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Abstract. A (t, n)-threshold signature scheme enables distributed sign-
ing among n players such that any subset of size at least t can sign,
whereas any subset with fewer players cannot. Our goal is to produce
digital signatures that are compatible with an existing centralized signa-
ture scheme: the key-generation and signature algorithms are replaced
by a communication protocol between the players, but the verification
algorithm remains identical to that of a signature issued using the cen-
tralized algorithm. Starting from the threshold scheme for the ECDSA
signature due to Gennaro and Goldfeder, we present the first protocol
that supports multiparty signatures with an offline participant during
the key-generation phase and that does not rely on a trusted third party.
Under standard assumptions on the underlying algebraic and geometric
problems (e.g. the Discrete Logarithm Problem for an elliptic curve and
the computation of eth root on semi-prime residue rings), we prove our
scheme secure against adaptive malicious adversaries.
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1. Introduction

A (t, n)-threshold signature scheme enables distributed signing among n play-
ers such that any subset of size t can sign, whereas any subset with fewer
players cannot. The first Threshold Multi-Party Signature Scheme was a
protocol for ECDSA signatures proposed by Gennaro et al. [16] where t + 1
parties out of 2t + 1 were required to sign a message. Later MacKenzie and
Reiter proposed and then improved another scheme [26,27], which has later
been furthermore enhanced [10,11,23]. The first scheme supporting a general
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(t, n)-threshold was proposed in [15], improved in [4] and in [14]. A paral-
lel approach has been taken by Lindell and Nof in [24]. In [21] the authors
introduce a refresh mechanism, for proactive security against the corruption
of different actors in time, that does not require all parties to be online,
and in [7] the authors take a similar approach and propose a protocol that
streamlines signature generation and include proactive security mechanisms.
Currently there is a large effort of standardization for threshold signatures,
as can be seen in [5].
The schemes proposed in the previous papers produce signatures that are
compatible with an existing centralized signature scheme. In this context,
the key-generation and signature algorithms are replaced by a communica-
tion protocol between the parties, while the verification algorithm remains
identical to that of a signature issued using the centralized algorithm.

The need for joint signatures arises frequently in the world of cryptocur-
rencies, where digital signatures determine ownership rights and control over
assets, meaning that protection and custody of private keys is of paramount
importance. A particularly sensitive issue is the resiliency against key loss,
since there is no central authority that can restore ownership of a digital
token once the private key of the wallet is lost. Three possible solutions are:

• to rely on a trusted third-party custodian that takes responsibility of
key management, but this kind of centralization may form single points
of failure and juicy targets for criminal takeovers (there have already
been plenty of examples of said events in the past [8]).

• to use multi-sig wallets (available for some cryptocurrencies, like Bitcoin
[29]) where the signatures are normal ones, but funds may be moved out
of that wallet only with a sufficient number of signatures corresponding
to a prescribed set of public keys. Unfortunately, this approach is not
supported by every cryptocurrency (e.g. Ethereum [6]) and such wallets
are very easily identifiable.

• to distribute the control of the wallet through advanced multi-signature
schemes, in particular with threshold-like policies. This solution may
be reached by threshold multi-sig compatible with centralised digital
signatures, as in the aforementioned work by Gennaro and Goldfeder
and related papers.

Regarding this last option, there is a potential problem in real-life applica-
tions of these protocols: the recovery party (that allows to recover the wallet
funds in case of key loss) is usually not willing to sustain the cost of frequent
online collaboration. For example, a bank may safely guard a piece of the se-
cret key, but it is inconvenient and quite costly to make the bank participate
in the enrollment of every user.

In this paper, following the latter approach, we propose a protocol in
which the recovery party is involved only once (in a preliminary set-up), and
afterwards it is not involved until a lost account must be recovered. Our pro-
tocol may be seen as an adaption of that in [14]. We prove its security against
(adaptive) adversaries by relying on standard assumptions on the underlying
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algebraic and geometric problems, such as the strong RSA assumption on
semi-prime residue rings and the DDH assumption on elliptic curves.

Organization We present some preliminaries in Sect. 2, we describe our proto-
col in Sect. 3. Another practical problem is to derive many keys from a single
secret, for example to efficiently manage multiple wallets. Therefore, we pro-
vide also an extension of our protocol that can work with key-derivation in
Sect. 3.6. In Sect. 4 we state the security property that we claim for our
protocol, with a proof similar to that in [14], which however requires sev-
eral subtle modifications to tackle the off-line situation. The adaption of our
proof to the key-derivation extension is cumbersome but easy and so we do
not provide it here. Finally in Sect. 5 we draw our conclusions.

2. Preliminaries

In this section we present some preliminary definitions and primitives that
will be used in the protocol and its proof of security.

In the following when we say that an algorithm is efficient we mean
that it runs in (expected) polynomial time in the size of the input, possibly
using a random source.

2.1. Assumptions

Our proof is based on two assumptions: the decisional Diffie and Hellman [3]
(from now on DDH) and the RSA [32] assumption.

Definition 2.1. (DDH assumption) Let G be a cyclic group with generator
g and order n. Let a, b, c be random elements of Zn. The decisional Diffie–
Hellman assumption, from now on DDH assumption, states that no efficient
algorithm can distinguish between the two distributions (g, ga, gb, gab) and
(g, ga, gb, gc).

Definition 2.2. (RSA assumption) Let N = pq with both p, q safe primes.
Let e be an integer such that e and φ(N) are coprime.

• The RSA assumption states that given a random element s ∈ Z
∗
N no

efficient algorithm can find x such that xe = s mod N .
• The Strong RSA assumption states that given a random element s ∈ Z

∗
N

no efficient algorithm can find x, e0 �= 1 such that xe0 = s mod N .

2.2. Zero-Knowledge Proofs

In the protocol various zero-knowledge proofs (ZKP) [18] are used to enforce
the respect of the passages prescribed by the specifications. In fact in the proof
of security we can exploit the soundness of these sub-protocols to extract
valuable information from the adversary, and their zero-knowledge property
to simulate correct executions even without knowing some secrets. We can do
so because we see the adversary as a (black-box) algorithm that we can call
on arbitrary input, and crucially we have the faculty to rewind its execution.

In particular we use ZKP of Knowledge (ZKPoK) to guarantee the us-
age of secret values that properly correspond to the public counterpart: the
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Schnorr protocol for discrete logarithms (see [34] and Appendix A.1) and an
integer-factorization proof (see [31] and Appendix A.2) for Paillier keys. The
soundness property of a ZKPoK guarantees that the adversary must know
the secret input, and opportune rewinds and manipulations of the adversary’s
execution during the proof allows us to extract those secrets and use them
in the simulation. Conversely exploiting the zero-knowledge property we can
trick the adversary in believing that we know our secrets even if we don’t,
thus we still obtain a correct simulation of our protocol form the adversary’s
point of view.

The other ZKP used is a range proof (see [14,26] and appendix A.3) that
guarantees a proper execution of the share conversion protocol of Sect. 2.5,
however the same discussion of [14], Sect. 5 (about how the security is not
significatively affected removing this proof) applies to our protocol.

2.3. Paillier Cryptosystem

In our protocol we use the Paillier cryptosystem, a partially homomorphic
asymmetric encryption scheme presented by Paillier in [30]. Suppose that Bob
wants to send an encrypted message to Alice. The workflow of the algorithm
is the following:

• Key-generation:
1. Alice chooses two large primes p, q uniformly at random, such that

gcd(pq, (p − 1)(q − 1)) = 1.
2. Alice sets N = pq and λ = lcm(p − 1, q − 1).
3. Alice picks Γ ∈ Z

∗
N2 uniformly at random. In this context Z

∗
N2

indicates the ring of units of ZN2 .
4. Alice checks that N divides the order of Γ. To do so it is sufficient

(see [30, Section 3]) to compute μ = (L(gλ mod N2))−1 mod N ,
where L(x) is the quotient of the Euclidean division x−1

N , i.e. the
largest integer value k such that x − 1 ≥ kN .

