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Abstract
Studying the evolutionary history of human microbiome members is indispensable to

understanding how our microbiota complexity has been shaped over time. While recent

decades have witnessed remarkable progress in investigation of the human

microbiome within different evolutionary contexts, reconstructing a time-resolved

divergence history for human microbiome members is still extremely challenging.

Longitudinal metagenomics studies have shown the potential of addressing such

challenges, but it is limited in tracking the evolutionary change in a short term. By

contrast, leveraging the microbial genomic information preserved in the ancient

metagenomic samples from the long past is emerging as a powerful strategy to study

the long-established evolutionary history of the human microbiome. In this thesis, I

aimed to devise a novel methodology that allows for efficiently reconstructing a

time-resolved evolutionary history of human microbiome species using ancient

metagenomic data. To this end, I firstly started from comparing four newly excavated

paleofeces samples to a large body of contemporary metagenomic datasets. I

observed that our human gut microbiota has diverged from its ancestral state in both

microbial composition and metabolic pathways. This could be related to the change of

lifestyle during human history. To better understand the divergence time of microbiome

members, I secondly developed a novel computational pipeline which can precisely

reconstruct and date strain-level phylogenies for microbiome species using carbon

dated ancient metagenomic samples as calibration under Bayesian molecular clocking

framework. The application of this tool has uncovered the unprecedented evolutionary

diversity, in the context of geography and time period, of three Methanobrevibacter

species from the human oral microbiome, and reconstructed a delicate time-resolved

evolutionary history for common gut microbial species, such as Prevotella copri,

Eubacterium rectale, Methanobrevibacter smithii and others mainly populating in the

human gut microbiota. This approach promises that more underlying evolutionary

history about the human microbiome will be unveiled in the foreseen future.
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Chapter 1 | Introduction to the dissertation
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1.1 Introduction to the dissertation

Whipps and colleagues proposed in 1988 for the first time the definition of a

microbiome: a “characteristic microbial community” living in a “reasonably well-defined

habitat” with distinct properties, functions, and interactions with the external

environment, which together shape specific ecological niches (Berg et al. 2020). While

microorganisms are not visible to human eyes, their presence might be anywhere.

From agricultural soil to different sites of the human body, these invisible entities are

thriving in every possible corner on earth.

Human microbiome is certainly an important ecosystem to explore. The number of

microbial genes hosted by human body is more than 100 times the number of our own

genes (Qin et al. 2010; Turnbaugh et al. 2007; Consortium and The Human

Microbiome Project Consortium 2012) and human cells only accounts for around 47%

of the total number of cells carried in and on our body (Sender, Fuchs, and Milo 2016).

Being likened to our “last organ”, the human microbiome plays a pivotal role as an

inseparable functional unit in human health. For example, it actively interacts with host

tissues (Bron, van Baarlen, and Kleerebezem 2011), balances the immune system

(Needham et al. 2013), and regulates drug metabolism (Spanogiannopoulos et al.

2016). In the last decade, we have witnessed an impressive progress in exploring the

unknown of the human microbiome from a few large investigations (Consortium and

The Human Microbiome Project Consortium 2012; Qin et al. 2010; Turnbaugh et al.

2009; Yatsunenko et al. 2012) to numerous smaller studies focused on specific

scientific questions. Most studies have nonetheless been focused on exploring the

overall microbiome diversity, and neglected its complex evolutionary history which is

the key to understanding how such diversity has been shaped through time.

Unquestionably, untying the knot of the evolution in the human microbiome can

address questions like how the stable composition has been achieved (Gálvez et al.

2020), how the variability and individuality have been formed in the short- and

long-term (Zhao et al. 2019), and from where and when certain members of

microbiome have emerged (Lebreton et al. 2017; Tett et al. 2019). Most studies

exploring evolution in the human microbiome have been focused on reconstructing

phylogenetic relationships between microbial members (Truong et al. 2017; Langille et

al. 2013; Lozupone, Hamady, and Kelley 2007; Asnicar et al. 2020), but our

understanding of the evolutionary timeline remains limited in the case of microbes

directly from metagenomic samples. The success of obtaining ancient microbial DNA
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from archaeological samples of human remains manifests the potential for revealing

the deep history of microbiome evolution in the past. Weyrich et al., combined

metagenomic advances and molecular clock dating to reconstruct the earliest

divergence time for Methanobrevibacter oralis strains using the oral microbiome from a

~48,000 years old Neanderthal individual (Weyrich et al. 2017), which illuminated the

possible microbiome transferring between Neanderthals and modern humans during

subsequent interactions in the pre-history. Other studies focused on more recent

evolutionary histories include uncovering the spreading route of Yersinia pestis basal

strain during Neolithic decline (Rascovan et al. 2019), discovering the emergence of

human-adapted Salmonella enterica in the Neolithization process (Key et al. 2020),

finding a high diversity of Mycobacterium leprae in medieval Europe (Schuenemann et

al. 2018) and many others. These studies unleashed an avalanche of surprises about

the evolutionary history of microbes which we can hardly unearth solely using

contemporary metagenomic data.

Mining DNA from the microbiome of the individuals from the past has shown

remarkable success in extending our understanding about microbial evolutionary

history, particularly coupling ancient DNA technology with next-generation sequencing.

Current relative studies mostly concentrate on pathogens which are the culprits of

historical epidemics and pandemics (Rascovan et al. 2019; Vågene et al. 2018; Sabin

et al. 2020a; Schuenemann et al. 2013). For instance, Yersinia pestis, the etiological

agent of several plagues in the history, has been described at length regarding its

evolutionary origin (Rascovan et al. 2019), the diversification timeline of its lineages

from Bronze Age to the present day (Spyrou et al. 2018), and its dispersal pattern in

Europe (Morozova et al. 2020). However, it just scratched the surface of evolutionary

history in the tremendous microbial world.

