride horse
toilet things brush my teeth brush teeth
skateboard 3 i will go to skate park go skatepark
street scenes stealthily unzip his backpack and take his possessions unzip backpack take possession
ski and snow take off my shirt and do a big ski jump in front of her take off shirt do jump woman
snowboard go snowboarding go snowboard
airport board that ancient plane board plane
fruit buy and eat a banana buy banana eat banana
haircut use the hairdryer use hairdryer
women and food tell the girl i hope she enjoys her pizza tell girl enjoy pizza
reading read the newspaper read newspaper

Table 9.2: To each of the 54 clusters we have assigned a label that summarize its main
topic as illustrated by the examples of the actions we report for each cluster. Each
action has been annotated with codes to mark the verb (code1) or the complement object
(code2) of the main sentence and the verb (code3) and the complements (code4) of
the secondary sentence. The clusters are listed by their size (from the biggest to the
smallest).
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that underlines the link between the linguistic and the visual aspect of the annotation. In

Table 9.2, for each action given as an example of the cluster we highlight the words cor-

responding to each of the four codes. Statistics about this meta-annotation are reported

in Table 9.3.

Furthermore, for each topic cluster, we assign a numeric wordcode to each unique word-

type in the 4 syntactic classes described above. In other words, each sentence is trans-

lated into a code composed of 4 numbers, each one representing a unique word in the

corresponding syntactic class.1 Illustrative examples are given in Table 9.4.2

9.3.2 Further Details on Experiment (Sec. 5)

Models

The number of parameters of each model is reported in Table 9.6. The number of

parameters is the same both in models trained from scratch and in pre-trained ones. The

validation accuracy and epoch of the best models for each one of the three runs are

reported in Table 9.5. For each of the three runs, we consider the model obtaining the

best validation accuracy. For each model, we report mean and standard deviation of the

test accuracies obtained across the three runs.

Baseline Our baseline is inspired by Jabri et al. (2016), but we use Softmax instead of

Sigmoid as the final activation function to compute a probability distribution over all the

candidates and choose the best one. We consider a version receiving image, intention

and actions (baselineLV ), a version receiving image and actions (baselineV ), and a

version receiving intention and actions (baselineL). We used PyTorch 1.4.0. Baseline

models were run on a CPU and their training took 33 seconds per epoch on average. We

used a batch size equal to 32. We performed a grid search over two hyperparameters:

the size of the hidden layer receiving concatenated figures (we tried values 8192 and

1In the case in which we choose to consider more than one object, we create a compositional code,
using the ’+’ mark

2Here numbers are assigned randomly, just to provide a concrete example of our meta-annotation.
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2048) and the dropout probability of zeroing elements of the input tensor right after the

ReLU activation function (we tried values 0.0 and 0.5). The combination of parameters

which leaded to the best validation accuracy was a hidden layer having size 8192 and a

dropout probability of 0.0 corresponding to not having any dropout.

RoBERTa The RoBERTaBASE model we used has 12 self-attention layers with 12

heads each. It uses three special tokens, namely CLS, which is taken to be the represen-

tation of the given sequence, SEP, which separates sequences, and EOS, which denotes

the end of the input. For each of the 5 〈image, intention, action〉 datapoints in the

sample, RoBERTa encodes the input as a sequence composed by CLS, the intention,

SEP, the action, and EOS. As in the original work, we use the representation corre-

sponding to the CLS token to use the encoder in the downstream task. For RoBERTa

we used PyTorch 1.0.1 and we started from the source code available at https:

//github.com/huggingface/transformers. Both when fine-tuning the pre-

trained model and when training the model from scratch, we used a batch size equal to

32 with 8 gradient accumulation steps, thereby having a batch size equal to 256, a weight

decay equal to 0.01, gradient clipping equal to 5, and a learning rate which is warmed

up over the first 10% steps to a peak value of 0.00005 and then linearly decayed.