5. The public encryption key is (Γ, N). The private encryption key is
(μ, λ).

• Message encryption:
1. To send a message m ∈ ZN to Alice Bob picks r ∈ Z

∗
N .

2. Bob computes c = ΓmrN mod N2.
• Decryption

1. Alice computes m = L(cλ mod N2) · μ mod N .

Let E and D be the encryption and decryption functions respectively. Given
two plaintexts m1,m2 ∈ ZN , their associated ciphertexts c1, c2 ∈ Z∗

N2 and
a ∈ ZN then we define +E and ×E as follows:

c1 +E c2 = c1c2 mod N2,

a ×E c1 = ca
1 mod N2.

Then the homomorphic properties of the Pallier cryptosystem are:

D(c1 +E c2) = m1 + m2 mod N,

D(a ×E c1) = am1 mod N.
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2.4. ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA), presented in [20],
is a variant of the Digital Signature Algorithm (DSA) [22] which uses elliptic
curve cryptography.

Suppose Alice wants to send a signed message m to Bob. Initially, they
agree on a cryptographic hash function [33] H, an elliptic curve E, a base
point B for E, with n the order of B a prime. For any point P ∈ E we use
the notation Px to denote the value of the first coordinate of the point P.
The protocol works as follows:

1. Alice creates a key-pair consisting of a private integer d, selected uni-
formly at random in the interval [1, n−1] and the public point Q = dB.

2. Alice computes e = H(m) and picks k uniformly at random in the
interval [1, n − 1].

3. Alice computes the point R = k−1B.
4. Alice computes s = k(e + rd) with r = Rx.

The signature is the pair (r, s).
To verify the signature Bob performs the following steps:

1. Bob checks that r, s ∈ [1, n − 1],
2. Bob computes e = H(m),
3. Bob computes u1 = es−1 mod n and u2 = rs−1 mod n,
4. Bob computes the point U = u1B + u2Q,
5. checks that r ≡ Ux mod n.

2.5. A Share Conversion Protocol

Assume that we have two parties, Alice and Bob, holding two secrets, re-
spectively a, b ∈ Zq with q prime, such that ab = x mod q. We can imagine
a, b as private shards of a shared secret x. Alice and Bob would like to per-
form a multiplicative-to-additive conversion to compute α, β ∈ Zq such that
α + β = x mod q. In this section we will present a protocol for this based
on the Paillier Encryption Scheme (see Sect. 2.3). We assume that Alice has
a public key A = (N,Γ), and EA will indicate the Pallier encryption with A.
Moreover we need a value K > q.

1. Alice initiates the protocol:
• Alice computes cA = EA(a) and sends it to Bob.
• Alice proves in ZK that a < K via the first range proof explained

in Appendix A.3.
2. Bob generates his shard β:

• Bob computes cB = b ×E cA +E EA(β′) = EA(ab + β′) where β′

is chosen uniformly at random in ZN .
• Bob sends cB to Alice.
• Bob proves in ZK that b < K via the second range proof presented

in Appendix A.3.
• If B = gb is public Bob proves in ZK that he knows b, β′ such that

gb = B and cB = b ×E cA +E EA(β′).
3. Alice decrypts cB to obtain α′.
4. Alice obtains her shard α = α′ mod q, Bob obtains his shard β = −β′.
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The protocol takes two different names depending on whether B = gb is pub-
lic or not. In the first case we refer to this protocol as MtAwc (Multiplicative
to Additive with check), because Bob performs the extra check at the end,
in the second we refer to it simply as MtA.

For more details about the protocol and the security proof see [14].

2.6. Feldman-VSS

Feldman’s VSS scheme [13] is a verifiable secret sharing scheme built on top
of Shamir’s scheme [36]. A secret sharing scheme is verifiable if auxiliary in-
formation is included, that allows players to verify the consistency of their
shares. We use a simplified version of Feldman’s protocol: if the verification
fails the protocol does not attempt to recover excluding malicious partici-
pants, instead it aborts altogether. In a sense we consider somewhat honest
participants, for this reason we do not need stronger schemes such as [17,35].
The scheme works as follows:

1. A cyclic group G of prime order p is chosen, as well as a generator g ∈ G.
The group G must be chosen such that the discrete logarithm is hard
to compute.

2. The dealer computes a random polynomial P of degree t with coefficients
in Zp, such that P (0) = s where s is the secret to be shared.

3. Each of the n share holders receive a value P (1), ..., P (n) mod p. So
far, this is exactly Shamir’s scheme.

4. To make these shares verifiable, the dealer distributes commitments to
the coefficients of p. Let P (X) = s+

∑n
i=1 aiX

i, then the commitments
are c0 = gs and ci = gai for i > 0.

5. Any party can verify its share in the following way: let α be the share
received by the i-th party, then it can check if α = P (i) by checking if
the following equality holds:

gα =
t∏

j=0

c
(ij)
j = gs

t∏

j=1

gaj(i
j) = gs+

∑t
j=1 aj(i

j) = gP (i).

In the proof we will need to simulate a (2, 2)-threshold instance of this pro-
tocol without knowing the secret value s.

Let us use an additive group with generator B, and let Y = sB, the
simulation proceeds as follows:

• the dealer selects two random values a, b and forces P (1) = a, P (2) = b;
• then it computes:

c1 = (aB − Y), (1)

c2 =
1
2
(bB − Y); (2)

• the other players can successfully verify their shards, checking that

aB = Y + c1 = Y + aB − Y, (3)

bB = Y + 2c2 = Y + 2 · 1
2
(bB − Y). (4)
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3. Protocol Description

In this section we describe the details of our protocol. After some common
parameters are established, one player chooses a long-term asymmetric key
and then can go offline, leaving the proper generation of the signing key to
the remaining two participants. For this reason the signature algorithm is
presented in two variants, one used jointly by the two players who performed
the key-generation, and one used by the offline player and one of the others.
More specifically the protocol is comprised by four phases:

1. Setup phase (Sect. 3.1): played by all the parties, it is used to decide
common parameters. Note that in many contexts these parameters are
mandated by the application, so the parties merely acknowledge them,
possibly checking they respect the required security level.

2. Key-generation (Sect. 3.2): played by only two parties, from now on P1

and P2. It is used to create a public key and the private shards for each
player.

3. Ordinary signature (Sect. 3.4): played by P1 and P2. As the name sug-
gests this is the normal use-case of the protocol.

4. Recovery signature (Sect. 3.5): played by P3 and one between P1 and
P2. This models the unavailability of one player, with P3 stepping up
as a replacement.

From here on with the notation “Pi does something”, we mean that both
P1 and P2 perform the prescribed task independently. Similarly, the notation
“Pi sends something to Pj” means that P1 sends to P2 and P2 sends to P1.

3.1. Setup Phase

This phase involves all the participants and is used to decide the parameters
of the algorithm.
The parameters involved are the following:

Player 1 and 2 Player 3

Input: – Input: –
Private output: – Private output: sk3

Public output: E,B, q,H Public output: pk3

P3 chooses an asymmetric encryption algorithm and a key pair (pk3, sk3),
then it publishes pk3, keeping sk3 secret. pk3 is the key that P1 and P2 will
use to communicate with P3. The algorithm which generates the key pair
(sk3, pk3) and the encryption algorithm itself are unrelated to the signature
algorithm, but it is important that both of them are secure.
More formally we require that the encryption protocol has the property of
IND-CPA [1,28]:

Definition 3.1. (IND-CPA) Let Π = (Gen,Enc,Dec) be a public key encryp-
tion scheme. Let us define the following experiment between an adversary A

and a challenger Cb parameterized by a bit b:
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1. The challenger runs Gen(1k) to get sk and pk, the secret and public keys.
Then it gives pk to A.