The major challenges of using ancient metagenomic samples to study evolutionary

history of microbes directly from the microbiome include several aspects. Firstly,

though next-generation sequencing permits an immense volume of genomic

information from samples, ancient molecules which can be precisely captured in

archaeological material remain an extremely low proposition (Key et al. 2017). As a

result, many studies turned to screen abundant members using laboratory techniques,

such as PCR, and enrich DNA molecules for the targeted ancient microbes (Maixner et

al. 2016; Spyrou et al. 2018, 2019). Secondly, ancient DNA from the long dead has

shown clear post-mortem damage on two ends of the sequencing reads (Briggs et al.

2007) and the impact on the subsequent analysis has been reported by few studies
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(Axelsson et al. 2008; Andrew Rambaut et al. 2009). For instance, it can potentially

generate a considerable amount of artificial single-nucleotide variants (SNVs) which

are not from the genuine evolution. Thirdly, many current ancient microbiome studies

heavily depend on mapping reads against a single reference genome and extracting

only variable sites for evolutionary analysis (Peltzer et al. 2016; Spyrou et al. 2016,

2018). The phylogeny reconstructed in this fashion has been reported to be biased and

unreliable (Bertels et al. 2014).

With the continuing drop of the cost of next-generation sequencing and the growing

number of ancient microbiome samples being unearthed, metagenomic data collected

from both contemporary and ancient materials have become increasingly available,

which promises a greater expansion of our understanding about microbial evolutionary

history from the deep past, recent past, to the present day. Therefore, a methodology

which can efficiently reconstruct and date the evolutionary history of microbes directly

from ancient and contemporary metagenomic samples is needed.
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1.2 Aims of the dissertation

In this dissertation, I aimed to develop a methodological approach able to exploit

ancient microbiological samples to unravel the evolutionary history of

human-associated bacteria. The second main aim was to apply the methodology on

some representative human-associated species and validate the hypothesis that

precise time-resolved phylogeny can be built for them.

Specifically, I strove to accommodate four major methodological challenges:

1. design a methodology which can efficiently confront a continuingly growing

metagenomic data either as sequencing reads or assembled genomes.

2. tailor the methodology in a way of extracting maximum genomic information

from ancient materials which are known to contain low biomass and meanwhile

guarantee the reliability of the phylogenies built on the extracted information.

3. extend the reference-guided approach from the conventional fashion based on

single-reference to a manner including multiple references in order to minimize

bias when inferring genome phylogeny.

4. devise rich flexible utilities for results assessment, visualization,

post-processing, and results interpretation to achieve a fine-grained

phylogenetic and molecular clocking analysis.

For biological relevance, I aimed to answer four main questions:

1. How our gut microbiota have altered in microbial composition and metabolic

functions in the past. Can such divergence be explained by concepts of

molecular evolution?

2. Once sufficient understanding of the divergence of the human gut microbiome

has been gained, how can we measure the divergence time for human

microbiome species? How to apply this concept to microbes which are

commonly observed in human microbiomes, such as Prevotella copri,

Eubacterium rectale and Methanobrevibcater smithii?
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3. What evolutionary history can be explored in the other human microbial

ecosystem (e.g. oral cavity) using the same approach? Can oral metagenomic

data from ancient populations help gain better understanding of the microbial

evolutionary history where using solely contemporary data cannot fully explain?

Is evolutionary diversity related to external factors such as geography and time

period?

4. Is there any link between the evolutionary history of our microbiota and that of

humans, for example, coevolution?

14



1.3 Structure of the dissertation

This dissertation is organized into four main chapters, each of Chapter 2, 3 and 4
discussing one first-authored (or joint first-authored) submitted manuscript (except the

study reported in Chapter 3 will be submitted in coming weeks) and Chapter 5
reporting three published works which are related collaborative studies I carried out in

my doctoral training. A brief introduction to each work is given at the beginning of each

chapter, followed by a detailed statement about my contribution.

● Chapter 2 reports the manuscript “Paleofeces analyses indicate blue cheese

and beer consumption by Iron Age Hallstatt salt miners and a non-Westernized

gut microbiome structure in Europe until the Baroque period”. In this work, as a

joint first author, I computationally analyzed the microbial composition and

functional features of four human paleofeces from Hallstatt, Austria and

compared them with a large body of contemporary metagenomic datasets.

● Chapter 3 reports the manuscript “MetaClock: An integrated framework to infer

evolutionary history of microbes from ancient and contemporary metagenomic

data”. In this work, based on the foundation of Chapter 2, I devised a novel

computational pipeline to analyze evolutionary relationships and divergence

timeline of microbiome members from ancient and contemporary populations.

● Chapter 4 reports the manuscript “Metagenomic analysis of ancient dental

calculus reveals unexplored diversity of oral archaeal Methanobrevibacter”. In

this work, as a joint first author, I combined metagenomic assembly advances

and the approach established in Chapter 3 to reconstruct the geographical and

temporal diversity of three most enriched Methanobrevibacter species in

ancient calculus samples.

