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Abstract

Distribution system state estimation (DSSE) is essential for smart grid monitoring and control. Bus voltage phasors and, con-
sequently, DSSE uncertainty can be significantly affected by photovoltaic (PV) penetration, even when suitable hosting capacity
strategies are adopted to keep voltage levels within given limits. In this paper, it is shown that the state estimation uncertainty
achievable with algorithms exploiting PV information can be significantly lower than using classic techniques, such as the Weighted
Least Squares approach that is still widely adopted at the distribution level. The proposed analysis relies on an Interlaced Extended
Kalman Filter IEKF) that, in the prediction step, relies on the available information on active and reactive power injections. The
use of an interlaced implementation makes the estimator more robust to zero-power injections, which otherwise could make the
Kalman innovation matrix ill-conditioned. In the update step, the PV power data measured on the field, possibly supported by
Phasor Measurement Units (PMUs), complement the traditional virtual and pseudo-measurements, or the aggregated smart meter
data. The results of one-year-long simulations confirm the benefits of including the available information on PV generation on state

estimation uncertainty.
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1. Introduction

The penetration of renewable-based distributed energy re-
sources is both one of the main opportunities for smart grid
evolution and one of the main challenges for its stable opera-
tion. Limiting the attention to the Photovoltaics (PV) case, new
generators with a total capacity of about 99 GW were connected
to the grid in 2017, with a year-on-year increase of almost 30%
compared to 2016 [1].

In general, solar generation affects not only the inherent vari-
ability of RMS voltage amplitude and phase (regarded as sys-
tem state variables) at different buses, but also the performance
and stability of the algorithms used to estimate these quantities
in real-time. As known, PV penetration may lead to violations
of the voltage limits established by national or international reg-
ulations due to reverse power flows. The American National
Standards Institute (ANSI) Standard C84.1-2016 specifies in-
deed that the voltage magnitude of residential loads has to lie
within +5% of the nominal value [2]. According to the Euro-
pean Standard (EN) 50160:2010 instead, Medium- and Low-
voltage levels should not exceed +£10% of the declared value
for 95% of week under normal operating conditions [3]. Be-
sides voltage rises, a large PV penetration may have several
other critical consequences on distribution networks, such as
voltage fluctuations due to solar power intermittency, voltage
and current imbalances, harmonic distortion (mainly caused by
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PV inverters) and possible safety hazards due to unintentional
islanding [4]. Of course, maximizing the hosting capacity
(i.e. the amount of PV-based distributed generation for which
given operational constraints on a feeder are not violated) is
of paramount importance for renewable-based smart grid evo-
lution [5, 6]. Even if a variety of measures (e.g., adjustable
switched capacitor banks, on-load tap changers, network topol-
ogy reconfiguration and above all, VAR-capable PV inverters)
exist to mitigate voltage fluctuations and overvoltages, the im-
pact of solar penetration on Distribution System State Estima-
tion (DSSE) could be potentially critical and it has not been
deeply investigated yet. In fact, even when the system voltage is
kept under control, the combination of: solar generation intrin-
sic variability, limited system observability and heterogeneous
measurement uncertainty contributions may significantly affect
state estimation behavior. At the distribution level, this problem
is even more critical not only because the number of measure-
ment points and deployed instruments is usually smaller than
in transmission systems, but also because the radial structure
and the higher R/X ratio of typical distribution systems make
them more sensitive to the penetration of distributed energy re-
sources [7, 8]. In this respect, one of the open research chal-
lenges of DSSE is the definition and inclusion of models able
to exploit (or at least mitigate the impact of) generation variabil-
ity on state estimation algorithms [9], like in the case of large
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PV penetration [10, 11]. This paper provides a possible solu-
tion to this problem, by proposing a PV-aided Interlaced Ex-
tended Kalman Filter (PV-IEKF) conceived to be numerically
robust to zero power injections and able to exploit the avail-
able information on solar generation. The key advantage of the
proposed approach is that it improves DSSE accuracy and ro-
bustness with no need to revolutionize the overall measurement
infrastructure. In the rest of this manuscript, the novelty and the
benefits of the proposed estimator are highlighted in Section 2
in the context of some related work. Section 3 deals with both
models description and PV-IEKF implementation. Section 4
presents two case studies and analyzes the intrinsic variability
of state variables due to growing PV penetration and seasonal
fluctuations. Finally, in Section 5 the state estimation results
obtained with the PV-IEKF using two different measurement
setups are reported and compared with those obtained by using
a classic state-of-the-art DSSE algorithm.

2. Related Work

In general, the purpose of state estimation algorithms for
transmission or distribution systems is to determine the node
voltage or branch current phasors at a given time by using only
a limited amount of available information, that can be obtained
from historical data records (pseudo-measurements), or can be
collected through Supervisory Control And Data Acquisition
(SCADA) systems, intelligent electronics devices or, more re-
cently, from Phasor Measurement Units (PMUs) [12, 13]. In
general, the state estimation algorithms can be classified as
static or dynamic [14]. The static estimators rely solely on the
data measured at a given time. Thus, no system dynamics is
included in the model. The most popular static state estimator
(which is used for both transmission and distribution systems)
is based on the Weighted Least Squares (WLS) method [15],
possibly enhanced through adaptive, data-driven preprocess-
ing [16]. Alternative static estimators conceived to be robust to
non-Gaussian measurement errors have been recently proposed
as well [17].

Conversely, the dynamic state estimators rely on a system
model describing state evolution and an output model that can
be used to observe the state variables. The dynamic estima-
tors estimate the state recursively by applying a prediction step
and an update step. Depending on i) how the underlying sys-
tem model is defined and ii) the level of severity of possible
nonlinearities affecting either the system or the measurement
model, many different kinds of dynamic state estimators have
been proposed for power systems, e.g., fully linear standard
Kalman Filters (KFs) [18], Extended Kalman Filters (EKFs)
in the case of moderate nonlinearities [19, 20], or robust Un-
scented Kalman filters (UKF) when the effect of nonlinearity
errors may jeopardize estimation results [21]. In some cases,
hierarchical Kalman-based solutions are used first to partition
and then to combine the estimates of the state variables related
to different areas of large-scale power systems, in order to re-
duce the computational burden [22]. According to the recent
analysis reported in [23], the dynamic state estimators can be
roughly classified either as Forecasting-aided State Estimation

(FASE) or Tracking State Estimators (TSE). Both categories
usually rely on a linearized system model and on a nonlinear
measurement model. However, in the former case, the state
transition matrix is computed from the time series of the recent
state variables, usually by using an exponentially decreasing set
of weights (Holt-Wilters approach). Additionally, a trend input
vector is included to track smooth (i.e. almost linear) variations.

In TSEs instead, the state transition matrix is just the iden-
tity matrix and the system state variability is caused by an in-
put random noise [24]. Rigorously speaking, it is highlighted
in [23] that both categories suffer from serious drawbacks in the
presence of an increasing penetration of distributed and flexible
loads. This is due to: i) the underlying models that are too
simple to describe sharp operating conditions changes and ii)
the diagonal structure of the state transition matrix that totally
disregards the correlation between state variables [25]. More-
over, even if the FASE solutions perform generally better than
the TSE ones at the transmission level, they can be hardly ap-
plied to distribution systems, because the forecasting algorithm
used to build the transition matrix requires the time series of
the state variable values at all buses. However, in most distri-
bution systems such data are not available due to the scarcity of
measurement points, which also greatly limits overall system
observability [26]. Therefore, considering the existing infras-
tructural constraints, a TSE approach is not only easier to apply,
but also less sensitive to large potential modeling errors, which
could be further stressed by the strongly time-varying nature of
renewable-based generated power profiles. This is why the so-
lution proposed in this paper relies instead on a TSE approach.
However, unlike the classic TSE estimator [24], the idea of this
work is to include in the dynamic estimator the available infor-
mation about PV generation both in the prediction step (con-
sidering the average daily variations of PV power profiles es-
timated in different months) and in the update step (by using
the values of PV generated power collected in real-time from
the meters located at the generation sites). Such additional
information can effectively complement: the typical pseudo-
measurements obtained from the aggregation of historical load
data collected from existing (legacy) meters, the load data that
are collected in real-time (and with a much lower uncertainty)
by an increasing share of new-generation smart meters and the
voltage phasors measured directly by a set of PMUs, if avail-
able [27].