LXMERT The LXMERT model we used has a Object-Relationship Encoder and

a Language Encoder which encode relationships between regions and relationships

words, respectively, through a self-attention mechanism, and a Cross-Modality Encoder

which encode relationships between regions and words and vice-versa through a cross-

modal attention mechanism followed by a self-attention mechanism. The number of

layers in the Language Encoder, Object-Relationship Encoder, and Cross-Modality En-

coder are 9, 5, and 5, respectively. As in RoBERTa, LXMERT uses the special tokens

CLS and SEP. Differently from RoBERTa, LXMERT uses the special token SEP both

to separate sequences and to denote the end of the textual input. As in the original

work, we use the representation corresponding to the CLS token to use the encoder in

the downstream task. For RoBERTa we used PyTorch 1.0.1 and we started from the

source code available at https://github.com/airsplay/lxmert. As with

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/airsplay/lxmert
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RoBERTa, both when fine-tuning the pre-trained model and when training the model

from scratch, we used a batch size equal to 32 with 8 gradient accumulation steps,

thereby having a batch size equal to 256, a weight decay equal to 0.01, gradient clipping

equal to 5, and a learning rate which is warmed up over the first 10% steps to a peak

value of 0.00005 and then linearly decayed.

9.4 Chapter 7

9.4.1 Implementation details

All models were trained using the Adam optimizer (Kingma and Ba, 2014) with a learn-

ing rate of 0.0005 and with a batch size of 64. We stopped the training of the models

whenever their accuracy on the validation set did not increase for 3 times in a row. Word

embeddings had a size of 300. RNNs had two hidden layers and LSTM cells had a size

of 1024. MLPs had one hidden layer of size 1024. We used the implementation released

by Johnson et al. (2017d) for the LSTM+CNN+SA architecture.

9.4.2 Hyperparameter search

For EWC, we searched for the best λ value among 100, 1000, 10000. For Rehearsal, we

considered sampling size values of 100, 1000, 10000 training examples from Task A.

We reported results for the models having the highest CL score computed according to

the validation sets of both tasks. For EWC, the best model had λ = 100; for Rehearsal,

the best model used 10000 training examples from Task A in both orders, WH→Y/N and

Y/N→WH.

9.4.3 Continual Learning Evaluation Measures

Besides standard Accuracy (Acc), we consider metrics that have been introduced specif-

ically to evaluate continual learning. In general, there is not much agreement among
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authors about the best metrics to evaluate continual learning models. Thus, Dı́az-

Rodrı́guez et al. (2018) propose a set of comprehensive metrics which allow to eval-

uate different factors of continual learning models, such as accuracy, forgetting, back-

ward/forward knowledge transfer, memory overhead, and computational efficiency. In

this chapter, we focus on evaluating accuracy and forgetting across tasks. First, the au-

thors define a measure describing the overall behavior of continual learning models. In

particular, for each measure i describing a particular aspect of a model, let ci (where

ci ∈ [0, 1]) be its average value and si (where si ∈ [0, 1]) be its standard deviation

across r runs. Let wi ∈ [0, 1] (where
∑C

i wi = 1) be the weight given to measure i.

Then, the CL score, which measures the overall score of the model across tasks, is de-

fined. Higher values are better and the measure lies in the range [0, 1]. Formally, it is

computed as follows:

CL score =

|C|∑
i=1

wici

Let R ∈ RN×N be the train-test accuracy matrix, whose element Ri,j is equal to the test

accuracy on task j after having trained the model up to task i, where N is the number of

tasks. In the evaluation of the CL score, we take the following measures into account:

• Mean accuracy (Mean acc) (Dı́az-Rodrı́guez et al., 2018), which measures the

overall accuracy of the model on the learned tasks. Higher values are better and

the measure lies in the range [0, 1]. Formally, it is defined as:

Mean acc =

∑N
i≥j Ri,j

N(N+1)
2

• Remembering (Rem) (Dı́az-Rodrı́guez et al., 2018), which measures how much

the model remembers how to perform previously learned tasks. Higher values are

better and the measure lies in the range [0, 1]. Formally, it is defined as:

Rem = 1− |min(BWT, 0)|,

where Backward transfer (BWT) allows to measure the influence that learning

a task has on the performance of the previously learned tasks and it is formally
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defined as:

BWT =
NN

i=2

∑i−1
j=1(Ri,j −Rj,j)
N(N−1)

2

• Intransigence (Int) (Chaudhry et al., 2018), which captures how much a model is

regularized towards preserving past knowledge and as a consequence less capable

of learning new tasks. Lower values are better and the measure lies in the range

[−1, 1]. Formally, intransigence on the k-th task is defined as:

Ik = a∗k − ak,k,

where ak,k denotes the accuracy on task k of the model trained sequentially up to

task k and a∗k denotes the accuracy on task k of the Cumulative model trained on

tasks 1, . . . , k. In the experiments, we only measure intransigence for the second

task, because we take only two tasks into account and it does not make sense to

compute intransigence for the first task. Hence, Int denotes I2.

CL score requires that each measure lies in the range [0, 1] and that higher values are

better. Mean acc and Rem already satisfy these constraints, whereas Int does not. Hence,

when computing CL score in the case of Int, ci is transformed to ci = 1− (ci + 1)/2 to

scale its range to [0, 1] and to preserve the monotonicity of CL score.

9.4.4 Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) is a regularization ap-

proach which introduces plasticity in artificial neural networks by slowing down learn-

ing in weights which are important to solve previously learned tasks. The method takes

inspiration from the human brain, in which the plasticity of synapses which are impor-

tant to solve previously learned tasks is reduced. EWC adds a regularization term to the

loss function allowing the model to converge to parameters where it has a low error for

both tasks. In particular, if Task A and Task B have to be learned sequentially EWC,

after having learned Task A, computes the Fisher Information Matrix, whose i-th diag-

onal element assesses how important parameter i of the model is to solve Task A. Then,
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the model is trained on Task B starting from the parameters previously learned to solve

Task A by minimizing the following loss function:

L = LB(θ) +
λ

2

∑
i

Fi,i(θi − θAi )2,

where LB is the loss function of Task B, Fi,i is the i-th diagonal element of the Fisher

Information Matrix, θi is the i-th parameter, θAi is the optimal i-th parameter for Task A,

and λ controls the regularization strength, i.e. the higher it is, the more it is important

to remember Task A.

9.4.5 Confusion matrices

Tables 9.7, 9.8, 9.9, 9.10, and 9.11 show the confusion matrices of the Wh, Naive, Cu-

mulative, Rehearsal, and EWC models, respectively, on the WH → Y/N setup. Tables

9.7, 9.13, 9.14, 9.15, 9.16, instead, show the confusion matrices of the Y/N, Naive, Cu-

mulative, Rehearsal, and EWC models, respectively, on the Y/N→ WH setup. In par-

ticular, predictions on these confusion matrices are grouped according to their category,

so that rows represent the question type each question belongs to, columns represent the

category each answer belongs to, and cells show the number of predictions the model

obtains for a particular question type and answer category.

9.4.6 Neuron activations

Figures 9.6 and 9.7 show the neuron activations on the penultimate hidden layer of

Naive model for the I) WH→ Y/N setup and the model trained independently on Y/N-

q, respectively. All the visualizations of neuron activations reported in the experiments

are obtained by computing the vectors containing the neuron activations of the penulti-

mate hidden layer of the model during forward propagation and by plotting the resulting

vectors transformed into two dimensions through t-distributed Stochastic Neighbor Em-