● Chapter 5 reports the abstracts, main sections, and brief introductions to three

collaborative studies I contributed to during my doctoral training. These works

are representative of the applications in metagenomic contexts using the tool I

reported in Chapter 3.
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Chapter 2 | Paleofeces analysis indicates
blue cheese and beer consumption by Iron

Age Hallstatt salt miners and a
non-Westernized gut microbiome structure

in Europe until the Baroque period
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2.1 Introduction to the chapter
This chapter reports the initial exploration of paleofeces samples from Iron Age

Hallstatt salt miners, with particular interest in reconstructing our ancestors’ lifestyle

and ancestral human gut microbiome structure. I started from exploring ancient gut

contents because the preserved microbial DNA can provide valuable information for

reconstructing the evolutionary history of human-associated microbes. In the study

presented in this chapter, I first employed metagenomic analysis on four human

paleofeces samples from a mining community dated to the Bronze Age, Iron Age, and

early Modern times and compared their microbial composition and metabolic functions

to those of vast amounts of contemporary individuals. I next analyzed the prevalence of

species enriched in paleofeces samples in a large body of present-day gut

metagenomic data from 8,986 healthy adults. As a result, I demonstrate that the gut

microbiome structure of miners resembles that of non-Westernized individuals of

contemporary populations and our gut microbiota has diverged from its ancestral state

due to recent dietary changes. This finding is further supported by considerable traces

of bran, glumes of cereals, and other highly-fibrous plant fragments identified by other

co-authors using in-depth microscopic and molecular analysis. The divergence of the

human gut microbiota represents an important proxy of our long established

co-evolved microbiome.

Contribution: In this study, I mainly contributed to the reconstruction of the

microbiome structure of four newly excavated paleofeces samples and to compare

them with a large body of modern metagenomic samples (N = 823) from different

ecosystems. I next sought to assess the prevalence of most enriched microbes in

paleofeces in 8,968 modern human gut metagenomes representing a global

population, and quantified the abundance of Prevotella copri complex in ancient

samples as well. Besides large-scale metagenomic analysis, I also interacted closely

with other joint first authors in preprocessing sequencing data, provided bioinformatics

assistance through the whole work, contributed to data interpretation and manuscript

writing.

17



Paleofeces analysis indicates blue cheese and beer
consumption by Iron Age Hallstatt salt miners and a
non-Westernized gut microbiome structure in Europe until the
Baroque period

Frank Maixner*, Mohamed S. Sarhan*, Kun D. Huang*, Adrian Tett, Alexander
Schoenafinger, Stefania Zingale, Aitor Blanco-Míguez, Paolo Manghi, Jan
Cemper-Kiesslich, Omar Rota-Stabelli, Thomas Rattei, Robert L. Moritz, Klaus
Oeggl, Nicola Segata*, Albert Zink*, Hans Reschreiter*, Kerstin Kowarik*

* these authors contributed equally

2.2 Abstract

The UNESCO World Heritage region Hallstatt-Dachstein/Salzkammergut represents

one of Europe’s oldest cultural and industrial landscapes with salt mines in the Hallstatt

mountain dating back at least to the 14th century BC. The site gave name to the

Hallstatt Period (800 to 400 BC) of the Early Iron Age in Europe. The high salt

concentrations and the constant annual temperature at around 8°C inside the isolated

mine workings perfectly preserved organic archaeological artefacts (e.g. clothing,

mining tools, human excrements) that provide unique insights into the daily life of a

progressive community in Hallstatt. Here we subjected the human paleofeces from the

mining system dated to the Bronze Age- Iron Age, and early Modern times to in-depth

microscopic, metagenomic and proteomic analysis. This allowed us to reconstruct the

diet of the former population and gain insights into their ancient gut microbiome

composition. Our dietary survey identified bran and glumes of different cereals as one

of the most prevalent plant fragments. This highly fibrous, carbohydrate-rich diet was

supplemented with proteins from broad beans and occasionally with fruits, nuts, or

animal food. Linked to these traditional dietary habits all ancient miners up to the early

Modern times have gut microbiome structures akin to modern non-Westernized

individuals which may indicate a shift in our gut community composition due to quite

recent dietary changes. When we extended our microbial survey to fungi present in the

paleofeces, we observed in one of the Iron Age samples a high abundance of

Penicillium roqueforti and Saccharomyces cerevisiae DNA. Genome-wide analysis

indicates that both fungi were involved in food fermentation and provide the first

molecular evidence for blue cheese and beer consumption during Iron Age Europe.
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2.3 Introduction

Paleofeces is naturally desiccated ancient feces found in dry caves or desert areas. It

can also be preserved in mummies, in ancient latrines, in bogs or in soils when the

environmental conditions prevent its deterioration (R. I. Gilbert and Mielke 1985).

Previous studies have shown that paleofecal material still contains plant macro- and

microfossils, parasite eggs, and even ancient biomolecules (DNA, proteins,

metabolites) (Shillito et al. 2020). Ancient paleofeces have therefore recently been

used as a source of information to study prehistoric nutrition patterns (M. T. P. Gilbert et

al. 2008; Poinar et al. 2001; Maixner et al. 2018), health (Mitchell 2017; Reinhard et al.

2013), and to analyze single representatives (Maixner et al. 2016; Tett et al. 2019) or

the overall composition of the intestinal microbiome of our ancestors (Tito et al. 2012;

Borry et al. 2020; Wibowo et al. 2021).

Well preserved paleofeces are rare as they require specific preservation conditions.