To the best of Authors’ knowledge, not many research works
are explicitly focused on the use of distributed generation data
for DSSE. A study on the impact of PV penetration on low-
voltage WLS-based DSSE is presented in [11]. That approach
relies on a Gaussian mixture model to generate load pseudo-
measurements. However, the PV-IEKF approach described in
this paper proves to perform better than the WLS in the same
conditions, as it will be shown in Section 5. In [28], the Authors
propose a hybrid technique based on the WLS method and the
firefly algorithm to reach a reliable and accurate state estima-
tion of grids where renewable energy sources are employed.
However, the reported results are quite a few and the impact of
time-varying power profiles is unclear. Finally, in [29], a DSSE
algorithm based on the combination of Nelder-Mead simplex



and Particle Swarm Optimization is used to determine loads
and generators power. However, this approach can be hardly
compared with other solutions published in the literature, as
the state variables are not the bus voltage or the line current
phasors, as customary in DSSE problems, but rather the power
values themselves. In addition, the performance analysis does
not take into account the power fluctuations due to time-varying
load or generation operating conditions, as instead presented in
this work.

A further novel contribution of the proposed PV-IEKF es-
timator is the interlaced filter implementation that ensures a
higher numerical robustness than a standard one, as proved
in Appendix B. The rationale underlying this approach stems
from the potential huge differences between the variances of
the power injections at buses affected by significant load fluc-
tuations and/or PV penetration and the negligible variances at
buses with zero power injections.

As a last remark, the effect of PMUs on PV-IEKF estima-
tion performance is investigated in the last part of the paper
since such instruments are currently regarded as the most effec-
tive ones to support state estimation in distribution systems, as
shown for instance in [12, 18, 30, 31]. Therefore, even if they
are not strictly needed for PV-IEKF implementation, analyzing
their impact on state estimation accuracy is a topical issue.

3. Models and State Estimator Description

The state of a distribution systems is usually expressed in
terms of either bus voltage or line current phasors expressed
either in polar or in rectangular coordinates [32]. In the follow-
ing, without loss of generality, the state of the system will be
expressed in terms of bus voltage amplitude and phase.

3.1. System and measurement models

Let the bold symbols represent vectorial quantities. Given a
distribution system consisting of N buses, its state is expressed
byx =[6',...,6", V', .., VN7, where the variables ¢ and V' are
the phase and the Root Mean Square (RMS) amplitude, respec-
tively, of the voltage phasor at the ith bus (for i = 1,...,N).
In the following, the slack bus will be conventionally labeled
as bus 1. Usually, 0! can be excluded from x, as it is conven-
tionally set to O, unless it is measured directly by a PMU. From
power systems theory, it is well known that the active and re-
active power injections at the ith bus are related to the chosen
state variables by the following nonlinear expressions, i.e. [15]

N
P'=P,-P, = v"Z VI[R{YY}cos 67 + F{Y}sin 6]
j=1

(D
N
0'=0;- 0} =V' > VI[R{Y"}sin 0/~ 3{¥")cos 6]
=1

where R{Y"} and 3{Y"/} are the real and imaginary parts of the
element (i, j) of the network admittance matrix and 8"/ = ¢'—6/.
Finally, P, Q. and P}, O, are the active and reactive power

generated by the distributed PV units or absorbed by loads, re-
spectively, at the ith bus. Such quantities as well as the state
variables change over time. However, in (1) the time variable is
omitted for the sake of brevity.

Let ug =[P4, PN,QL..0ON" and uw, =
[P3,...PY,03%,..,0M1" be the vectors comprising the ac-
tive/reactive generation and load power profiles at buses
different from the slack bus. If the expressions in (1) are
rearranged in a matrix form for i = 2,...,N (i.e. excluding
the slack bus power injections that generally are linearly
dependent on the others), after linearizing and discretizing
the resulting system of equations between instants #;_; and #;
(with k denoting the kth sampling period, e.g. in the order of a
few minutes), an additional linearly independent equation for
bus 1 is needed to make the linearized system matrix square
and invertible. In practice, the relationship between the slack
bus voltage V! and the system nominal voltage V can be
used to this purpose assuming, without loss of generality, that
6' = 0 [33]. As a consequence, after a few algebraic steps
reported in Appendix A, the resulting discrete-time system is
given by

X, =Xg-1 + Gp-1(Aug, —Aug, ) +vg (2)

where input vectors Aug, and Auy, include the variations of ac-
tive and reactive generated and absorbed power between #;_;
and 1, while G,_; = —A,:_llBk,l is the input matrix depending
on the system Jacobian matrices A;_; (with respect to state vari-
ables) and By_; (with respect to input variables), respectively
(see expressions (A.4) and (A.5) in Appendix A for details). Fi-
nally, v, = —A,;llek can be regarded as the process noise due to
the linearization errors in €. It is worth emphasizing that, even
if the adopted model is similar to the model proposed in [24],
in this case the power injected by possible PV units is part of
the inputs to the system and it will be used in the prediction
step of the proposed TSE, as it will be explained in Section 3.2.
Of course, if no PV generator is connected to a given bus, the
corresponding entry of vector Aug, will be 0. Moreover, unlike
the models described in [24] and [33], in this paper the load or
PV active/reactive power profiles (as well as the related varia-
tions) are not assumed to be purely white random sequences,
but are more realistically modeled by the superimposition of a
deterministic term (modeling daily and monthly trends) and a
zero-mean random process modeling the short-term and weakly
correlated residual fluctuations, i.e.

Aug,=dg, +€; and Aug, =dj] + €] 3)
where dgk and d’l’k, for m = {Jan., ..., Dec.}, represent the vari-
ations of active and reactive power injected by the PV units or
absorbed by loads between f;_; and #; within the same month,
while e7; and €] are the respective random fluctuations. This
model makes the EKF estimator formally more correct than
in [24] and [33], since most of the correlation in time between
input data is “captured” by d; and d7 , thus not affecting the
covariance of egk and e’i’k. In practice, dgk and d?k can be ob-
tained in a variety of ways, e.g., through direct measurements
(if available) or through suitable forecasting algorithms. For



instance, for PV generation, a clear-sky model or a persistence-
based predictor could be used. However, as explained in Sec-
tion 5, a different and quite simple approach is used in this pa-
per to ensure that the random fluctuations exhibit a zero mean,
which is essential for a correct Kalman filter implementation.

Of course, besides the system model, a measurement model
is also needed to implement the state estimator. If z; denotes the
vector of quantities that can be directly observed at a given time
t, and if v is the vector of the respective measurement uncer-
tainty contributions, the measurement model can be generally
expressed as

7= h(Xk) + vy (4)

where each element of vector function h(x;) models the rela-
tionship between one of the observed quantities and the state
variables at time #;. In practice, various kinds of measurements
can be included in (4), e.g. active and reactive power mea-
surements or synchrophasor measurements. In this paper, with-
out loss of generality, two different measurement setups will be
adopted to evaluate state estimation performance, as explained
in Section 5.1.