bedding (t-SNE) Maaten and Hinton (2008).
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Figure 9.6: Analysis of the neuron activa-
tions on the penultimate hidden layer of the
Naive model for the I) WH→ Y/N setup.
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Figure 9.7: Analysis of the neuron activa-
tions on the penultimate hidden layer of the
model trained independently on Y/N-q.
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labels #actions #code1 #code2 #code3 # code4
tennis 580 90 50 79 41
food 408 76 63 81 57
cake 334 60 37 65 74
snacks 316 68 82 26 50
actions with ball 298 71 27 54 34
skateboard 1 270 61 48 51 43
bikes and motos 269 86 55 59 51
skateboard 4 267 54 25 38 33
surf 262 66 50 52 22
phone 261 72 48 60 49
interact with people 261 66 58 62 22
baseball 2 259 82 42 69 30
sport audience 250 70 40 32 46
approaching women 227 84 54 49 70
pizza 226 43 23 37 42
ski 223 53 35 26 34
drink 222 53 46 50 39
kids 213 78 47 41 73
cooking 213 68 70 45 45
videogames 212 47 34 42 40
pets 202 80 47 44 32
clothing 202 54 61 48 47
relax 192 33 14 46 61
umbrella 186 56 24 32 26
urban activities 181 75 56 55 59
laptop 180 69 34 43 45
baseball 3 177 33 30 27 6
baseball 1 177 42 32 60 44
team sports 172 38 31 27 50
frisbee 2 172 25 25 29 22
birthday 170 62 71 46 59
water sports 165 87 60 38 41
photo 163 39 21 30 44
zoo animals 161 57 25 32 39
public transports 159 46 28 23 22
skateboard 2 158 45 36 35 25
frisbee 1 154 39 11 31 27
wii 149 36 22 35 22
bedtime 144 53 38 51 29
manual work / hobbies 139 69 75 44 60
animals farm 139 69 41 32 26
good intentions 132 66 64 44 32
kite 125 28 18 31 17
horse riding 118 49 22 22 29
toilet things 105 43 38 29 24
skateboard 3 98 22 16 18 14
street scenes 96 56 37 26 35
ski and snow 95 48 26 31 23
snowboard 1 94 27 26 21 17
airport 93 48 30 35 12
fruit 89 33 18 24 20
haircut 54 31 21 19 15
women and food 43 24 18 22 14
reading 32 11 11 11 7

Table 9.3: Statistics about the meta-annotation of the data. For each cluster, we report
the number of actions, of verbs in the main sentence (code1) and in the secondary sen-
tence (code3) and the number of nouns occurring as complements in the main sentence
(code2) and in the secondary sentence (code4).
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cluster action code1 code2 code3 code4

food
join the people in the
restaurant to enjoy a
meal

join 1 people 77 enjoy 15 meal 28

food
get some food with the
people

get 107 food 6 0 people 666

frisbee
join this man playing
frisbee

join 9 man 11 play 13 frisbee 14

frisbee
catch the frisbee and
throw it again

catch 777 frisbee 777 throw 8 frisbee 14

Table 9.4: Examples of action with the word-type codes. Note that, (1) the same verb
- e.g. join, line 1 and line 3 - in different clusters gets different codes; (2) the same
object within the same cluster if in different syntactic positions (- e.g. frisbee in line 4),
gets different codes but (3) the same object, in the same cluster, in the same syntactic
position - e.g. frisbee, line 3 and line 4 - gets the same code.

Model Run 1 Run 2 Run 3
Epoch Valid. acc. Epoch Valid. acc. Epoch Valid. acc.

baselineL 19 0.449 28 0.446 41 0.462
baselineV 25 0.453 21 0.467 23 0.453
baselineLV 22 0.481 34 0.496 36 0.480
RoBERTasL 3 47.1 2 46.8 2 47.1
LXMERTs

V 8 32.0 8 29.9 48 30.7
LXMERTs

LV 35 50.2 9 50.8 28 50.2
RoBERTaL 12 0.571 36 0.557 38 0.550
LXMERTV 38 0.593 49 0.588 31 0.592
LXMERTLV 44 0.643 36 0.647 18 0.595

Table 9.5: Epoch and validation accuracy of the best models for each run.

Model Number of parameters
baselineL 4931585
baselineV 19251201
baselineLV 21708801
RoBERTaL 124646401
LXMERTV 194352385
LXMERTLV 194352385

Table 9.6: Number of parameters of each model. The number of parameters is the same
both in models trained from scratch and in pre-trained ones.
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Wh query color query shape query size query material Yes/No
query color 6752 0 0 0 0
query shape 0 6702 0 0 0
query size 0 0 6666 0 0

query material 0 0 0 6653 0
equal color 1204 14 2088 3 0
equal shape 26 1150 2232 2 0
equal size 0 0 3430 0 0

equal material 21 34 1440 2037 0

Table 9.7: Confusion matrix of the model trained independently on Wh-q.