One of the few archaeological sites where paleofeces can be found are the prehistoric

salt mines of the Austrian UNESCO World Heritage area

Hallstatt-Dachstein/Salzkammergut. Prehistoric salt mines offer ideal preservation

conditions for organic materials. The high salt concentrations and the constant annual

temperature, at around 8°C inside the isolated mine workings, perfectly preserve

organic artefacts. The Hallstatt salt mines located in the Eastern Alps (Figure 1), offers

the world’s oldest and most continuous record of underground salt mining (Stöllner

2004; Harding 2013; Reschreiter and Kowarik 2019). Large scale underground salt

mining in the Hallstatt salt mountain dates back at least to the 14th century BC (late

Bronze Age). Several prehistoric mining (Bronze, Iron Age) and historic (14th AD to

present) phases are well documented. The site also gave name to the Hallstatt Period

(800 to 400 BC) of the Early Iron Age in Europe.

In the prehistoric Bronze Age and Iron Age mine workings of Hallstatt, dense layers of

production waste reaching several meters of thickness were excavated uncovering

thousands of wooden tools and construction elements, implements made from fur,

rawhide, hundreds of woolen textile fragments, and grass and bast ropes and human

excrements (M. Grabner et al. 2019). These objects provide unique insights into the

daily life of a Bronze Age and Iron Age mining community ranging from mining

technology, organization of production and resource management to human health,

dietary habits, social organization of production processes and social status within a

mining system. These aspects have been studied extensively in Hallstatt based on a
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unique combination of data sources encompassing the prehistoric mine working,

Bronze Age meat curing facilities and the large Iron Age cemetery (Festi et al. 2021; M.

Grabner et al. 2019; Reschreiter and Kowarik 2019).

Here we focus on the question of the structure and evolution of dietary habits as well

as the human gut microbiome in one Europe’s most important early production

community. We used microscopic and metagenomic analysis to characterize nutrition

patterns of the prehistoric (Bronze Age, early Iron Age) and historic (early Modern

Period) miners and metagenomic analysis to determine the structure and evolution of

the gut microbiome. Our findings will enhance the understanding of early European

dietary habits (especially the production and consumption of processed foodstuffs) and

provide further evidence of the recent change in gut microbiome structure as a result of

industrialization/Westernization.

21

https://paperpile.com/c/QQdBy8/Msqg+rZ2B+ymK1
https://paperpile.com/c/QQdBy8/Msqg+rZ2B+ymK1


Figure 1. The Hallstatt salt mine and radiocarbon dated paleofeces samples
used in this study. (A) The salt mines are located in Upper Austria (B) Finding sites
of the four paleofeces samples in the Bronze Age and Iron Age mine shafts. The
symbol color corresponds to the radiocarbon date of the paleofeces. (C)
Macroscopic appearance of the four paleofeces samples. The scale bar corresponds
to 1cm of length. The sample description includes the sample ID, the mine workings
name, and the radiocarbon date. The provided radiocarbon date range corresponds
to the Cal 2-sigma values with the highest probability. (D) Temporal assignment of
the radiocarbon dated paleofeces to the major European time periods from the
Bronze Age onwards.

2.4 Results

2.4.1 Paleofeces from Bronze Age to Baroque Period contains ancient

endogenous DNA

In this study, we initially subjected four paleofeces samples, collected from Bronze Age

and Iron Age Hallstatt mine workings to radiocarbon dating, then to in-depth

microscopic and molecular analysis (Figure 1A, B, C, Table S1, and Table S2). The

four paleofeces samples can be macroscopically differentiated in samples containing a

high amount of fibrous plant material (2610, 2604, 2611) and in one more

homogeneous sample (2612) that does not contain any visible larger plant fragments

(Figure 1). Radiocarbon analyses date the roughly structured samples to the Late

Bronze Age (2610) and Iron Age (2604, 2611), which is in perfect accordance with the

proposed period of usage of the mine workings where the paleofeces has been found

(Michael Grabner et al. 2021). In contrast, the fine textured paleofeces 2612 sampled

in an Iron Age mine working dates to the Early Modern times, the Baroque period

(Figure 1C and Table S2). For this part of the salt mine however, it is historically

documented that the mine workings had started to be re-used from the beginning of

18th century onwards (Wochenberichte 1723). Independently of the paleofeces age,

their storage time since excavation (some samples were recovered in the year 1983),

or the mode of excavation (wet-sieving vs. direct sampling) (Figure S1), we could

retrieve from all samples biomolecules (DNA and protein) for the subsequent molecular

analysis (Table S1 and Data S1). Proteomics analysis provided first evidence for the

presence of endogenous biomolecules in the paleofeces material. The most abundant

peptides were assigned to human intestinal tract proteins that are involved in food

digestive processes (Data S1). The DNA of the paleofeces material was further

subjected to a deep shotgun-sequencing approach resulting in 57,130,584 to

221,314,691 quality-filtered reads (Table S3). A first taxonomic overview using
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DIAMOND against the NCBI non-redundant database revealed that the majority of

reads in the samples are assigned to the Bacteria (93.9 to 78.9% of all assigned reads)

with Firmicutes and Bacteroidetes being the most abundant phyla of this kingdom

(Figure S2). Less than 7.5% of the reads were eukaryotic with up to 6.7% fungal reads

in sample 2604. The Metazoa and Viridiplantae reads, important for the molecular

reconstruction of the diet, comprised 0.5 to 0.01% of all assigned reads. Further

analysis of the human DNA in the paleofeces revealed an endogenous DNA content

between 0.26 and 0.06%, sufficient for molecular sex and mitochondrial haplogroup

assignment (Table S4). The highly fragmented human reads display low deamination

patterns at the 5′ ends, typical of aDNA damage (Figure S3). Except for the most

recent sample 2612 where the reads appear less fragmented and display almost no

DNA damage. Our analyses show that the four paleofeces come from male individuals

which carry distinct mitogenomes with low contamination estimates (1 to 2%),

indicating that each sample represents unique unmixed ancient feces.