2. A outputs two messages (m0,m1) of the same length.
3. The challenger computes Enc(pk,mb) and gives it to A.
4. A outputs a bit b′(if it aborts without giving any output, we just set

b′ = 0). The challenger returns b′ as the output of the game.
We say that Π has the property of being indistinguishable under chosen plain-
text attacks (IND-CPA) or simply secure against a chosen plaintext attack, if
for any k and any probabilistic polynomial time adversary A the function

Adv(A) = P[C1(A, k) = 1] − P[C0(A, k) = 1], (5)

i.e. Adv(A) = P[b′ = b] − P[b′ �= b], is negligible.

Then P1 and P3 need to agree on a secure hash function H, an elliptic
curve E with group of points of prime order q, and a generator B ∈ E of said
group. The order identifies the ring Zq used for scalar values.

3.2. Key-Generation

Player 1 Player 2

Input: pk3 Input: pk3

Private output: p1, q1, ω1 Private output: p2, q2, ω2

Shared secrets: rec1,3, rec2,3, d Shared secrets: rec1,3, rec2,3, d
Public output: Γ1, N2,Γ2,Y Public output: Γ2, N1,Γ1,Y

The protocol proceeds as follows:
1. Secret key-generation and communication:

(a) Pi generates a Paillier public key (Ni,Γi) and its corresponding
secret key (pi, qi).

(b) Pi selects randomly ui, σ3,i ∈ Zq.
(c) Pi computes [KGCi,KGDi] := Com(uiB).
(d) Pi computes [KGCSi,KGDSi] := Com(σ3,iB).
(e) Pi sends KGCi, KGCSi, and (Ni,Γi) to Pj .
(f) Pi sends KGDi,KGDSi to Pj .
(g) Pi computes ujB = Ver(KGCj ,KGDj) and σ3,jB = Ver(KGCSj ,

KGDSj).
2. Feldman VSS protocol and generation of P3’s data:

(a) Pi selects randomly mi ∈ Zq.
(b) Pi sets fi(X) = ui+miX, and σi,1 = fi(2), σi,2 = fi(3), σi,3 = fi(1).

Then Pi computes and distributes the shards ci,j for the Feldman-
VSS, as described in Sect. 2.6.

(c) Everyone checks the integrity and consistency of the shards ac-
cording to the VSS protocol.

(d) Pi encrypts σi,3 and σ3,i with pk3 to obtain reci,3.
(e) Pi sends σi,j ,miB, reci,3 to Pj .

3. Pi computes the private key xi = σ1,i + σ2,i + σ3,i.
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4. Pi proves in ZK that it knows xi using Schnorr’s protocol of Appendix
A.1.

5. Pi proves in ZK that it knows pi, qi such that Ni = piqi using the integer
factorization ZKP of Appendix A.2.

6. Public key-generation and shares conversion:
(a) the public key is Y =

∑3
i=1 uiB, where u3B = 3(σ3,1B)− 2(σ3,2B).

So u3 = 3σ3,1 − 2σ3,2. From now on we will set u =
∑3

i=1 ui.
Obviously uB = Y.

(b) the private key of P1 is ω1 = 3x1, while the private key of P2 is
w2 = −2x2. We can observe that w1 + w2 = u.

(c) P1 and P2 can compute the common secret d = (σ2,1σ2,3B)x that
will be used for key derivation.

Observation 1. We define u3 = 3σ3,1−2σ3,2 because we need to be consistent
with the Feldman-VSS protocol. Indeed, suppose that σ3,2 and σ3,1 are valid
shards of a Feldman-VSS protocol where the secret is u3. Since there is an
m3 such that σ3,2 = u3 + m3 · 3 and σ3,1 = u3 + m3 · 2, we have that:

3σ3,1 − 2σ3,2 = 3u3 + 6m3 − 2u3 − 6m3 = u3.

Note that u3B can be computed by both P1 and P2, but they cannot compute
u3.

3.3. Signature Algorithm

This protocol is used by two players, called PA and PB, to sign messages.
P1, P2, and P3 take the role of either PA or PB depending on the situation,
see Sects. 3.4 and 3.5.

The participants agree on a message M to sign. The goal of this proto-
col is to produce a valid ECDSA signature (r, s) for the public key y.

The parameters involved are:

Player A Player B

Input: M,ωA,ΓA, pA, Input: M,ωB ,ΓB , pB ,
qA, NB ,ΓB ,Y qB , NA,ΓA,Y

Public output: (r, s) Public output: (r, s)

The protocol works as follows:
1. Commitment phase:

(a) Pi picks randomly ki, γi ∈ Zq.
(b) Pi computes Gi = γiB and [Δi,Di] = Com(Gi). We define γ =

γA + γB and k = kA + kB .
(c) Pi sends Δi to Pj .

2. Multiplicative to additive conversion:
(a) Pi re-computes the parameters for Paillier encryption from its keys:

λi = lcm(pi −1, qi −1), μi = (Li(Γλi
i mod N2

i ))−1 mod Ni where
Li(x) = x−1

Ni
.
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(b) PA and PB run MtA(kA, γB) to get respectively αA,B , βA,B such
that kAγB = αA,B + βA,B . They also run it on kB , γA to get
respectively βB,A and αB,A.

(c) Pi sets δi = kiγi + αi,j + βj,i.
(d) PA and PB run MtAwc(kA, ωB) to get respectively μA,B νA,B such

that kAωB = μA,B + νA,B . They also run it on kB , ωA to get
respectively νB,A and μB,A.

(e) Pi sets σi = kiωi + μij + νji. We can observe that
∑

σi = ku.
(f) Pi sends δi to Pj .
(g) PA and PB compute δ = δA + δB and δ−1 mod q.

3. Decommitment phase and ZKP:
(a) Pi sends Di.
(b) Pi computes Gj = Ver(Δj ,Dj).
(c) Pi proves in ZK that it knows γi such that γiB = Gi, using

Schnorr’s protocol.
(d) PA and PA set R = δ−1(GA + GB) and r = Rx. We can observe

that δ = γk and GA + GB = γB, so R = k−1B.
4. Signature generation:

(a) Both players set m = H(M).
(b) Pi computes si = mki + rσi.
(c) Pi picks uniformly at random li, ρi ∈ Zq, and computes Wi :=

siR + liB, Zi = ρiB, and then [Δ̂i, D̂i] = Com(Wi,Zi).
(d) Pi sends Δ̂i to Pj .
(e) Pi sends D̂i to Pj .
(f) Pi computes [Wj ,Zj ] := Ver(Δ̂j , D̂j).
(g) Each Pi proves in ZK that it knows si, li, ρi such that Wi = siR +

liB and Zi = ρiB (if a ZKP fails, the protocol aborts).
(h) PA and PA compute W := −mB − ry + WA + WB and Z :=

ZA + ZB .
(i) Each Pi computes Ui := ρiW, Ti := liZ and [Δ̃i, D̃i] := Com(Ui, Ti).
(j) Pi sends Δ̃i to Pj .
(k) Pi sends D̃i to Pj .
(l) Pi computes [Uj , Tj ] := Ver(Δ̃j , D̃j).

(m) If T1 + T2 �= U1 + U2 the protocol aborts.
(n) Pi sends si.
(o) P1 and P2 compute s := s1 + s2.
(p) If (r, s) is not a valid signature, the players abort, otherwise they

accept and end the protocol.