3.2. PV-aided Interlaced Extended Kalman Filter

By combining (2) with (3), the system model to be used for
EKF implementation becomes

X =Xg—1 +Gk_](dgk—d’2'k)+w;:’ m={Jan.,...,Dec.} (5)

where wy, = Gk_l(egk —e’L”k) + v, can be regarded as the cumula-
tive process noise. Note that the elements of wy result from the
linear combination of several zero-mean random independent
contributions, that are also weakly correlated in time. There-
fore, each element of the noise vector tends to be white and
normally distributed because of the Central Limit Theorem un-
der the so-called Lindeberg’s condition. Although (4) and (5) in
principle can be directly used for EKF implementation, a clas-
sic EKF hides the risk of numerical instability if zero-injection
virtual measurements are used in (4) [34]. This is due to the fact
that, in the case of zero-power injections, the ratio between the
maximum and the minimum eigenvalues of the so-called inno-
vation covariance matrix could be very large (ideally infinite),
thus making the Kalman gain matrix ill-conditioned. This prob-
lem could be particularly critical in the case of significant PV
penetration because the covariance matrix of the PV power fluc-
tuations is added to the covariance matrix of load variations (as
it will be shown in the following), thus potentially increasing
the maximum eigenvalues of the prediction covariance matrix,
and consequently of the whole innovation matrix.

To address this issue, an interlaced Kalman filter implemen-
tation is adopted in this paper. The idea of this approach is to
partition a system into multiple smaller subsystems, whose in-
dividual states are estimated by distinct, although interacting,
EKFs [35]. In the proposed PV-IEKEF, state and measurement
vectors as well as the related models are rearranged and split
into two parts: one related to slack bus and zero-injection buses
only, and the other including all the other buses. To define

Process noise l
cov. matrices QOU QUI
(subsystem 0) k7K Prediction step ~0
EKF 0 X
Net P/Q power dm1+ _ drn1+
variations Gk Le
Measurement _1 |
P/Q load and mi mi data k
generation cov. E, 6 T E L
matrices
Prediction step a1
. ™ X
Process noise 10 A1l EKF 1 k
cov. matrices Qk ’ Qk I
subsystem 1.
(subsy: ) I Czo ) Czl

Figure 1: Block diagram of the proposed PV-IEKF for distribution system state
estimation.

the state estimator structure (whose block diagram is shown in
Fig. 1), let us rearrange (5) and (4), respectively as

0 0 00 01 m
SHEME et
X X1 16 Gy Il dG, —d7, Wi
hox0. x! 0
7| _ 1 (XS’ x,;) . vl1<
zZ, h'(x;,x,) \/
where superscript O refers to the subsystem of slack and zero-

injection buses, while superscript 1 refers to the subsystem
comprising all the other buses.

—a

(6)

— O

3.2.1. Prediction step

if f(g_l and ’A‘/Ll denote the state of subsystems 0 and 1 es-
timated at time f;_1, it results from (6) that the respective pre-
dicted states are given by [36]

0+ _ &0 01 ml _ gml
% =%, t G dg, —dp)

ol+ _ ol 11 qml _ qml
X, —xk_l+Gk_1(dGA de).

@)

Similarly, if C°|, C}!,, C{** and C}'* denote the covariance
matrices of the respective estimated and predicted state vectors,

then it easily follows from (6) that

00+_ 00 00 _ (00 01 (pml , pmlyA01T . 00
Co=C + W =C2 + G (EG + ETDG, + Oy ®)
a1 1 _ il 1 pml |, pmly 117 1
Ck _Ck—l + Wk _Ck—l +Gk—l(EGk + ELk )Gk—l + Qk .

where W, W', 0% and Q' are the diagonal blocks of the co-
variance matrices of noise vectors wy and vy, respectively, while
Egkl and E'L"k1 are the covariance matrices of the elements of egk
and €] after excluding the zero-injection buses. It is important
to highlight that even though C** and C;'* do not depend on
the cross-covariance of the subsystem states estimated at time
te-1, ﬁg* and ﬁ,ﬁ* can be correlated. In fact, matrices

014 01 01 _ 01 01 (pml | pmly~117 |, AO1
C =G +W, =G +G (BT +EG )G, +0)

k
C]i0+: C21+T (9)

are not null. Therefore, such terms cannot be neglected and
have to be taken into account in the update step of the filter.



3.2.2. Update step

Based on classic Kalman filter theory, the estimates of the
subsystems state at time f; are given by

ﬁg_ ﬁ2++KOl[Zk hl(ﬁ0+ A]l<+)] KOO[Zk hO(ﬁO+ '\]1(+)]

11 150+ Al+ 101,0 0,0+ A1+ (10)
+K [z —h' & 1)1+ K0 [2) -0 (®) %)

Xk_ Xk

where z is the vector of the measurement data available at time
t, 20 is the vector of virtual measurements at zero-injection
buses (plus the voltage measurement at the slack bus), while
KOO Ko1 K “, and K, 10 result from the block partition of the
overall Kalman gain, i.e.

HOOT HlOT

00 01 00 7O1
co+ o1+ L L0

Y

KOO KOI
k= |:K10 Kll:|

T T T :
Cl(31+ C,i“ H/({)l H/ll Lgl Llil
In (11), HY, H,‘()1 and H]lo, H,ll are the Jacobian matrices of
h%(x’, x') and h'(x°, x) with respect to variables x° and x', re-
spectively, computed at X0 and &;*. Finally, matrices L, L'
and L,l' result from the blockwise inversion further details are
reported in Appendix B) of the innovation covariance matrix of
the whole system, i.e.

700 701 00 go17~!
k k k k
A o = (12)
LE{)I L]il SOl Slll
[HI?O H/({)l:”:cOO-*— C01+} HOO HIOT RgO 0 ]_1
10 g1l 10 11 T 11
Hk Hk Ck +Ck + HOl Hll 0 Rk

with Rgo and R,il being the covariance matrices of measurement
uncertainty contributions vg and v,'(. In Appendix B it is shown
that the blockwise matrix inversion of (12) relies on submatri-
ces with a narrower eigenvalue range than the full matrix. Con-
sequently, the subsystems matrix condition numbers are smaller
and the risk of numerical instability is lower than using a mono-
lithic EKF. Finally, the covariance matrices associated with f(g
and ﬁ,i as well as the cross-covariance between them are given
by

C,(30=C,(30+ K00 K01 [ } Koo KOI] it 7C10+
C]ilzcin K10 K“ [ ]C“+ K1o Kl ]ZZZ—COH
C,?l C01+ Koo KOI [ ]C01+ Koo KO1 ]Z(l)i :C11+
clo=c" T

In practice, (13) can be preferably computed through the so-
called Joseph form [36]. That alternative formulation, although
more computationally intensive, prevents by construction that
matrices Cgo, C,?l, C ,10 and C ]11 are not positive definite simply
because of numerical errors, thus reducing the risk of Kalman
filter divergence.

4. Case Study Description

Two Medium-Voltage (MV) case studies are considered in
the rest of the paper, i.e. a simplified and modified version of
the IEEE 37-bus radial feeder?, and the rural 85-bus distribu-
tion system reported in [37]. Such distribution systems were
selected among others because they both include a significant
fraction (i.e. about 30%) of zero-injection buses. In the follow-
ing subsections, first, the simulation settings for load and PV
generation in both case studies are described. Then, the single-
phase equivalent power flow analyses under time-varying con-
ditions of PV generation and load are performed repeatedly to
compute the “true” values of the state variables to be estimated
in different seasons of the year as well as their intrinsic fluc-
tuations. The respective state estimation results are instead re-
ported in Section 5.

4.1. Settings for Load and PV generation

The reference declared voltage of the 37-bus and the 85-bus
distribution systems are V = 4.8 kV and V = 11 kV, respec-
tively. The state variables values of the IEEE 37-bus system un-
der nominal conditions (assuming initially 0% PV penetration
and a base apparent power of 1 MVA) are reported in Tab. 1 for
one phase only, along with the respective nominal active and re-
active loads. Observe that the original bus identification labels
of the IEEE 37-bus feeder (between brackets in the first column
of the Table) are orderly renumbered for the sake of clarity. The
state variables values of the IEEE 85-bus system under nominal
conditions are not shown for the sake of brevity, but they can be
found in [37].

In both cases, load and PV generated power values are as-
sumed to be available every 15 minutes over 1 year of simu-
lation time, since this is the expected reporting period of the
next-generation smart meters, which will be used for state es-
timation [38]. No other distributed generators (except the PV
units) are installed in the system. Therefore, when no PV gen-
erators are deployed, all the load power is provided by the slack
bus. The power flow analysis and, consequently, the actual state
of the grid at every time step #, for k = 1,...,35040, is com-
puted through the Matpower toolbox [39]. Further details about
how load and PV generated power profiles are synthesized in
both case studies are reported below.