2.4.2 Ancient paleofeces display a gut microbiome structure similar to modern

non-Westernized individuals

We compared the microbiome structure of the paleofeces to a large number of

contemporary metagenomes (N = 823). Ordination analysis (PCoA) performed on

species-level taxonomic composition shows that the paleofeces from the Bronze Age

to the Baroque period cluster with stool samples from contemporary non-Westernized

individuals (Figure 2A), i.e. those whose diet is mainly composed of unprocessed food

and fresh- fruits and vegetables (Brewster et al. 2019). This clustering is similarly

observed for encoded metabolic pathways (Figure 2B). All the paleofecal samples

were distinct from the oral and, more importantly, from the soil samples, suggesting

little evidence of soil contamination which is sometimes observed in ancient

metagenomics studies (Key et al. 2017).

To further assess the paleofeces samples, we analyzed the prevalence of the top 15

most enriched species in the paleofeces compared to 8,968 gut microbiomes of

healthy Westernized and non-Westernized adults. As a result, 13 out of 15 most

abundant species were identified to be associated with the human gut environment, of

which 11 species were found to be more prevalent in modern non-Westernized

populations compared to Westernized populations. Five of these species,

Bifidobacterium angulatum, Lactobacillus ruminis, Catenibacterium mitsuokai,

Prevotella copri, and Clostridium ventriculi, were over twice as prevalent in
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non-Westernized populations (Figure 2C and Table S5). One of the two species not

associated with the human gut is the halophilic archaeon Halococcus morrhuae which

survives on high concentration of salt (Grant 2015). It was observed in low abundance

in the paleofeces sample 2612, the only sample that was not subjected to wet-sieving.

Therefore, we assume that the archaeon was introduced from the environment via the

salt crystals. In the paleofeces samples 2604 and 2611 we identified in addition

Clostridium perfringens, a known intestinal foodborne pathogen (García et al. 2019),

but also occurs free living in the soil and other environments (Voidarou et al. 2011). It is

therefore difficult to assert whether it is an environmental contamination or a remnant

of food spoilage in the miners’ gut.

The Prevotella copri complex which is highly prevalent in non-Westernized populations

and prevalent in previously investigated ancient samples (Tett et al. 2019), was

identified in all paleofecal samples representing, on average, 7.3% (1.6% ~ 14.7%) of

the relative abundance (Figure 2C). Consistent with previous findings (Tett et al.

2019), we found multiple clades of the complex to be present in each of the paleofeces

samples (Figure 2D) with the exception of Clade D which was barely detectable in

sample 2604 and 2612. All other clades were detected with relative abundances >

0.01% in all samples (Figure 2D and Table S6). Of note, the sample 2604 displayed

higher abundance, in contrast to other samples, of bacterial species, such as

Lactobacillus brevis, Bifidobacterium merycicum, Bifidobacterium angulatum, and

Lactobacillus plantarum (Table S7), that are known to be of probiotic activities or

involved in processing of dairy products (Pasolli et al. 2020).
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Figure 2. Overview of microbial composition and metabolic pathways of
paleofeces samples in comparison to a large collection of contemporary
metagenomes. (A) Ordination analysis (PCoA) based on microbial abundance
profiled using MetaPhlAn 3.0 (Beghini et al. 2021) between four paleofeces samples
and 823 contemporary samples characterized by sampling environment, body site,
and non-Westernized lifestyle. (B) Ordination analysis (PCoA) based on metabolic
pathway abundance profiled using HUMAnN 3.0 (Franzosa et al. 2018) between four
paleofeces samples and the same contemporary samples used in (A). (C)
Prevalence of the top 15 most enriched species of four paleofeces samples in
non-Westernized and Westernized datasets comprising 8,968 stool samples from
healthy adult individuals. Asterisk indicates species which is likely from external
contamination. (D) Relative abundance of P. copri four clades estimated using
MetaPhlAn 3.0 (Beghini et al. 2021) in each paleofecal sample.

2.4.3 Microscopic and molecular reconstruction of the Hallstatt miner’s diet

Next, we aimed to reconstruct the dietary components in the paleofeces using both a

microscopic and a molecular survey. The above-mentioned structural differences
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between the paleofeces became even more evident in the microscopic analyses. The

Modern Times sample 2612 was much finer textured than all other samples from

prehistory (Figure 1C). This was reflected also in the macro remain composition of the

paleofeces, showing that samples 2610, 2604 and 2611 contained a lot of seeds

contrary to 2612, which consisted of frequent tissues of fruit husks and seed coats

(Table S8). Generally, all samples displayed a predominance of cereal remains.

Microscopic analysis revealed that the Bronze Age sample (2610) consisted more or

less exclusively of cereal remains, which originated from barley (Hordeum vulgare),

spelt (Triticum spelta), some emmer (Triticum dicoccum), proso millet (Panicum

miliaceum) and a few weeds, e.g. corn cockle (Agrostemma githago), poison parsley

(Aethusa cynapium). The Iron Age sample (2604, 2611) were characterized by a

predominance of cereal remains from barley (Hordeum vulgare), spelt (Triticum spelta),

millets (P. miliaceum, Setaria italica) and a little emmer (T. dicoccum). Furthermore, in

sample 2611 testa remains of broad bean (Vicia faba) and seeds of opium poppy

(Papaver somniferum) were observed. Crab apple (Malus sylvestris) and

bilberries/cranberries (Vaccinium myrtillus/vitis-idea) in sample 2604 document the

consumption of gathered wild fruits. Striking in the Iron Age sample 2604 was the

contamination with weeds, in particular with corn cockle (Agrostemma githago). In the

sample 2612 from the Baroque time, the microscopic pattern was notably different to

the other samples. The plant material was finely ground, and entire fruits were missing

apart from a digested mericarp of anise (Pimpinella anisum). The plant tissue belonged

to bran (fragments of cereal testa, pericarp, hairs, hilum, endosperm) of wheat

(Triticum sp.). The precise species was unidentifiable, but according to the rare

occurrence of tube cells in the pericarp fragments a member of the tetra- or hexaploid

wheat group is suggested. In minor quantities also bran of barley (H. vulgare) was

observed. Furthermore, the consumption of legumes is documented by testa remains

of garden bean (Phaseolus vulgare) in this sample.