3.4. Ordinary Signature

This is the case where P1 and P2 wants to sign a message m. They run the
signature algorithm of Sect. 3.3 with the following parameters (supposing P1

play the roles of PA and P2 of PB):
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Player A Player B

Input: M,ω1,Γ1, p1, Input: M,ω2,Γ2, p2,
q1, N2,Γ2,Y q2, N1,Γ1,Y

Public output: (r, s) Public output: (r, s)

3.5. Recovery Signature

If one between P1 and P2 is unable to sign, then P3 has to come back online
and a recovery signature is performed.

We have to consider two different cases, depending on who is offline.
First we consider the case in which P2 is offline, therefore P1 and P3 sign.
The parameters involved are:

Player 1 Player 3

Input: M,ω1,Γ1, p1, q1,Y Input: M, sk3

rec2,3, rec1,3

Public output: (r, s) Public output: (r, s)

The workflow in this case is:

1. Communication:
(a) P1 contacts P3, which comes back online.
(b) P1 sends y and rec1,3, rec2,3 to P3.

2. Paillier keys generation and exchange:
(a) P3 generates a Paillier public key (N3,Γ3) and its relative secret

key (p3, q3).
(b) Pi sends Ni,Γi to the other party.
(c) Pi proves to Pj that it knows pi, qi such that Ni = piqi using

integer factorization ZKP.
3. P3’s secrets generation:

(a) P3 decrypts rec1,3 and rec2,3 with its private key sk3, getting σ1,3,
σ3,1, σ2,3, σ3,2.

(b) P3 computes x3 = σ1,3 + 2σ3,1 − σ3,2 + σ2,3.
(c) Pi proves in ZK that it knows xi using Schnorr’s protocol.

4. Signature generation:
(a) P1 computes ω̃1 := − 1

3ω1.
(b) P3 computes ω3 := 2x3.
(c) P1 and P3 perform the Signature Algorithm of Sect. 3.3 as PA and

PB respectively, where the P1 uses ω̃1 in place of ωA and P3 uses
ω3 in place of ωB (the other parameters are straightforward).

We consider now the second case in which P1 is offline, therefore P2 and P3

sign.
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The parameters involved are:

Player 2 Player 3

Input: M,ω2,Γ2, p2, q2,Y Input: M, sk3

rec2,3, rec1,3

Public output: (r, s) Public output: (r, s)

The workflow of this case is:
1. Communication:

(a) P2 contacts P3, which comes back online.
(b) P2 sends y and rec1,3, rec2,3 to P3.

2. Paillier keys generation and exchange:
(a) P3 generates a Paillier public key (N3,Γ3) and its relative secret

key (p3, q3).
(b) Pi sends Ni,Γi to the other party.
(c) Pi proves to Pj that it knows pi, qi such that Ni = piqi using

integer factorization ZKP.
3. P3’s secrets generation:

(a) P3 decrypts rec1,3 and rec2,3 with its private key sk3, getting σ1,3,
σ3,1, σ2,3, σ3,2.

(b) P3 computes x3 = σ1,3 + 2σ3,1 − σ3,2 + σ2,3.
(c) Pi proves in ZK that it knows xi using Schnorr’s protocol.

4. Signature generation:
(a) P2 computes ω̃2 := 1

4ω2.
(b) P3 computes ω3 := 3

2x3.
(c) P2 and P3 perform the Signature Algorithm of Sect. 3.3 as PA and

PB respectively, where the P2 uses ω̃2 in place of ωA and P3 uses
ω3 in place of ωB (the other parameters are straightforward).

Observation 2. We define ω̃i in this way since we need ω̃i + ω3 = u, with
i ∈ {1, 2}. Moreover we define x3 in this way for the same reasons explained
in Observation 1.

3.6. Key Derivation

In many applications it is useful to deterministically derive multiple signing
keys from a single master key (see e.g. BIP32 for Bitcoin wallets [37]), and this
practice becomes even more useful since in our protocol the key-generation
is a multi-party computation.

To perform the key derivation we need a derivation index i and the
common secret d created during the key-generation protocol.
The derivation is performed as follows:

• P1 and P2 perform the key derivation:
– ω1 → ωi

1 = ω1 + 3H(d||i),
– ω2 → ωi

2 = ω2 − 2H(d||i),
– Y → Yi = y + H(d||i)B.

• P1 and P3 perform the key derivation:
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– ω1 → ωi
1 = ω1 − H(d||i),

– ω3 → ωi
3 = ω3 + 2H(d||i),

– Y → Yi = y + H(d||i)B.

• P2 and P3 perform the key derivation:
– ω2 → ωi

2 = ω2 − 1
2H(d||i),

– ω3 → ωi
3 = ω3 + 3

2H(d||i),
– Y → Yi = y + H(d||i)B.

Observation 3. We observe that the algorithm outputs valid keys, such that,
for example:

(ωi
1 + ωi

2)B = yi.

Since (ωi
1 + ωi

2) = ω1 + ω2 + H(d||i) we have that:

(ωi
1 + ωi

2)B = (ω1 + ω2 + H(d||i))B = Y + H(d||i)B = Yi.

With the same procedure we can prove that also the other pairs of derived
keys are consistent.

4. Security Proof

As customary for digital signature protocols, we state the security of our
scheme as an unforgeability property, defined as follows (adapted from the
classical definition introduced in [19]):

Definition 4.1. We say that a (t, n)-threshold signature scheme is unforgeable
if no malicious adversary who corrupts at most t − 1 players can produce
with non-negligible probability the signature on a new message m, given the
view of Threshold-Sign on input messages m1, ...,mk (which the adversary
adaptively chooses), as well as the signatures on those messages.

Referring to this definition the security of our protocol derives from the
following theorem, whose proof is the topic of this section:

Theorem 4.1. Assuming that
• the ECDSA signature scheme is unforgeable,
• the strong RSA assumption holds,
• (Com,Ver) is a non malleable commitment scheme,
• the DDH assumption holds,
• and that encryption algorithm used by P3 is IND-CPA,1

the threshold ECDSA protocol is unforgeable.

The proof will use a classical game-based argument, our goal is to show
that if there is an adversary A that forges the threshold scheme with a non-
negligible probability ε > λ−c, for a polynomial λ(x) and c > 0, we can build
a forger F that forges the centralised ECDSA scheme with non-negligible
probability as well.

1In this proof we focus on the unforgeability property. We discuss other security aspects,
such as recovery resiliency, in Sect. 5.



    4 Page 14 of 29 M. Battagliola et al. MJOM

Since the algorithm presented is a (2, 3)-threshold signature scheme the
adversary will control one player and F will simulate the remaining two. Since
the role of P3 is different we have to consider two distinct cases: one for A

controlling P3 and one for A controlling one between P1 and P2 (whose roles
are symmetrical). The second case is way more interesting and difficult, so
it will be discussed first, and for now we suppose without loss of generality
that A controls P2.

Definition 4.2. (Security Game:) The security game between a challenger C

and an adversary A is defined as follows:
• C runs the preliminary phase and sets up the parameters, C controls

both P1 and P3.
• C and A participate in the key-generation algorithm.
• A chooses adaptively some messages m1, ...,ml for some l > 0 and asks

for a signature on them. A could either participate in the signature or
it can query to C a signature generated by P1 and P3.

• Eventually A outputs a new message m �= mi∀i and a valid signature
for it with probability at least ε.

If we denote with τA the adversary’s tape and with τi the tape of the
honest player Pi we can write:

Pτi,τA [A(τA)Pi(τi) = forgery] ≥ ε, (6)

where Pτi,τA means that the probability is taken over the random tape τA of
the adversary and the random tape τi of the honest player, while A(τA)Pi(τi)

is the output of the iteration between the adversary A, running on tape τA,
and the player Pi, running on tape τi . We say that an adversary’s random
tape τA is good if:

Pτi [A(τA)Pi(τi) = forgery] ≥ ε

2
. (7)

Now we have the following Lemma, introduced in [14]:

Lemma 4.1. If τA is chosen uniformly at random, then the probability of
choosing a good one is at least ε

2 .