Naive query color query shape query size query material Yes/No
query color 15 0 0 0 6738
query shape 0 81 0 0 6621
query size 0 0 0 0 6666

query material 0 0 0 148 6505
equal color 0 0 0 0 3309
equal shape 0 0 0 0 3410
equal size 0 0 0 0 3430

equal material 0 0 0 0 3532

Table 9.8: Confusion matrix of the Naive model on the WH→ Y/N setup.

Cumulative query color query shape query size query material Yes/No
query color 6752 0 0 1 0
query shape 0 6702 0 0 0
query size 0 0 6665 1 0

query material 0 0 0 6653 0
equal color 0 0 0 0 3309
equal shape 0 0 0 0 3410
equal size 0 0 0 0 3430

equal material 0 0 0 0 3532

Table 9.9: Confusion matrix of the Cumulative model on the WH→ Y/N setup.

Rehearsal query color query shape query size query material Yes/No
query color 6743 1 8 1 0
query shape 0 6702 0 0 0
query size 0 0 6664 0 2

query material 1 0 1 6651 0
equal color 0 0 0 0 3309
equal shape 0 0 0 0 3410
equal size 0 0 0 0 3430

equal material 0 0 0 0 3532

Table 9.10: Confusion matrix of the best Rehearsal model on the WH→ Y/N setup.
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EWC query color query shape query size query material Yes/No
query color 6715 0 0 1 37
query shape 0 5479 0 0 1223
query size 0 0 0 0 6657

query material 0 0 0 1337 5316
equal color 0 0 0 0 3309
equal shape 0 2 0 0 3408
equal size 0 0 1 0 3429

equal material 0 0 0 0 3532

Table 9.11: Confusion matrix of the best EWC model on the WH→ Y/N setup.

Y/N query color query shape query size query material Yes/No
query color 0 0 0 0 6753
query shape 0 0 0 0 6753
query size 0 0 0 0 6666

query material 0 0 0 0 6653
equal color 0 0 0 0 3309
equal shape 0 0 0 0 3410
equal size 0 0 0 0 3430

equal material 0 0 0 0 3532

Table 9.12: Confusion matrix of the model trained independently on Y/N-q.

Naive query color query shape query size query material Yes/No
query color 6753 0 0 0 0
query shape 0 6701 1 0 0
query size 0 0 6666 0 0

query material 1 0 1 6651 0
equal color 2732 38 229 310 0
equal shape 1317 1144 346 603 0
equal size 1330 16 1559 525 0

equal material 1297 0 30 2205 0

Table 9.13: Confusion matrix of the Naive model on the Y/N→WH setup.

Cumulative query color query shape query size query material Yes/No
query color 6753 0 0 0 0
query shape 1 6701 0 0 0
query size 0 0 6666 0 0

query material 0 0 0 6653 0
equal color 0 0 0 0 3309
equal shape 0 0 0 0 3410
equal size 0 0 0 0 3430

equal material 0 0 0 0 3532

Table 9.14: Confusion matrix of the Cumulative model on the Y/N→WH setup.
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Rehearsal query color query shape query size query material Yes/No
query color 6752 0 1 0 0
query shape 0 6702 0 0 0
query size 0 0 6666 0 0

query material 1 0 1 6651 0
equal color 0 0 0 0 3309
equal shape 1 0 0 0 3409
equal size 0 0 1 0 3429

equal material 0 0 0 0 3532

Table 9.15: Confusion matrix of the best Rehearsal model on the Y/N→WH setup.

EWC query color query shape query size query material Yes/No
query color 6748 4 0 1 0
query shape 0 6701 1 0 0
query size 0 0 6666 0 0

query material 1 0 0 6652 0
equal color 3110 9 17 173 0
equal shape 801 1214 69 1326 0
equal size 542 35 35 1674 2

equal material 464 2 1 3065 0

Table 9.16: Confusion matrix of the best EWC model on the Y/N→WH setup.
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