In addition to the microscopic analysis, we subjected paleofeces biomolecules (DNA

and proteins) to molecular dietary analyses. Both metagenomic and proteomic

analyses included a homology search against different databases, followed by strict

filtering steps of the obtained hits, and a subsequent in-depth analysis of selected

identified taxa (See methods, Figure S4 and Tables S9). For the plant diet, we could

confirm the presence of the most abundant domesticated plant macro-remains

including broomcorn millet (P. milliaceum), barley (H. vulgare), and wheat (Triticum

spp.) (Figure 3B). In addition, we found DNA-based evidence for the presence of
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walnut (Juglans regia) in the sample 2604 and protein-based support for the

occurrence of opium poppy seeds (P. somniferum) in the sample 2611. All the low

abundant wild plants unveiled by the microscopic investigation, in addition to the foxtail

millet (S. italica) which appeared with high grains number, were not identified in our

molecular survey, which has undergone strict filtering to minimize the false positives

(Figure S4). Further phylogenetic analysis assigned the Triticum spp. chloroplast

genomes of the samples 2604 and 2610 closest to the chloroplasts of tetraploid

(emmer, durum) and hexaploid (spelt wheat, bread wheat) wheat varieties, respectively

(Figure 3C, Table S10, Table S11). Additional comparison with the bread wheat

genome revealed an equal subgenome (A, B, and D) representation in the 2604 and

2610 metagenomic reads, which suggest in combination with the microscopic

identification of numerous characteristic grains, glumes and spikelets the presence of

hexaploid spelt wheat (T. spelta) in these paleofeces (Figure 3D, Figure S5). Beside

the plant diet, we obtained molecular evidence for the consumption of cattle- (Bos

taurus) and swine meats (Sus scrofa) throughout all time periods (Figure 3B, Figure

S6). Interestingly, the most abundant cattle proteins in sample 2611 (hemoglobin and

coagulation proteins) indicate that the plant diet was supplemented by cattle blood or

blood-rich tissues (e.g., liver) (Data S1). The molecular analyses revealed in addition,

that individuals from both the Iron Age (2611) and the Baroque (2612) suffered from

intestinal infections with whipworms (Trichuris trichuria) and roundworm (Ascaris spp.)

(Figure 3B, Figure S7). Finally, all samples showed a continuous low background with

fungal DNA mainly coming from different Ascomycota.
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Figure 3. Microscopic and molecular dietary analysis of the Hallstatt
paleofeces. (A) Plant macro-remains microscopically detected in the four
paleofeces samples. The scale bar indicates 1 mm of length. The heatmap shows
the log-scale macro-remain counts normalized to 3.7g sample. The sample with
asterisk was assessed in a semi-quantitative manner; For further details, please
refer to Table S8. (B) Most abundant taxa (plants, nematodes, animals, fungi)
detected in the four paleofeces metagenomes and proteomes. The circle size and
circle color correspond to log10 “normalized” number of reads per million at genus-
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and species levels, respectively. The asterisks in the proteome heatmap means the
peptides were assigned only to genus-level. (C) Phylogenetic assignment of two
partial Triticum chloroplast genomes in the 2604 and 2610 metagenomes. The
comparative dataset included complete chloroplast genomes of selected members of
the Triticeae tribe (NCBI Accession Numbers are provided in the figure). The tree
was calculated using the maximum-likelihood algorithm (PhyML) based on 136,160
informative positions. Black circles symbolize parsimony and neighbor joining
bootstrap support (>90%) based on 100 and 1000 iterations, respectively. The scale
bar indicates 10% estimated sequence divergence. (D) Wheat subgenome (A, B,
and D) representation in the 2604 and 2610 metagenomes (Please refer to Table
S11), aligned to the modern hexaploid bread wheat reference genome (Acc. No.
GCA_900519105). Both the wheat chloroplast and nuclear reads were highly
fragmented and display aDNA specific damage patterns (Figure S5).

2.4.4 Molecular evidence for blue cheese and beer consumption during the Iron

Age

The Iron Age sample 2604 displayed in contrast to all other samples exceptionally high

prevalence of Penicillium roqueforti and Saccharomyces cerevisiae proteins (Data S1)

and DNA (Table S9), making up to 7-22% of total eukaryotic reads. This was very

characteristic to this sample, compared with the other samples that did not show such

prevalence, even the sample 2611 which was taken from the same sampling site and

dated back to the same time point. To authenticate the data and to gain further insights

into their potential ecological significance we mapped the high-quality reads of sample