4.1.1. Load profiles

The load active power fluctuations at all buses other than both
the slack bus and the zero-injection buses result from the aggre-
gation of the electricity profiles of residential and office build-
ings of various size, taking into account daily and seasonal vari-
ations due to different heating or cooling needs as well as the
actual number of occupants [40]. The profiles of different build-
ings are synthesized by the Matlab application described in [41]
and are aggregated to ensure that the total yearly average loads
are approximately equal to the nominal values shown in Tab. 1

2http://sites.ieee.org/pes—testfeeders/resources/



Table 1: Nominal static voltage amplitude (in p.u.) and phase (in centiradians
- crad) as well as active and reactive power values at different buses of the
IEEE 37-bus test distribution system. The rightmost column shows the relative
standard deviations of the load fluctuations over 1 year.

Busno. | V'[pu] | ¢ [crad] | P} [kW] | Q] [kvar] o'iLr [%)]
1(799) 1.000 0 0 0 0
2 (701) 0.989 -0.158 140 70 32.6
3(712) 0.978 -0.235 85 40 32.4
4 (713) 0.977 -0.263 85 40 327
5(714) 0.973 -0.277 21 10 59.7
6 (718) 0.972 -0.269 85 40 31.8
7 (720) 0.969 -0.298 85 40 32.6
8 (722) 0.965 -0.253 140 70 32.4
9 (724) 0.965 -0.250 42 21 29.8
10(725) | 0.967 -0.302 42 21 29.7
11(727) | 0972 -0.303 42 21 29.7
12(728) | 0.971 -0.308 42 21 29.7
13(729) | 0.970 -0.304 42 21 29.7
14 (730) | 0.969 0314 85 40 30.4
15(731) | 0.966 -0.309 85 40 32.6
16 (732) | 0.966 -0.308 42 21 30.7
17(733) | 0.966 -0.310 85 40 314
18(734) | 0.965 -0.305 42 21 314
19(735) | 0.965 -0.295 85 40 29.9
20 (736) | 0.969 -0.301 42 21 39.7
21 (737) | 0.963 -0.310 140 70 31.6
22(738) | 0.963 -0.312 126 62 289
23(740) | 0.963 -0.309 85 40 32.1
24 (741) | 0.965 -0.311 42 21 372
25(742) | 0978 -0.234 85 40 31.0
26 (744) | 0971 -0.310 42 21 36.8
27 (702) | 0.980 -0.251 0 0 0
28(703) | 0.974 -0.316 0 0 0
29 (704) | 0.974 -0.279 0 0 0
30 (705) | 0.979 -0.239 0 0 0
31(706) | 0.968 -0.307 0 0 0
32(707) | 0.965 -0.258 0 0 0
33(708) | 0.967 -0.312 0 0 0
34(709) | 0.968 -0.312 0 0 0
35(710) | 0.965 -0.298 0 0 0
36 (711) | 0.964 -0.312 0 0 0
37(775) | 0.968 -0.312 0 0 0

(for the 37-bus system) and in Tab. A.3.2 of [37] (for the 85-
bus system), respectively. The maximum standard deviations
of the aggregated load profile over 1 year at every bus relative
to the respective nominal values are usually below 33%, with
a few exceptions. It is worth noticing that the load profiles at
different buses can be strongly correlated [42]. In the cases at
hand, the correlation coeflicients between different buses can be
so large as 0.95.

The load reactive power profiles exhibit the same pattern as
the active ones, but they are scaled down depending on the
power factor at each bus. As a consequence, the correlation
coefficients between active and reactive power injection at the
same bus is 1.

4.1.2. PV power profiles

The PV power generation profiles are synthesized by fol-
lowing an approach similar to the one described in [43], but
they rely on the same set of irradiance data to maintain a cer-
tain spatial correlation between different profiles, which is quite

reasonable due to the limited area of the distribution systems
considered (i.e., a few km?). In particular, starting from the
experimental irradiance data collected in the solar park of the
Bolzano-Dolomiti airport (Bolzano, Italy) every 15 minutes in
2017, first the mean value and the standard deviation of the ir-
radiance data at the same time of the day of the same month
were computed. Afterwards, such sequence of mean value and
standard deviation was used to determine the parameters of dif-
ferent Beta probability density functions (PDFs) modeling solar
irradiance, as explained in [43], but with 15-minute rather than
hourly resolution. Finally, a sequence of Beta-distributed ran-
dom variables (one for each bus), with parameters changing as
a function of both the time of the day and the month was used
to perturb the daily average solar irradiance profile measured in
each month of the year. As a result, the PV active power profile
generated at the ith bus is given by

Py, = rApy oyl +Y' (T = To)lFpy i=1,...N  (14)
where

. r,i is the synthetic solar irradiance profile associated with
the i—th bus;

) Aj,,v is the total area of the PV modules connected to bus
i depending on the chosen PV penetration level. If no PV
generator is connected to bus i, then Aﬂ,v =0;

. 77fvv = 16% =+ 3% is the PV conversion efficiency of the
modules linked to bus i, in line with the efficiency values
reported in [44];

e 1\ = 98% is the DC/AC conversion efficiency in accor-
dance with state-of-the art inverter technologies [45];

e v/ = —0.3 +0.0750 %/K is the temperature coefficient af-
fecting PV conversion efficiency at bus i when the temper-
ature of PV modules is different from the reference one
(i.e., To = 298 K).

e T, is the sequence of temperature values measured every
15 minutes on the PV modules of the Bolzano-Dolomiti
airport the solar park throughout year 2017,

e Finally, F ;,V is the operating power factor of the PV
units linked to bus 7, assuming that the inverter-based PV
technology is capable to export or to consume reactive
power [43]. Even if a variety of distributed or centralized
control strategies exist to determine the active and reactive
power set-points of smart PV inverters [46, 47], the solu-
tion adopted in this paper is quite simple, as F ﬁ,v changes
are expected to have a minor impact on intrinsic state vari-
able fluctuations and, even more, on DSSE uncertainty. In
particular, F' j,v is 1 most of time and it never becomes
smaller than 0.94. In any case, the reactive power pro-
vided by the inverter is changed so as to keep the overall
power factor associated to the net power injection at each
bus equal to the value computed in nominal conditions.
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Figure 2: Absolute values of the maximum relative voltage variations at all buses of (a) the 37-bus case study and (b) the 85-bus rural distribution system for
increasing levels of PV penetration and in different seasons. Such relative variations are computed with respect to the bus voltage magnitudes obtained from the
power flow analysis in nominal conditions. The black spheric markers highlight the buses where the PV generation units are placed. The marker size is proportional

to the amount of PV peak power.

The PV penetration level (namely the ratio between the total

peak PV power available in the grid and the corresponding total
maximum apparent load power) is increased gradually from 0%
to 80% by steps of 5%. The buses to which PV units are linked
are randomly chosen with uniform probability. However, the
slack bus and the zero-injection buses are purposely excluded
from PV unit placement. In this way, the size of subsystems 0
and 1 in (6) is not affected by PV penetration, thus ensuring a
fair evaluation of the PV-IEKF estimation uncertainty in differ-
ent conditions.
The algorithm adopted for PV unit deployment in both case
studies is quite simple, as the purpose of this work is not to
maximize the hosting capacity of the distribution systems con-
sidered, but rather to have a reasonable “ground truth” for state
estimation even under stressed operating conditions due to the
increasing PV penetration. In particular, once a new PV unit
is linked to bus i and A’}JV is computed accordingly (assum-
ing nominal efficiency and temperature conditions), first /',
is updated to maximize the active power injection at the same
bus. Then, a static power flow analysis is performed to check
whether, after a 5% PV penetration increment caused by the
newly placed PV units, the RMS voltages at all buses lie within
+10% of the nominal values reported in Tab. 1 (for the 37-bus
system) and in Tab. A.3.2 of [37] (for the 85-bus system). If this
condition is met, then the PV units are retained and the algo-
rithm starts over; otherwise, the PV units just placed at bus i are
moved to a different one and bus i is permanently excluded from
further installations of PV units. Of course, such a greedy ap-
proach does not return a unique deployment of PV units. How-
ever, it is sufficient to test the PV-IEKF state estimator under
critical (although still reasonable) time-varying operating con-
ditions, as it will be shown in Section 5.2 and 5.3.