Proof. In the proof we will simplify the notation writing A(τA, τi) = forgery
instead of A(τA)Pi(τi) = forgery. Moreover we write b to identify a good
tape, while c will be a bad one. We can rewrite Eq. (6) in this way:

A = Pτi,τA(τA = b, A(τA, τi) = forgery) + Pτi,τA(τA = c, A(τA, τi) = forgery)

= PτA,τi(τA = b)Pτi,τA(A(τA, τi) = forgery|τA = b)

+PτA,τi(τA = c)Pτi,τA(A(τA, τi) = forgery|τA = c). (8)

Trivially we have that Pτi,τA(A(τA, τi) = forgery|τA = b) < 1, and from the
definition of good tape in Eq. (7) we get:

Pτi,τA(A(τA, τi) = forgery|τA = c) <
ε

2
. (9)

Now we want to solve for x = PτA,τi(τA = b), so we get:

ε ≤ A < x · 1 + (1 − x) · ε

2
= x

(
1 − ε

2

)
+

ε

2
, (10)



MJOM Threshold ECDSA with an Offline Recovery Party Page 15 of 29     4 

that leads us to the conclusion:

x ≥
ε − ε

2

1 − ε
2

≥ ε

2 − ε
≥ ε

2
. (11)

�

From now on we will suppose that the adversary is running on a good
random tape.

Now we describe the simulation for the key-generation protocol. The
forger F receives from its challenger the public key Yc = xB for the centralised
ECDSA, a public key E1 for Paillier and a public key pk3 for the asymmetric
encryption scheme.

The simulation proceeds rewinding A and repeating the following steps
until the public key has been correctly generated (i.e. Y �=⊥), which happens
if A sends a correct decommitment on behalf of P2 also after the rewind of
step 5:

1. A computes and broadcasts KGC2 and KGCS2.
2. F selects random values u1, σ3,1, computes [KGC1,KGD1] = Com(u1B),

[KGCS1,KGCS1] = Com(σ3,1B)and sends KGC1,KGCS1.
3. Each player Pi broadcasts its decommitments and the Feldman-VSS

values. Let uiB, σ3,iB be the values decommitted.
4. Each player sends their Paillier public key Ei.
5. at this point F computes ûB = Yc −u2B − 3σ3,1B +2σ3,2B and rewinds

A to its commitment of KGC1 (step 2). We remark that F does not know
û but only ûB.

6. F sends ˆKGC1, the commitment corresponding to ûB. The commitment
for σ3,1B remains the same.

7. if A refuses to decommit then uiB is set to ⊥.
8. F simulates the VSS (since F is not able to compute the random poly-

nomial f(x)) as explained in Sect. 2.6.
9. F participates in the ZK, extracting the secret values from A.

10. the remaining steps remain the same. If ui =⊥ for some i the public key
y is set to ⊥. It is important to note that P1 does not know the value
of σ1,3 and therefore uses a random value to compute rec1,3.
Now we prove that the simulation terminates in expected polynomial

time, that it is indistinguishable from the real protocol and that it terminates
with output Yc except with negligible probability.

Lemma 4.2. The simulation terminates in expected polynomial time and it is
indistinguishable from the real protocol.

Proof. Since A is running on a good random tape we know that it will cor-
rectly decommit with probability at least ε

2 , then we need to rewind only a
polynomial number of times, since the expected number of iterations we need
to perform is 2

ε < 2λc. The first difference between the real protocol and the
simulated one is that F does not know the discrete logarithm of ûB and so
it needs to perform a “fake” Feldman-VSS. This is indistinguishable from a
real Feldman-VSS since they have both the same distribution, as shown in
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Sect. 2.6. The other difference is that F does not know the value of σ1,3 and
therefore uses a random value to compute rec1,3, but since the encryption
algorithm is IND-CPA for the adversary this ciphertext is indistinguishable
from the real one. �

Lemma 4.3. For a polynomially large fraction of possible values for the input
Yc the simulation terminates with output Yc except with negligible probability.

Proof. First we prove that if the simulation terminates correctly (i.e. with
output which is not ⊥) then it terminates with Yc except with negligible
probability.

This is a consequence of the non-malleability property of the commit-
ment scheme. Indeed, if A correctly decommits KGC2 twice it must do so
to the same string, no matter what P1 decommits to (except with negligible
probability). Therefore, due to our choice for ûB we have that the output is
exactly Yc.

Now we prove that the simulation ends correctly for a polynomially
large fractions of the inputs.

Since A is running on a good random tape it decommits correctly for
at least a fraction ε

2 > 1
2λc of the possible values of ûB. Moreover, since

Yc and σ3,1 are chosen uniformly at random, and y2 and σ3,2 are cho-
sen by A without the knowledge of the other values, we can conclude that
ûB = Yc − u2B − 3σ3,1 + 2σ3,2 (that is fully determined before the rewind)
has also uniform distribution. Then given the 1-to-1 correspondence between
Yc and ûB we can conclude that for a fraction ε

2 > 1
2λc of the inputs the

protocol will correctly terminate. �

Observation 4. In the simulation it is crucial that the adversary broadcasts
KGC2 and KGCS2 before F. Inverting the order will cause this simulation to
fail, since after the rewind A could change its commitment. Due to the non-
malleability property we are assured that A can not deduce anything about
the content of these commitments, but nevertheless it could use it as a seed
for the random generation of its values. In this case F guesses the right ûB
only with probability 1

q where q is the size of the group, so the expected time
is exponential.

It is possible to swap the order in the first step using an equivocable
commitment scheme with a secret trapdoor. In this case we only need to
rewind at the decommitment step, we change KCD1 to match ûB. In this way
we could prove the security of the protocol also in the presence of a rushing
adversary but we need an additional hypothesis regarding the commitment
scheme.

Now we describe the simulation of the protocol for the signature gen-
eration. In the same way Gennaro and Goldfeder did in [14], we need to dis-
tinguish two different types of executions depending on what happens during
the step 3 in the signature generation algorithm:

1. Semi-correct executions: the adversary has followed the protocol and
committed-decommitted the correct k2, then the equality R = k−1B
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holds, where k = k1 + k2. In this case F is able to correctly determine
the value s1R and therefore to correctly terminate the simulation.

2. Non-semi-correct executions: the value decommitted by A is not the
correct k2, then the value k−1 is not the proper one. We will show that
a simulation that is not semi-correct will fail with high probability since
the value U1 contributed by P1 is indistinguishable from a random one.
This allows us to simulate the protocol by simply using a random s̃1 for
P1 instead of the correct one.

We note that it is impossible to distinguish the two cases a priori, so the
idea is to guess if an execution will be semi-correct or not. In the semi-correct
executions the simulator will be able to extract the “signature shard” of P1

and to terminate the simulation successfully, in the non-semi-correct ones
our simulator will guess a random signature causing the protocol to abort
(we will show that in the non-semi-correct execution the real protocol aborts
with high probability).

We now present the simulation for a semi-correct execution. We recall
that F does not know the secret values of P1 (ω1 and the secret key corre-
sponding to its Paillier public key) but it knows the secret values of P2. In
the following simulation F aborts whenever the original protocol is supposed
to abort.

1. Both players pick randomly ki, γi and broadcast Δi.
2. Both players execute the MtA protocol for kγ. Since P1 can not decrypt

α1,2, F sets it at random.
3. Both players execute the MtAwc protocol for kω. From the ZKP F

extracts ν1,2. Since F does not know ω1 it sends a random μ2,1 to P2.
At this point F knows σ2.