2604 against the reference genomes of these two fungi (Table S10). With 11-13X

coverage, we were able to reconstruct > 92% of both genomes. To confirm whether

these two fungi are of ancient origin and not modern contaminants, we initially checked

the ancient DNA damage pattern of the mapped reads. Both fungi displayed typical

ancient DNA damage patterns, with levels comparable to the human endogenous DNA

(Figure S8). Hence, and considering their extraordinarily high abundance and exclusive

incidence in this sample, we assumed their endogenous originality to the coprolite

microbial community. Additionally, both fungi are commonly used nowadays in food

processing; P. roqueforti is used for cheese fermentation and S. cerevisiae is used for

fermenting bread and alcoholic beverages including beer, mead and wine. Therefore,

we assume that they could have been involved in food processing at that time. To test

this assumption, we used the reconstructed genomes for further comparative

phylogeny and population genetic analyses to infer whether they had been truly

involved in food processing or were just transient environmental microbes.
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First, we compared our putative P. roqueforti strain, to other 33 sequenced modern P.

roqueforti strains coming from different functional niches (Dumas et al. 2020). The

comparative dataset included 18 cheese-fermenting and 15 non-cheese fermenting

strains (Table S12), in addition to Penicillium psychrosexualis and Penicillium carneum

as an outgroup. After mapping the raw reads of all strains to the reference P. roqueforti

genome FM164 and data filtering, we resolved 120,337 SNPs, which were used for

inferring maximum likelihood (ML) phylogenetic relationships among the tested strains

(Methods). In consistency with the original publication of Dumas and colleagues, the

resulting phylogeny revealed four distinct clades, a non-Roquefort cheese clade, a

Roquefort cheese clade, a silage/food spoilage clade, and a wood/food spoilage clade

(Figure 4A). Initially, the phylogenetic analysis separated the non-Roquefort cheese

clade from the other, then the Roquefort-cheese clade has been diverged from the

other food spoilage clades. The ancient P. roqueforti strain showed highest similarity to

the non-Roquefort cheese strains, being clustered together with their corresponding

clade as an earlier divergent. The reason behind such early divergence might be

attributed to the recent acquisition of some genomic regions, most importantly

CheesyTer and Wallaby, by the non-Roquefort-cheese strains. This gene acquisition

happened most likely via repeated multiplication of selected spores of the best cheeses

on bread used as a growth medium in the late 19th century and early 20th century

before the advent of microbiological in vitro culturing techniques (Ropars et al. 2015).

Thereby, modern non-Roquefort strains were exposed to extensive selection coupled

to horizontal gene transfer events from other cheese producing Penicillum spp. or even

other genera (Dumas et al. 2020; Cheeseman et al. 2014; Ropars et al. 2020, 2015).

Importantly, our Iron Age strain did not contain any of those recently acquired

fragments, which comes in congruence with the hypothesis that such domestication

events occurred during the last two centuries.

We further used the tool ADMIXTURE to infer the degree of admixture among the

strains. By assuming the presence of 3 ancestries (K=3), we could clearly distinguish

the non-Roquefort-, Roquefort-, and food spoilage strains (Figure 4B). Our putative

strain displayed ~ 70% cheese producing ancestry (60% of the non-Roquefort- and

10% of Roquefort cheese) and ~ 30% food spoiler ancestry. Both the phylogenetic

placement and ADMIXTURE profile indicate that the ancient P. roqueforti has been

already under positive selection towards the non-Roquefort cheese-cluster, a selection

process that most likely occurred during the process of cheese production. Some

archeological findings excavated from the mines might have been used for that

purpose (Figure 4C), showing some traces of fatty food products.
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Next, we compared the ancient S. cerevisiae genome to 157 recent strains coming

from different ecological niches, i.e. food, alcoholic beverages (e.g. beer, wine, sake,

and spirit), biofuels, and laboratory, as well as wild strains (Table S13). ML

phylogenetic analysis, based on 375,629 SNP positions, distinguished 2 main clades.

The first main clade splits into two subclades, with one containing most of the beer

strains (beer 1 clade), which show a successive sub-clustering based on the origin of

the strains (Figure 4D). The other sub-clade (henceforth referred to as “mixed” clade)

included a mixture of bread, wine, beer, and spirit strains. The second main clade is

composed of two sub-clades, a wine clade and another beer clade (beer 2). All other

wild-, laboratory-, and sake strains fall to the base of the whole phylogeny. The ancient

S. cerevisiae strain clustered basal to the second main clade which includes the wine

and beer 2 strains. Further population structure analysis displayed high admixture in

our putative strain, resembling primarily the wine ancestral population with 47%,

followed by 29.2% beer ancestries (Figure S9). and only 19% wild strain ancestry.

Therefore, and considering the ML phylogenetic assignment, we assume that the

possibility of our strain to be of wild origin is unlikely. The results rather indicate higher

similarity to wine and beer strains. Principal component analysis (PCA) provided further

indication for the domestication of our strain in alcoholic beverage fermentation. Along

the PC1 that explains 25.42% of the variation, our strain clustered closer to the strains

of beer 2 then to the strains of the wine clade (Figure 4E). This was further supported

with proteomic analysis (Data S1), that unveiled that most of the peptides assigned to

the genus Saccharomyces derived from proteins involved in alcohol fermentation

pathways (e.g. glycolysis). To further narrow down the possible routes of

domestication we decided to differentiate the strains based on functional marker

genes. According to recent literature (Pontes et al. 2020; Gonçalves et al. 2016; Marsit

et al. 2017), the genes RTM1, BIO1/BIO6, and the chromosomal regions A/B/C can be

used to differentiate yeast strains based on their functional niches. The gene RTM1 is

a strong domestication marker responsible for conferring resistance against the toxicity

of molasses and other rich-sugar substrates and assumed to be positively selected in

beer yeast strains (Pontes et al. 2020; Ness and Aigle 1995). While the genes BIO1

and BIO6, which are involved in de novo biosynthesis of biotin, are highly selected in