4.2. Analysis of state variables intrinsic variations

Fig. 2(a)-(b) shows the absolute values of the maximum volt-
age variations at every bus of the 37-bus and the 85-bus distribu-
tion systems relative to the respective bus voltage magnitudes
resulting from the power flow analysis in nominal conditions.
Such maximum relative variations expressed in % are plotted
for increasing levels of PV penetration and are grouped on a
seasonal basis. The black spheric markers highlight the buses
linked to one or more PV units. It is worth emphasizing that
such variations are only due to the changeable load and PV gen-
eration conditions (with 15-minute resolution) over one year.
Therefore, no measurement uncertainty, nor missing data affect
the results of Fig. 2(a)-(b). This intermediate step is needed to
compute the inherent state variable fluctuations that shall be es-
timated by the proposed PV-IEKF estimator. Indeed, as a rule of
thumb, the DSSE uncertainty must be at least about one order
of magnitude smaller than such inherent variations to provide
trustworthy results, as it will be verified in Section 5.

The maximum absolute voltage phase variations at different
buses (visually similar to those in Fig. 2 and not shown for the
sake of brevity) never exceed +2.5 centiradians (crad) in the
37-bus case and +5 crad in the 85-bus case. Observe that the
voltage changes tend to increase monotonically with PV pen-
etration, as expected, although with significant differences be-
tween the two systems and from bus to bus. The voltage mag-
nitude variations are well below +10% (usually within +5%) in
the 37-bus case, while they may occasionally become greater
than £10% at some buses of the 85-bus distribution system (es-
pecially in late spring and summer), when the PV penetration
level exceeds 60%. This result is reasonable if compared with
the limits reported in the EN Standard 50160:2010 [3]. More-
over, the greedy algorithm used to place the PV units keeps into



account the nominal PV penetration level, whereas in practice
the actual amounts of generated and consumed power at differ-
ent times of the day may differ considerably from the respective
peak values. Therefore, it may happen that the distribution sys-
tems operate under stressed conditions, especially in late spring
and summer.

In conclusion, the fluctuations of the state variables in the
test distribution systems considered are large enough, but not
too critical, to run a trustworthy performance analysis of the
PV-IEKF state estimator under different conditions of PV pen-
etration.

5. DSSE performance evaluation

In this Section, the performance of the PV-IEKF estima-
tor is analyzed in the case studies described in Section 4. In
the following, first the state estimator settings as well as two
possible measurement setups for DSSE implementation are de-
scribed. Then, the state estimation results in the 37-bus and 85-
bus case studies are reported and compared with those obtained
with a classic WLS estimator in the very same experimental
conditions. In the WLS case, the zero-injections are regarded
as equality constraints of the optimization problem, which are
eventually turned into auxiliary state variables. As a result, the
solution is found through the so-called Lagrangian method [15].

5.1. State estimation settings and measurement setups

The settings of the PV-IEKF estimators in the prediction and
update steps are reported below. It is worth emphasizing that,
while the prediction step holds only for the PV-IEKF (no pre-
diction exists with the WLS approach), the measurement setups
that are adopted in the update step of the PV-IEKF are used for
WLS estimation as well, in order to have a fair comparison.

5.1.1. Prediction step

The input sequences dg: and d’L”k1 for m = {Jan.,...,Dec.}
used in (7) result from the backward Euler differences with 15-
minute resolution of the daily average active and reactive PV
generation and load profiles, respectively, computed over each
month of the year. In particular, the sequence dgkl for a generic
month m is computed as follows. First, the synthetic solar ir-
radiance data used for power flow simulations in Section 4 are
averaged at the same time of the day over all the days of month
m prior to applying the first-order backward Euler difference.
Then, the resulting differential average profiles are smoothed
through a least-squares interpolation to make the mean values
of error terms €; approximately zero. Finally, the average dif-
ferential solar irradiance profile is converted into active power
by applying (14), and the reactive power is computed accord-
ingly. In practice, the daily variations of active and reactive
power in dg: lie respectively within about +30 kW and +5 kvar
in the 37-bus case and within about +20 kW and +3 kvar in the
85-bus case. Of course, such values depend on the time of the
day, the season of the year and the PV penetration level.

The load differential variations dZ’: at every bus are also esti-
mated from the values referred to the same time of the day (i.e.

every 15 minutes) and averaged over every single month. The
resulting active and reactive load variations in d’L"k1 lie within
about +7 kW and +4 kvar in the 37-bus case and within about
+3 kW and +1 kvar in the 85-bus case, respectively, and they
generally exhibit a smoother daily variability. The fluctuations
€;, and €] around dg: and d'L”kl, respectively, at different times
of the day are eventually used to build covariance matrices E’GV’:
and E’L”kl for m = {Jan., ..., Dec.} to be used in (8). In both case
studies the standard deviations of the generated active and reac-
tive power resulting from the block partition of E”G1k1 into active
and reactive power components follow the same daily pattern of
PV generation. The daytime maximum standard deviations of
the active power variations over 15-minute intervals range from
about 10-15 kW in winter to more than 60-80 kW in summer.
The daytime maximum standard deviations of the respective re-
active power variations range instead from about 1 kvar in win-
ter to about 10 kvar in summer. The standard deviations of the
load variations in ET; exhibit generally a much more uniform
daily variability, although with some seasonal changes. In the
37-bus case, the maximum daily standard deviations of the ac-
tive power load variations over 15-minute intervals range from
about 5 kW to 10 kW with a few peaks exceeding 15 kW. The
maximum daily standard deviations of the respective reactive
power load variations range from about 2 kvar to 6 kvar. In
the 85-bus case, the maximum daily standard deviations of the
power load variations over 15-minute intervals are quite evenly
spread between 4 kW and 7 kW (for active power) and between
3 kvar and 6 kvar (for reactive power). The elements of matrices
oY, O, 0,° and Q," are in all cases between one or two orders

of magnitude smaller than the elements of Ggll (Eg:+EZIkl)G21T1,

T T .
Ggil(Eg’: + ET;)G,QI and GIICEI(E'&WET:)G,QI in (8) and (9),
respectively. Therefore, the impact of process noise v; on the
predicted state covariance matrix is almost negligible.

5.1.2. Update step

As briefly introduced at the beginning of this Section, two
measurement setups are assumed to be used to implement both
the update step of the PV-IEKF and the WLS estimator. In the
following, they will be shortly denoted as Setup A and Setup
B, respectively, and the measurements included in the measure-
ment vector z of (4) are summarized in Tab. 2. In Sefup A only
the active and reactive power injections P’ and Q' at all buses
along with the voltage magnitude V! at the slack bus are in-
cluded in (4). With this set of measurements, local state ob-
servability is certainly preserved, since the observability ma-
trix associated with the linearized system based on (2)-(4) has
full rank. While the power measurements of subsystem O are
all virtually zero, the power injections data at all buses of sub-
system 1 result from the differences between the load and PV
generation data collected by the remote terminal units of dis-
tribution SCADA systems. The PV units are assumed to be
linked to power meters reporting measures every 15 minutes.
As far as load monitoring is concerned, four possible scenarios
of increasing technological complexity are considered. First,
just the traditional pseudo-measurements, namely the mean val-
ues of the historical asynchronous load profiles collected from



Table 2: Measurement setups adopted for both the update step of the PV-IEKF
and the WLS implementation. The list of measurements of either setup corre-
spond to the those included in vector z of (4).