4. Both players execute the protocol, revealing δi and setting δ = δ1 + δ2.
5. Both players send Di.
6. F queries its signature oracle and receives a signature (r, s) for m. It

computes R = ms−1B + rs−1Y. We note that, in centralised ECDSA,
we have sR = k(m + ru)R = mB + ruB = mB + rY. Then the R
we compute in our simulation is the correct value in the centralised
algorithm.

7. F rewinds A and changes its commitment to Ĝ1 = δ−1R−G2. In this way
we have that δ(Ĝ1 + G2) = R. In the steps after the new commitment
P1 uses the old values of γ1 and k1 since it does not know the correct
ones.

8. At this point F knows the value s2 and then it can compute the right
s1 as s1 = s − s2.

9. P1 and P2 follow the remaining part of the protocol normally.

Observation 5. As in the case of the enrollment phase we need that A speaks
first, to rewind to our commitment phase without changing A’s random tape.
The same argument about equivocable commitment schemes and rushing
adversaries applies here as well.
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Lemma 4.4. Assuming that

• The strong RSA assumption holds,
• we use a non malleable commitment scheme,

then the simulation has the following properties:

• on input m it outputs a valid signature (r, s) or aborts,
• it is computationally indistinguishable from a semi-correct real execu-

tion.

Proof. The differences between the real and the simulated views are the fol-
lowing:

• P1 does not know the discrete logarithm of G1. Moreover G1 �= γ1B.
• in the real protocol R = (k1 + k2)−1B, in this simulation R is chosen

by the signing oracle.

We have that c1 = E(γ1) is sent during the MtA protocol. In order to dis-
tinguish between a real execution and a simulated one an adversary should
detect if c1 is the encryption of a random plaintext or if it is the encryption
of logB(G1). The strong RSA assumption assures the semantic security of
Paillier’s encryption, so this is infeasible.

In the same way let e1 = E(k1). We can write R = (k̂1 +k2)−1B, where
we could imagine k̂1 sent by a random oracle (in reality we never calculate
k̂1 in the simulation because we compute directly R). Then (k̂1 + k2)R = B,
so k̂1R = B − k2R and k̂1 = logR(B − k2R). With the same argument as
before we can conclude that the simulation is indistinguishable from the real
execution. It is worth noting that we are simulating a semi-correct execution
with a non-semi-correct one, but since they are indistinguishable this is fine.

Now let (r, s) be the signature that F receives by its oracle in the sixth
point of the protocol. Note that the change of the commitment after the
rewind does not change the view for A given the hiding and non-malleabilty
properties of the commitment scheme and the considerations above, so as a
consequence of the non-malleability property of the commitment scheme the
decommitment is consistent and we have that if the protocol terminates it
does so with output (r, s). �

Now we show how to simulate the protocol for a non semi-correct exe-
cution, i.e. when the value decommitted by A is not the real k2.

1. the simulator runs the semi-correct simulation from the first to the sixth
point.

2. F does not rewind A to fix the value of R. Instead it runs the protocol
normally.

3. F chooses s̃1 ∈ Zq and U1 at random and uses these values in the last
part of the protocol.

The only difference between the semi-correct simulation and this one is the
choice of s1 and U1. The reason is that in the semi-correct simulation F

can arbitrarily fix R because the values decommitted by A are the real ones,
instead in the non-semi-correct simulation this is impossible since the value k1
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does not match anymore. Therefore F tries to make the protocol fail choosing
U1 and s1 at random.

We divide the proof in two different steps: first we prove that a real
non-semi-correct execution is indistinguishable from a simulation in which
P1 uses the right s1 but outputs a random U1 and then we prove that this
second intermediate simulation is indistinguishable from the one described
above, with both s1 and U1 chosen randomly.

Lemma 4.5. Assuming that

• the DDH assumption holds,
• Com,Ver is a non malleable commitment scheme,

then the simulation is computationally indistinguishable from a non-semi-
correct real execution.

Proof. As anticipated we construct three games between F and A. In the
first one, G0, the simulator will simply run the real protocol. In the game G1,
F follows the real protocol but chooses U1 randomly. Finally, in G2, F runs
the simulation previously described, with both s1 and U1 chosen at random.
Now we proceed to prove the indistinguishability of G0 and G1 and then of
G1 and G2.

Let us assume that there is an adversary A0 that can distinguish between
G0 and G1. We show that this contradicts the DDH assumption.
Let Ã = aB, B̃ = bB, C̃ = cB be the DDH challenge where c = ab or c is
random in Zq. The distinguisher F0 runs A0, simulating the key-generation
phase so that Y = bB. It can do that by rewinding the adversary and changing
its decommitment to u1B = Y−u2B−σ3,1B+2σ3,2B, making Y = B̃. Thanks
to the ZKP F0 extracts the values of x2 (and then of ω2) from the adversary,
but does not know b (and therefore not x1 nor ω1 = b−ω2). In this simulation
we can also suppose that F0 knows the secret key associated to E1, its public
key of the Paillier cryptosystem (we can do this since we are not making any
reduction to the security of the encryption scheme).

At this point F0 runs the signature generation protocol for a non-semi-
correct execution. It runs the protocol normally till the MtA and MtAwc
part of the signature protocol. It knows γ1, k1, since it runs P1 normally, and
γ2, since it extracts its value from the adversary. Therefore F0 knows k such
that R = k−1B. Since we suppose that F0 knows the secret key associated
to E1 it can also know μ1,2 obtained from the MtAwc protocol on input ω2

and k1. Since it does not know ω1, during the MtAwc protocol on input ω1

and k2 it sends a random μ2,1 and sets:

ν2,1 = k2ω1 − μ2,1. (12)

So at the end of the MtAwc we have that:

σ1 = k1ω1 + μ1,2 + ν2,1; (13)

using Eq. (12) in Eq. (13) we get

σ1 = k1ω1 + k2ω1 − μ2,1 + μ1,2 = k̃ω1 + μ1,2 − μ2,1,
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where k̃ = k1 + k2 and we have that k̃ �= k since we are in a non-semi-correct
execution. Remembering that ω1 = b−ω2 we can substitute again, obtaining

σ1 = k̃b − k̃ω2 + μ1,2 − μ2,1, (14)

and F0 knows every value in the equation except b, so let us group these known
values and set μ1 = k̃ω2 + μ1,2 − μ2,1. Thus F0 can successfully compute:

σ1B = k̃bB + μ1B = k̃B̃ + μ1B, (15)

and therefore also:

s1R = (k1m + rσ1)k−1B = (k1m + rμ1)k−1B + k̃rk−1B̃. (16)

We now proceed to the last part of the simulation. F0 selects a random
l1 and sets W1 = s1R1 + l1B. Instead of following the algorithm F0 does
not choose a random ρ1 but sets implicitly ρ1 = a and sends A1 = aB = Ã.
During the ZKP that it simulates (since it does not know a nor s1) it extracts
s2, l2, ρ2 from the adversary. Let us define s = k−1s2. We note that:

W = −mB − rY + W1 + W2 (17)
= (l1 + l2)B + s1R + (s − m)B − rY (18)

= lB + t1B + t2B̃, (19)

where t1 = k−1(k1m + rμ1) + s − m and t2 = k−1k̃r − r. We note that in
a not-semi-correct execution k̃ �= k and then t2 �= 0. Finally F0 computes
T1 = l1A correctly but for U1 it outputs U1 = (l + t1)Ã + t2C̃ and aborts.
More explicitly we have that:

U1 = (l + t1)Ã + t2C̃ (20)

= (l + k−1(k1m + rμ1) + s − m)Ã + (k−1k̃r − r)C̃ (21)

=
(
l1 + l2 + k−1(k1m + rμ1) + s − m

)
aB + (k−1k̃r − r)cB (22)

If we have c = ab this equation can be further simplified to:

U1 = a(l1 + l2)B + ak−1(k1m + rμ1 + k̃rb) + a(s − m)B − abrB (23)
= a(l1 + l2)B + ak−1s1B + ak−1s2B − amB − abrB (24)
= a(l1 + l2)B + ak−1(s1 + s2)B − a(br + m)B, (25)

and we note also that:

aW = aW1 + aW2 − amB − arY (26)
= as1R + al1B + as2R + al2B − amB − arbB (27)
= a(l1 + l2)B + ak−1(s1 + s2)B − a(br + m)B. (28)

Then we can conclude that if c = ab we have U1 = aV = ρ1W, as in G0,
otherwise U1 is a random group element as in G1. Then if a distinguisher for
G0 and G1 exists it can be also used to win a DDH challenge as we described
above, so G0 and G1 are indistinguishable.