Setup A

Setup B

Slack bus voltage

PQA"

PMU

P/Q Power inj.

PV Gen.

SMs at all generation
sites linked up to 14
buses (37-bus case) or
17 buses (85-bus case)

SMs at all generation
sites linked up to 14
buses (37-bus case) or
17 buses (85-bus case)

Loads

Pseudo-measurements
replaced by aggregated
SM data (30%, 60% or
90% ) from all buses

Pseudo-measurements
replaced by aggregated
SM data (30%, 60% or
90% ) from all buses

Zero-inj.

0 kW/kvar at 10 buses
(37-bus case) or 20
buses (85-bus case)

0 kW/kvar at 10 buses
(37-bus case) or 20
buses (85-bus case)

From 1 to 13 PMUs
(37-bus case) or from
1 to 17 buses (85-bus
case) depending on the
PV penetration level

Bus voltage phasors Not considered

“PQA = Power quality analyzer, PMU = Phasor Measurement Units, SM = Smart Meters.

legacy low-rate, low-accuracy meters are used. Then, 30%,
60% and finally 90% of such pseudo-measurements are re-
placed by the data collected at the same time of the day (i.e.,
every 15 minutes) from new-generation, high accuracy smart
meters (SMs) [38]. Consider that the pseudo-measurement val-
ues can be also used to replace missing or bad data (e.g., due to
communication problems), if they are detected before injecting
the measurement data into any estimator.

Based on the assumptions above, the diagonal covariance
matrices Rgo and R,ll in (12) are set as follows.

o The relative standard uncertainty of the slack bus voltage
measured by a power quality analyzer is 0.31%, in line
with the results reported in [48];

e The standard uncertainty of all zero-injection virtual
power measurement is arbitrarily set to a very small
dummy value (i.e. 107%) to avoid that Rgo becomes sin-
gular.

e The standard uncertainties of the active and reactive power
measurements of the loads linked to all buses of subsystem
1 result from the weighted sum of the standard uncertain-
ties of pseudo-measurements and SM data. The weights
depend on the share of SMs deployed (i.e., 0%, 30%, 60%
and 90%). The uncertainty of pseudo-measurements is
given by the monthly standard deviations of active and re-
active loads with respect to the nominal load conditions at
each bus. Such standard deviations typically range from
about 10% to more than 30% of the respective nominal
values. The measurement uncertainty of SM data results
instead from the combination of various uncorrelated con-
tributions computed as explained in [49], i.e. instrumen-
tal meter accuracy (+0.2%, +0.5%, 1%, or +2% as re-
ported in the IEC Standards 62053-21 and 62053-22), un-
expected power losses along lines (up to +1.5%), missing
or bad data (up to +4% of all SM data possibly replaced by
pseudo-measurements), time synchronization errors (up to

few seconds, which may impact the results up to about
+1%) and voltage/current instrument transformers accu-
racy (between +0.2% and +1% depending on the trans-
former class) [50, 51]. As a result, the relative standard
measurement uncertainty associated with SM data may
range between 0.7% and 1.6% of readings, thus causing
errors up to +4.8% in the worst case.

Measurement Sefup B relies not only on the same SCADA-
based measurements of Setup A, but also on an increasing num-
ber of PMUs for distribution systems (e.g., the so-called micro-
PMUs [52]), whose data are transferred to the so-called Phasor
Data Concentrators through wired or wireless connections (e.g.,
the 4G mobile cellular network). Therefore, the phasor data re-
lated to crucial points of the distribution system complement
(but do not replace) the traditional measurements at a reason-
able cost and with no need for a major upgrade of the commu-
nication infrastructure. In addition, one PMU is assumed to re-
place the power quality analyzer at the slack bus, while the oth-
ers are gradually deployed at all buses connected to one or more
PV units. The PMUs are used to measure V' and ¢ directly. As
a result, the number of measurement equations in (10) as well
as the size of R,il grows with the number of PMUs deployed
in the grid. In compliance with the IEC/IEEE Standard 60255-
118-1:2018 [53], the maximum Total Vector Error (TVE) of all
PMUs has to be smaller than or equal to 1% in steady-state
conditions. Assuming that i) voltage and phase measurement
errors contribute evenly to the 99-th percentile of TVE values
and ii) the amplitude and phase uncertainty contributions due
to the limited accuracy of voltage transducers of Class 0.2 (re-
ported for instance in [5S0]) are combined with the respective
uncorrelated PMU instrumental uncertainty contributions, the
total standard uncertainties of bus voltage amplitude and phase
to be included in the main diagonal of R,il are set to 0.37% of
the RMS voltage at time #; and 0.44 crad, respectively.

5.2. State estimation uncertainty with measurement setup A

Fig. 3(a)-(b) shows the 99th percentiles of the relative am-
plitude (top) and phase (bottom) estimation errors as a function
of the PV penetration level when measurement Setup A is con-
sidered. Such percentiles are computed over 1 simulated year
at all buses of the 37-bus (a) and 85-bus (b) test distribution
systems, after removing the initial PV-IEKF transient (about 1
day). Solid and dotted lines refer to the PV-IEKF and the WLS
estimator, respectively. Different markers refer to increasing
shares of aggregated SM data replacing traditional active and
reactive power pseudo-measurements. Observe that the 99th
percentiles of the relative amplitude estimation errors obtained
with the PV-IEKF algorithm are much lower than both the rela-
tive maximum intrinsic fluctuations to be monitored [as desired,
see Fig. 2(a)-(b)] and the values returned by the WLS estima-
tor. Also, the PV-IEKF looks more sensitive to the use of smart
metering technologies than the WLS estimator. Such results are
consistent in both considered case studies. It is worth empha-
sizing that, while the bus voltage amplitudes exhibit intrinsic
variations in the order of some percent (see Fig. 2), the 99th
percentiles of the relative estimation errors obtained with the
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Figure 3: DSSE expanded uncertainties (with 99% confidence level) of relative amplitude (top) and phase (bottom) obtained with the PV-IEKF (solid lines) and
WLS (dotted lines) state estimators as a function of the PV penetration level when the measurement Setup A (i.e., without PMUs) is considered. The 99th percentiles
are computed from the relative deviations between the state variables estimated over one year at all buses of the 37-bus (a) and the 85-bus (b) distribution systems
under test and the respective actual values obtained as explained in Section 4.2. In all graphs, different types of markers refer to increasing fractions of aggregated

(and more accurate) SM data replacing pseudo-measurements.

PV-IEKF are steadily below 0.6% and can be so small as about
0.1%. Such values are from two to about ten times smaller than
the WLS estimator ones. A deeper analysis (not shown for the
sake of brevity) highlights that the DSSE error percentiles are
quite similar at all buses, i.e. they are not particularly affected
by distribution system topology.

As far as the estimation of phase state variables is concerned,
the performance gap between the PV-IEKF and the WLS esti-
mator is much smaller. In any case, again the 99th percentiles
of phase estimation errors are more than one order of magni-
tude smaller than the maximum intrinsic phase variations due
to load and PV generation only and mentioned in Section 4.2
(i.e., +2.5 crad in the 37-bus case and +5 crad in the 85-bus
case). Therefore, both DSSE algorithms perform reasonably
well. However, the performance gap between the PV-IEKF and
the WLS estimator tends to increase with the size of the distri-
bution system.

Further results, split by season and not shown for the sake of
brevity, confirm that the 99th percentiles of the state estimation
errors are quite independent of seasonal solar radiation changes.

One interesting issue that deserves attention is the apparently
higher sensitivity of the PV-IEKF estimator to PV penetration
than the WLS estimator. This phenomenon is probably due to
the growing impact of the elements of E’gk1 on the computation
of the predicted state covariance matrix given by (8)-(9), and
consequently, on the steady-state covariance of the estimated
state. More in details, as the PV penetration increases, both
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the number of nonzero elements of E”G1k1 and their magnitude
(namely the variance of the PV power fluctuations around the
average daily patterns in different months which are used as
filter inputs in (7) obviously grow. However, such increments
in prediction uncertainty are only partially counterbalanced by
the use of the SM data collected from the PV units and used in
the update step of the filter.

5.3. State estimation uncertainty with measurement setup B

Fig. 4(a)-(b) shows the DSSE expanded uncertainties (with
99% confidence) of relative amplitude (top) and phase (bottom)
as a function of the PV penetration level when measurement
Setup B is considered. Again, the 99th percentiles of the esti-
mation errors are computed over 1 simulated year at all buses of
the 37-bus (a) and 85-bus (b) distribution systems, after remov-
ing the initial PV-IEKF transient (about 1 day). Like in Fig. 3,
solid and dotted lines refer to the PV-IEKF and the WLS esti-
mator, respectively. Again, different markers refer to increasing
shares of aggregated SM data that replace traditional active and
reactive power pseudo-measurements. However, as explained
in Section 5.1, in this case the PMUs are supposed to monitor
the buses linked to PV units. Therefore, when the PV pene-
tration increases, the number of deployed PMUs tends to grow
as well. The results shown in Fig. 4(a)-(b) are globally con-
sistent with those obtained with Sefup A. The main difference
in this case is that while the PMUs improve WLS state estima-
tion considerably (especially amplitude state variables), their
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Figure 4: 99th percentiles of relative amplitude (top) and phase (bottom) estimation errors obtained with the PV-IEKF (solid lines) and WLS (dotted lines) algorithm
as a function of the PV penetration level when the measurement Setup B (i.e., including PMUs) is considered. The 99th percentiles are computed from the relative
deviations between the state variables estimated over one year at all buses of the 37-bus (a) and the 85-bus (b) distribution systems under test and the respective
actual values obtained as explained in Section 4.2. In all graphs, different types of markers refer to increasing fractions of aggregated (and more accurate) SM data

replacing pseudo-measurements.

impact on PV-IEKF results is minor. In fact, the performance
of both estimators tend to converge when large PV penetration
levels are achieved. Again, with the chosen input predictors, the
WLS state estimator can be occasionally slightly more accurate
than the PV-IEKF when the PV penetration exceeds 60%-70%.
However, the PV-IEKF can provide excellent results (at least
in quasi-steady state conditions) even if the grid is not strongly
instrumented with PMUs, with significant potential savings for
distribution systems operators.

5.4. Computational performance

The PV-IEKF and WLS algorithms were implemented in
Matlab R2017b. The adopted processing platform is a worksta-
tion equipped with 128 GB of RAM, two Intel Xeon six-core E5
processors running at 2.2 GHz and Windows Server 2012 R2.
The mean values and the standard deviations of the processing
times needed to return a single state estimate of the 37-bus and
the 85-bus distribution systems with either algorithm are shown
in Tab. 3. The reported values result from the arithmetic av-
erage and the sampling standard deviations of 4000 estimates
obtained by changing both the level of PV penetration and the
measurement setup. In this respect, it was verified that the in-
clusion of PMUs in Setup B has a very small impact on the over-
all processing time (i.e. between 1% and 2% only). The results
reported in Tab. 3 show that the processing times tends to grow
almost quadratically with the number of buses. On the whole,
the PV-IEKF estimator is more than 30% faster than the WLS
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algorithm in either case study. This is due to the inherently
iterative nature of the WLS approach that, even if generally re-
quires less algebraic operations per step, takes several iterations
to converge. Since the number of such iterations may change as
a function of the system operating conditions, the processing
time standard deviations of the WLS estimator are quite larger
than those of the PV-IEKF.

Table 3: Mean values and standard deviations of the processing times needed
to return a single state estimate of 37-bus and 85-bus test distribution systems.

PV-IEKF WLS
Mean Std. dev. Mean Std. dev.
37-bus case 31 ms 4 ms 45 ms 8 ms
85-bus case 149 ms 6 ms 240 ms 34 ms

5.5. PV-IEKF convergence and response times

A typical issue affecting dynamic state estimators is the non-
negligible number of steps needed to converge to the steady
state. Such transients occur at the beginning (i.e., as a result
of the chosen initial conditions) and after sudden changes of
the state variables. Of course, no transient problems exist with
the WLS estimator, because in that case in principle each es-
timate depends only on the measurement data collected at the
same time and not on the previous states. In Tab. 4 the 99th per-
centiles of both the initial convergence times and the response



Table 4: 99th percentiles of the initial convergence times and of the response
times to a sudden event (both expressed in normalized time steps) in the 37-bus
and 85-bus cases for Setup A and Setup B, respectively.

Setup A Setup B
Initial Sudden Initial Sudden
transient event transient event
37-bus case 98 80 95 56
85-bus case 93 26 91 21

times to some sudden events in both test distribution systems
are reported for Setups A and B, respectively. All values are ex-
pressed in discrete (i.e., normalized) time steps, to keep them
independent of the sampling period. In the present study, the
convergence and response times of a given state variable are de-
fined as the time intervals between the first time step or the time
step at which a sudden event occurs, respectively, and the time
step after which the estimation errors of the same state vari-
able lie within an interval centered in the steady-state value with
99% confidence. The step events were generated by applying
three alternative sudden line impedance changes between buses
4-27, 14-34 and 11-28 in the 37-bus case and between buses
11-12, 67-68 and 32-33 in the 85-bus case. Such changes
cause step-like variations (up to about 20%) of the state vari-
ables. The 99th percentiles of both the convergence times and
the event response times are computed over all state variables
by changing the PV penetration level and the shares of pseudo
and SM data, as explained in the previous Sections. However,
in Tab. 4 just the global percentiles of the aggregated data are
shown for brevity, since we observed that the convergence and
response times weakly depend on either the PV-based informa-
tion or the share of SM data. The results in the Table show that
the initial transients are quite consistent in all cases, whereas
a remarkable difference exist between the two test distribution
systems when a sudden event occurs. Such a difference makes
sense because the relative impact of a given event on a large
distribution system is expected to be lower than on a small one,
as the buses that are farther from the event location are certainly
less affected. Note that the use of PMUs generally tends to re-
duce the convergence and transient times. Of course, a much
better responsiveness could be achieved if PMU data were in-
jected into the PV-IEKF estimator at a higher rate (as typically
ensured by this kind of instruments), provided that the band-
width of the monitoring infrastructure is able to withstand mas-
sive streams of real-time data. Although the convergence per-
formance of the PV-IEKF estimator looks globally reasonable,
probably even better results in the case of step changes could be
achieved by multiplying the covariance matrix of the predicted
state by a fudge factor (namely a heuristic diagonal, positive
definite matrix) just before computing the Kalman gain when-
ever the innovation term exceeds a given critical threshold [36].

5.6. Discussion on DSSE time resolution

As explained above, the results reported in this paper are ob-
tained with a simulation time step of 15 minutes. Therefore,
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they are too coarse to provide ultimate conclusions on high-
rate state fluctuations. Nonetheless, the performance analysis
clearly shows the accuracy improvement that can be achieved at
alow cost by using just state-of-the-art monitoring technologies
(most notably last-generation SMs) and the available input data
on PV generation. Quite importantly, since the whole under-
lying theoretical formulation does not depend on the sampling
period, the proposed PV-IEKF estimator can be potentially ap-
plied at higher rates, if the rate of input and measurement data
is also larger. However, if very high state estimation rates are
needed (i.e., in the order of 1 Hz or more), two main prob-
lems may arise. First, when the time step used for system dis-
cretization is comparable with the time constants of the grid,
some equations of the model could become quite inaccurate,
especially under transient conditions. Second, the distribution
system should be fully observed by PMUs since, to the best of
Authors’ knowledge, no other instruments for grid monitoring
can steadily collect and stream measurement data with report-
ing periods well below 1 s. Unfortunately, a widespread PMU
deployment (although highly desirable from the technical point
of view) could be infeasible for cost reasons or installation con-
straints. Moreover, the bandwidth of the whole communication
infrastructure should able to withstand the data tsunami created
by the PMUs themselves. Currently, in many countries this is
not possible yet.