Now we deal with the indistinguishability of G1 and G2. We recall that
the difference between the protocols G1 and G2 is that in G2 we use a random
s̃1 during the last part and then we have a random W̃1 = s̃1R + l1B. Once
again we will prove that G1 is indistiguishable from G2 performing a reduction
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to the DDH assumption. The idea is to show that W1 = s1R + l1B and
W̃1 = s̃1R + l1B are indistinguishable due to the random value l1B added to
both of them.

Let Ã = (a − d)B, B̃ = bB, C̃ = abB be the DDH challenge where d = 0
or d is a random value of Zq. The simulator proceeds with the regular protocol
until step 4c Then F0 broadcasts W1 = s1R + Ã and A1 = B̃. It simulates
the ZKP (since it does not know l1 and ρ1) and extracts s2, l2, ρ2. Then it
computes U1 as a random element and T1 = C̃ + ρ2Ã = abB + ρ2(a − d)B.

When d = 0 we have Ã = aB, so a = l1 , b = ρ1 and we have that
W1 = s1R + l1B and:

T1 = abB + ρ2aB = l1ρ1B + l1ρ2B = l1(ρ1 + ρ2)B, (29)

so T1 = l1A as in G1. Otherwise, when d �= 0 we have that Ã = aB−dB with
a randomly distributed d, then this is equivalent to have:

W1 = s1R + (a − d)B = s̃1R + aB, (30)

with s̃1 = s1 − dk−1, that is uniformly distributed thanks to d, and T1 = l1A
as in G2. The key idea is that we use the random value d to change the
fixed value s1 to a random and unknown s̃1 during the computation of W1.
Therefore, under the DDH assumption, G1 and G2 are indistinguishable.
Then G0 is indistinguishable from G2 as we wanted to prove. �

Now we have to deal with the recovery signature algorithm. Since the
core algorithm remains the same we can use the two proofs already explained,
we only need to change the setup phase in which the third player recovers its
secret material. In this section we still examine the case in which A controls
one between P1 or P2 and F controls P3. Things are a little bit different if A
controls P3 since it does not perform the enrollment phase (this case is much
easier).

Trivially if A asks for a recovery signature between the two honest par-
ties F can simply query its oracle and output whatever the oracle outputs. So
we can limit ourselves to deal with the case where the adversary participates
in the signing process.

Without loss of generality we suppose that A controls P2. The simulation
works as follows:

1. P2 sends Y, rec1,2, rec1,3 to P3.
2. Pi generates a Paillier public key (Ni,Γi) and sends it to the other party.
3. Pi proves in ZK that it knows the matching secret for its public Paillier

key.
4. P3 can not decrypt the values received in step 1, so it simulates the ZKP

about x3 and at the same time it can extract the secret value x2 from
P2. Note that the inability to decrypt is not a problem since most of
the data is useless (the random values sent by F during the enrolment
phase), so it would not have been able to compute x3 nor ω3 anyway.
However the simulator remembers the correct values of rec1,2, rec1,3, so
if A does not send the proper ones it can abort the simulation, as it
would happen in a real execution since P3 can not recover a secret key
shard that matches Y.
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5. P2 computes its x̃2 and ω̃2 from its original shards.
6. P2 and P3 perform the signing algorithm with the above simulation.

Also in this case F does not know its secret key, but we remark that
this is fine since it can use the signing oracle.

In the case of P3 being dishonest the simulation is much more easier. During
the enrolment phase F can produce random shards to send to P3 during the
recovery signature phase and output directly its original ECDSA challenge.
Then with the same algorithm as before it can perform the signing protocol.

Now we are ready to prove Theorem 4.1.

Proof. Let Q < λc be the maximum number of signature queries that the
adversary makes. In the real protocol the adversary will output a forgery
after l < Q queries, either because it stops submitting queries or because
the protocol aborts. In our simulation we try to guess if a simulation will be
semi-correct or not choosing a random i ∈ [0, Q]. We have two cases:

• if i = 0 we assume that all the executions are semi-correct and then we
always use the semi-correct algorithm described previously.

• if i �= 0 we assume that the first i − 1 are semi-correct, but the ith is
not. In this case we use the semi-correct algorithm for every execution
except for the ith one, for which we use the non-semi-correct one, then
we abort.

As we previously proved we produce an indistinguishable view for the adver-
sary, then A will produce a forgery with the same probability as in a real
execution. Then the probability of success of our forger F is ε3

8Q and it is the
product of:

• the probability of choosing a good random tape for A, that is at least
ε
2 , a shown in Lemma 4.1,

• the probability of hitting a good public key, that also is at least ε
2 , as

shown in Lemmas 4.2 and 4.3,
• the probability of guessing the right index i, that is 1

Q ,
• the probability of A to successfully produce a forgery on a good random

tape, that is ε
2 as shown in Eq. 7.

Under the security of the ECDSA signature scheme the probability of pro-
ducing a forgery must be negligible, which implies that ε must negligible too,
contradicting the hypothesis that A has non-negligible probability of forging
the scheme. �

5. Conclusions

Although decentralized signature algorithms have been known for a while, we
are aware of only few proposals for algorithms that are able to produce signa-
tures indistinguishable from a standard one. Moreover, the protocol described
in this work is, as far as we know, the first example of a threshold multi-
signature allowing the presence of an off-line participant. Regarding the pro-
tocol’s specification, the main difference w.r.t. [14] lies in the key-generation
phase. Specifically, the idea is to have two active participants to simulate the
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action of the third one. This step is possible due to the uniqueness property
of polynomial interpolation that gives a bijection between points and coef-
ficients, that combined to the preserved uniform distribution in Zp allows
us to “invert” the generation of the shares, that are later recovered by the
offline party thanks to an asymmetric encryption scheme. A second diver-
gence is that we have managed to avoid the use of equivocable commitments
under the assumption that in some specific steps (see Observation 4) we can
consider the adversary to not be rushing.

The main efficiency bottleneck is in the massive usage of ZKPs, which
are necessary to guarantee the security of the signature itself against black-
box adversaries, as hinted by the security proof of Sect. 4. Nevertheless,
there are implementations that use our protocol to resiliently manage bitcoin
wallets [9].

In our security analysis we focused on the unforgeability of the signa-
ture, however with an offline party (and more so in the application context
of crypto-assets management) there is another security aspect worthy of con-
sideration: the resiliency of recovery in the presence of a malicious adversary.
Of course if the offline party is malicious and unwilling to cooperate in fund
recovery there is nothing we can do about it, however the security can be
strengthened if we consider that one of the online parties may corrupt the
recovery material. In this case a generic CPA asymmetric encryption scheme
is not sufficient to prevent malicious behaviour, because we need a verifi-
able scheme that allows the parties to prove that the recovery material is
consistent, just like they prove that they computed the shards correctly. In
this way the adversary is unable to corrupt the recovery material and then
there is always a pair of players that is able to sign. Indeed without these
protection measures a malicious user could convince an unsuspecting victim
to set up a (2, 3)-threshold wallet together, and sending bogus recovery data
the attacker can later on blackmail the victim to sign transactions of their
choice otherwise it will refuse to collaborate in future signatures, effectively
freezing the funds since the recovery party has been neutralised.

An interesting topic of further analysis surely regards provable public-
key encryption schemes, for example we see potential solutions that could
exploit the homomorphic properties of Paillier or ElGamal [12] cryptosys-
tems.

Other future research steps involve the generalisation to (t, n)-threshold
schemes with more than one offline party, as well as to different standard
signatures. Regarding the latter, there is a variant of our protocol whose
signatures are indistinguishable from EdDSA [2,25], and we are working on
its security proof.
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Appendix A. Zero Knowledge Proofs

A.1 Schnorr Protocol

The Schnorr Protocol is a zero-knowledge proof for the discrete logarithm.
Let G be a group of prime order p with generator g. Let h ∈ G be a random
element in G. The prover P wants to prove to a verifier V that it knows the
discrete logarithm of h, i.e. it knows x ∈ Zp such that gx = h.
So the common inputs are G, g and h, while the secret input of P is x.

The protocol works as follows:
1. P picks r uniformly at random in Zp and computes u = gr. It sends u

to V.
2. V picks c uniformly at random ∈ Zp and sends it to P.
3. P computes z = r + cx and sends z to V.
4. V computes gz. If P really knows x it holds that gz = uhc. If the equality

does not hold, the verifier rejects.
A detailed proof about the security of the algorithm can be found in [34].

A.1.1 Schnorr Protocol Simulation. We need to simulate the Schnorr protocol
in two different ways: first we need to use it to extract the adversary’s secret
value, then we need to simulate it without knowing our secret value, tricking
the opponent. We can use the Schnorr protocol to extract the value x from
the adversary in this way:

1. Follow the standard protocol until the third point, obtaining z.
2. Rewind the adversary to the second point and pick c′ �= c.
3. Follow the remaining part of the protocol, obtaining z′.
4. We can compute z−z′

c−c′ = (c−c′)x
c−c′ = x.

Proof. (Sketch) Since the only extra hypothesis for c′ is that c′ �= c we can
suppose that c′ has uniform distribution as well. Moreover z, once the verifier
sent c the value of z is fixed, so the rewinding technique does not cause any
problem. �

At the same time we need to be able to simulate the protocol without
knowing x. The simulation works as follows:

1. Follow the protocol until the second point, obtaining c.
2. Rewind the adversary to the first point. The simulator picks r randomly

and computes u′ = g−xc+r = (gx)−cgr. Under the discrete logarithm
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assumption and since r, c are random element, this is indistinguishable
from gr.

3. The simulator sends u′ and the adversary sends c again.
4. The simulator sends z = r − cx + cx = r.
5. The adversary checks that gz = gr = u′(gx)c = g−xcgrgxc.

Proof. (Sketch) The tricky point of the simulation is the third point, when we
need that the adversary sends the same c it has previously sent, since sending
a different r could change the random choice of c . This could be achieved
introducing an equivocable commitment scheme, in this way we need only to
change the decommitment value after receiving the adversary commitment.

�

A.2 Integer Factorization Proof

We now present a well-known ZK proof for the integer factorization problem.
Let k be the security parameter and N = pq with neither p nor q small.
Let A,B, l be such that2 l log B = θ(k), (N − φ(N))lB < A < N . Let
z1, . . . , zk ∈ Z

∗
N be chosen uniformly at random. The protocol consists in the

repetition l times of the following sub-protocol:
1. The prover P picks r ∈ {0, ..., A − 1} at random and computes xi = zr

i

mod N for all i ∈ {1, . . . , k}.
2. P sends every xi to the verifier V.
3. V picks a random integer e ∈ {0, ..., B − 1} and sends it to P.
4. P computes y = r + e(N − φ(N)) and sends it to V.
5. V checks that 0 ≤ y < A and that zy−Ne

i = xi mod N for all i. If it
does not hold the protocol fails.

A detailed explanation of the protocol and the security proof, as well as proofs
about the soundness and the completeness of it, can be found in [31].

A.2.1 Integer Factorization Proof. We need to simulate the protocol without
knowing the factorization of n. A detailed description and proof of a sim-
ulation can be found in [31]. Alternatively, at the price of an equivocable
commitment, we could simplify the simulation as follows:

1. Follow the point of the protocol choosing a random er and yr and com-
pute xi = zy−ne

i .
2. Receive e from the opponent. If e = er then the simulation could end,

otherwise rewind the opponent and change the pair er, yr. Repeat this
step until e = er

3. The opponent sends e again, the simulator sends y′.

Proof. (Sketch) Clearly zy′−ne = xi mod n and y′ < A holds by construc-
tion.

We observe that a good pair er, yr is obtained with probability 1
B and

so the complexity of all the simulation is lB. �

2φ is the Euler’s totient function that counts the positive integers up to a given integer n

that are relatively prime to n, while θ is the Bachmann–Landau symbol that means that
the argument is bounded both above and below.
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A.3 Range Proof

We need two protocols to ensure that the share conversion protocol explained
in Sect. 2.5 will run correctly: one started by the initiator and the other
started by the receiver.

For the first one the common inputs are a Paillier public key (Γ, N),
the ciphertext c ∈ ZN2 , an RSA modulus M product of two safe primes,
and h1, h2 ∈ Z

∗
M . The prover knows m ∈ Zq and r ∈ Z

∗
N such that

c = ΓmrN mod N2 where q is the order of the group used during the share
conversion protocol previously described. At the end of the protocol the ver-
ifier is convinced that m ∈ [−q3, q3].

The protocol works as follows:

1. P picks randomly α ∈ Zq3 , β ∈ Z
∗
N , γ ∈ Zq3M , ρ ∈ ZqM .

2. P computes z = hm
1 hρ

2 mod M , u = ΓαβN mod N2, and
ω = hα

1 hγ
2 mod M .

3. P sends z, u and ω to V.
4. V picks e at random and sends it to P.
5. P computes s = reβ mod N , s1 = em + α and s2 = eρ + γ.
6. P sends s, s1 and s2 to V.
7. V checks if s1 ≤ q3, u = Γs

1s
Nc−e mod N2 and hs1

1 hs2
2 = zeω mod M.

In the second protocol the prover wants to show that |b| ≤ q3 and that it
knows b, β′ such that gb = B and cB = (b×E cA)+E EA(y) (this second part
only during the Share Conversion Protocol with check). The common inputs
are B, the Pallier public key (Γ, N), and the ciphertexts c1, c2 (that are the
Paillier ciphertexts cA, cB). P also knows b ∈ Zq, y ∈ ZN and c2 = cb

1Γ
yrN

mod N2. The protocol works as follows:

1. P picks α ∈ Zq3 , ρ, σ, τ ∈ ZqM , ρ′ ∈ Zq3M , β, γ ∈ Z
∗
N uniformly at

random.
2. P computes:

• z = hb
1h

ρ
2 mod M,

• z′ = hα
1 hρ′

2 mod M,
• t = hy

1h
σ
2 mod M,

• u = gα,
• v = cα

1 ΓγβN mod N2,
• ω = hγ

1hτ
2 mod M .

3. P sends z, z′, t, v, ω, u to V.
4. V picks e ∈ Zq uniformly at random and sends it to P.
5. P computes:

• s = reβ mod N ,
• s1 = eb + α,
• s2 = eρ + ρ′,
• t1 = ey + γ,
• t2 = eσ + τ.

6. P sends s, s1, s2, t1 and t2 to V.
7. V checks if:

• s1 ≤ q3,
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• gs1 = Beu,
• hs1

1 hs2
2 = zez′ mod M,

• ht1
1 ht2

2 = ωte mod M,
• cs1

1 sNΓt1 = ce
2v mod N2.

For a security proof of this protocol see [14].
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