6. Conclusions

In this paper, a study about the potential benefits of the use
of PV generation data for distribution system state estimation
(DSSE) is reported. In particular, a PV-aided Interlaced Ex-
tended Kalman Filter (PV-IEKF) is proposed. The advantage
of the PV-IEKF is twofold. First, the state estimation uncer-
tainty is generally lower than the uncertainty achievable with
a classic WLS algorithm, which is still the most common ap-
proach adopted at the distribution level. Second, compared to a
standard Extended Kalman Filter implementation, the proposed
interlaced solution makes the estimator inherently more robust,
from the numerical point of view, to the ratio between the vari-
ance of power injections at buses where load and PV generation
exhibit large fluctuations and the variance of virtual measure-
ments at zero-injection buses. Finally, the PV-IEKF is compu-
tationally faster than the WLS algorithm and, in quasi-steady-
state operating condition, it generally provides very accurate re-
sults even when a small number of Phasor Measurement Units
(PMUs) is used.

The results obtained in this paper suggest that even better re-
sults could be achieved if more accurate solar generation fore-
casting algorithms are used to support state estimation. This
might also reduce the present sensitivity to PV penetration that,
although not particularly critical, is probably due to the chosen
input model. The analysis presented in the paper is performed
at low reporting rates, i.e., considering the communication con-
straints of most of the existing infrastructures for distribution
systems monitoring. However, the PV-IEKF could be imple-
mented to return state estimates at quite higher rates (e.g., ev-



ery second) by combining short-term PV forecasting models
and widespread PMU data.

Finally, it is worth emphasizing that the proposed approach
could be potentially extended or adapted to other forms of
renewable-based distributed generators, provided that i) the av-
erage daily power generation profiles and their variances can be
reconstructed with a good time resolution (to feed the predic-
tion step of the filter) and ii) the power generation data can be
telemetered in real-time (for state estimation update).

Appendix A - Discretized system model

Given the definitions of x, u; and ug introduced in Section 3,
the power injections expressions in (1) fori = 2,..., N can be
rearranged in an implicit matrix form as

fP(Xs ug, uL)
fo(x,ug,ur)

= (A.1)
Observe that, if input vectors ug and u, are given, (A.l) is a
nonlinear system of 2N — 2 equations in 2N — 1 unknowns.
Therefore, the system is underdetermined. The active and reac-
tive power injections at the slack bus are purposely not included
in (A.1), because P' and Q' generally depend linearly on the
power injections at all the other buses. However, since the RMS
voltage amplitude at the slack bus is supposed to be equal to a
given nominal value V, the undertermined system (A.1) can be
turned into a balanced one (i.e. with 2N — 1 equations in 2N — 1
unknowns) by adding equation V! - V =0, i.e.

vi_v
f(x,ug,uy) = [fp(x,ug,u)| = 0.
fo(x,ug,u;)

(A.2)

Recalling that both state variables and input active/reactive
power injections are time-varying quantities, the evolution of
system (A.1) between instants #;_; and #; (assuming that the
difference #; — #;—; is small enough compared with the system
time constants) can be approximately described by the first-
order Taylor’s series expansion of (A.1) [24], i.e.

Ak,lAXk + Bk,l(Alle - AllLk) + e, = 0, (A3)

where Ax; = X, —X;_1, Aug, = ug,—ug, , and Au;, =u;, —uy,
are the state, load and power generation variations in one time
step, ey is the linearization error,

o 0O --- 0 1 -~ 0
Hp o e Oy
Ak—1=a— = | 30 T avN (A4)
X oty oty oty oy
A 772 agv VT VN
uG:qu*l
uL=“Lk,l

is the 2N—-1)x(2N—1) Jacobian of f(x, ug, u;) with respect to
the state vector variables at time #;_;, and finally

o7 07
Bi_1= % In1 Oy (A5)
LAV (VISR Y
“(J‘:llGA 1
uL=ug,
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is the Jacobian of f(x,ug,u;) with respect to the input vari-
ables, with Iy_; and Oy_; being the (N—1)X(N—1) identity and
zero matrices, respectively. Observe that while A;_; changes
with time, By_; is constant. If A;_; is a full-rank matrix, i.e.
invertible (this assumption is generally true since load and PV
generation at buses different from the slack bus are not linearly
dependent), then equation (A.3) can be rewritten as

X =X —Ar! | Bio1 (Aug, —Aug ) -Ap ey, (A.6)

from which (2) finally results.

Appendix B — Benefits of Blockwise Inverse Computation in
PV-IEKF Implementation

If the so-called blockwise inversion lemma is applied to (12),
the inverse of the overall innovation covariance matrix S; =

§00 o1
[ S(ﬁr S’{l }can be split into the following blocks, i.e.

k k
B = S
0l _ _(g00_gO0lgll™ ¢017y-1¢0l ¢l
Llfo _ (ngk flk-lsl(()ﬂskoo) oslk ilﬁl 017y-1 B.1)
L= =L 71:Sk 7ISI< T(Sk =S, Sk 7]Sk T)
LT = s gl g0 (g00_gO0g 117 gOI )1

Observe that, in (B.1) the inverse of both ;' and its Schur’s

complement §}'=5 %-§9'5 1”5 1% have to be computed. There-
fore, it is essential that i) both S;' and " are not singular; ii)
their condition number is small enough to avoid ill-conditioning
problems. The first property results from the fact that a block
diagonal matrix is positive definite if and only if each diagonal
block is positive definite. Therefore, both S and S ;' must be
positive definite. Moreover, S ,11 results from the difference of
two positive definite matrices. Thus, it must also be positive
definite.

As far as the second property is concerned, the cases of S ,1('
and § ]! have to be analyzed independently. Asto S}, let 5, =
s1 £ -+ < Sy = Sy be the eigenvalues of Sy and Ny be the
number of zero injection buses. The principal submatrices S f{
of Sy (for I = 1,..., Np) obtained by removing recursively, one
at a time, the rows and the columns of S associated with zero-
power injections are of course positive definite. Let us refer
t00 < st < b <o < s\ as the eigenvalues of matrix
S,’c of size N — [. Due to the Cauchy’s interlacing inequality,
the jth eigenvalue sé of any principal submatrix S 5:1 of S ,lc of

size N — [ — 1 lies in the interval sll. < si-“ < s[jJrl for j =

l,...,N-I-1. Asaconsequence, s’ . < sf;i}l, sl < sl and,
more in general,
1 N N, No-1
Smin < Sppige - < Sy and - sp,0 <800S S (B.2)

Therefore, the condition number of S ,il cannot be greater (and
most likely it will be strictly smaller) than the condition number
No

S,[nvl(‘,]x <

of the whole innovation covariance matrix, i.e. r(S;') =

Smax

Smin



Observe that S can be rearranged as

S goiglItgo1” ol
Sp=M, +T=| © + K ka b ’;1 (B.3)
0 so gl
Let uy < < uy and y; < < vyy be the eigenval-

ues of matrices My and I, respectively. Since I'y is posi-
tive semidefinite with a null space of size Ny, by applying the
Courant-Fischer minimax principle, it follows that s,,;, < .
Of course, the minimum nonzero eigenvalues of M and S '
coincide, i.e. S, = k. On the other hand, it is known from
the Weyl theorem (which provides the upper and lower bounds
to the eigenvalues of the sum of two Hermitian matrices) that
Smax = MUn +71. Thus, recalling that the maximum eigenvalue of
81118 Syuax = uy and yy = 0 (as I is positive semidefinite), it fi-
nally results that the condition number of §;! cannot be greater
than the condition number of the whole innovation covariance

matrix, i.e. r(§]') = 2= = Rt

In conclusion, the condition numbers of S ,11 and § ,11 obtained
from the blockwise inversion of S (which in turn is partitioned
by the interlaced EKF implementation described in Section 3.2)
are lower than (or equal to, but it is very unlikely) the condition
number of the overall EKF innovation covariance matrix.

Smin Smin
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