sake fermenting yeasts, due to lack of biotin in the fermentation substrates, such as

rice (Wu, Ito, and Shimoi 2005). The regions A, B, and C are horizontally transferred

genomic regions from other yeast genera, e.g. Kluyveromyces, Pichia, and

Zygosaccharomyces (Novo et al. 2009). These regions contain 39 genes distributed

over 3 different chromosomes (Table S14) and are assumed to play a role in wine

fermentation.
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Therefore, we searched for the presence of these marker genes in our comparative

dataset, including our ancient strain. In accordance with the literature, almost all beer

strains, either of clade 1 or clade 2, were positive for RTM1, while the wine clade was

mainly positive for the genomic regions A/B/C. The mixed clade contained both RTM1

and the regions A/B/C. The sake clade exclusively contained the BIO1/BIO6 genes

and partially the RTM1. Remarkably, the wild strains isolated from cocoa in Africa,

clustered in the basal clade and did not contain any of these marker genes (Figure 4D,

Table S15), contrary to our strain that contained the RTM1 and lacked to the

BIO1/BIO6 genes and the regions A/B/C.

Based on the previous givens, i.e. i) the ancient DNA damage profile; ii) the high

prevalence of S. cerevisiae reads; iii) the presence of fermentable cereal substrates

such as wheat and barley; iv) the phylogenetic assignment of the ancient yeast strain;

v) the population admixture profile; as well as vi) the distribution of marker genes, we

assume that this yeast is of ancient origin and has been involved in beer fermentation,

albeit the mode of fermentation still might be arguable, i.e. being bottom-, top-, or

spontaneous fermentation.
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Figure 4. Genome-wide SNP analysis of ancient fungal “strains” vs. modern
industrial and wild/environmental strains. (A) Maximum likelihood (ML)
phylogenetic analysis of the Penicillium roqueforti genome assembled from the
sample 2604 in addition to other previously published P. roqueforti genomes (Dumas
et al. 2020). A total number of 120,359 SNP positions were used for the analysis. P.
roqueforti FM164 was used as a reference, while P. carneum and P. psychrosexualis
were used as outgroups. Colored strips indicate the P. roqueforti population as
previously inferred (Dumas et al. 2020). For further information on the comparison
dataset, please refer to Table S12. (B) Population structure analysis of P. roqueforti
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2604 with the same previous dataset, considering 3 ancestries (K=3 with lowest
cross-validation error), based on 120,337 SNPs. The order of labels in panel B
corresponds to the clustering in panel A. (C) Wooden containers that has been found
among other archeological findings in the mines and assumed to be used as cheese
strainers (D) ML phylogenetic analysis of Saccharomyces cerevisiae genome
assembled from the sample 2604 compared with other published S. cerevisiae
genomes (Gallone et al. 2016). The dataset for the analysis included 375,629 SNPs.
The Saccharomyces paradoxus CBS432 was used as an outgroup. The colored
strips indicate the clade/origin as reported previously (Gallone et al. 2016). The
colored dots at the tree edges refer to the presence/absence of functional marker
genes (Gonçalves et al. 2016). Blue dots in A and C indicate bootstrap support >
80% based on 1000 bootstrap replicates. (E) Principal component analysis based on
136712 SNPs, of the S. cerevisiae strains. For further information, please refer to
Table S14 and Table S15.

2.5 Discussion

Our interdisciplinary analyses of the samples have given a unique insight into the

microbiome evolution, dietary habits and food processing techniques of the Hallstatt

miners over the past three millennia. Molecular and microscopic investigations

revealed that the miner´s diet was mainly composed of cereals, such as domesticated

wheats (emmer and spelt), barely, common millets, and foxtail millets. This

carbohydrate-rich diet was supplemented with proteins from broad beans and

occasionally with fruits, nuts, or animal diet. The food remains in the prehistoric sample

with a lot of entire fruits and seeds were less processed than those of the Modern

times, which consisted of finely ground wheat. This suggests that the prehistoric miners

consumed the cereals and legumes in a sort of gruel or porridge, whereas Modern

Times miners ate their cereals as bread or biscuit (Heiss et al. 2021).

In general, such carbohydrate-rich fibrous dietary components as observed in the

Bronze Age and Iron Age samples are typical for traditional communities and are

considered to be the main drivers of the non-Westernized microbiome structure (Makki

et al. 2018; Crittenden and Schnorr 2017). Consistent with this observation, our

analysis showed that the Hallstatt paleofecal samples contain microbial features similar

to gut microbiomes of modern non-Westernized populations (Figure 4A and 4B).

Species identified in the samples, such as Lactobacillus ruminis, Catenibacterium

mitsuokai, and Prevotella copri, were also found to be highly prevalent in individuals

with a more traditional lifestyle (Figure 4C). Furthermore, our paleofecal samples were

rich in the P. copri complex (Figure 4D), including the four clades that are nearly

ubiquitous and co-present in non-Westernized populations (Tett et al. 2019). Of
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particular interest, P. copri members have been shown to be associated with the

degeneration of complex carbohydrates (De Filippis et al. 2019; Gálvez et al. 2020; Tett

et al. 2019; Fehlner-Peach et al. 2019), which are the major component of

unprocessed fibrous plant diet. Finding paleofeces highly resembling, in terms of

microbiome structure, that of non-Westernized individuals supports previous

observations (Tito et al. 2012; Wibowo et al. 2021). It also adds weight to the

hypothesis that the modern human gut microbiome has diverged from an ancestral

state, probably due to modern lifestyle, diet, or medical advances. Interestingly, this

non-Westernized microbiome structure has been observed in all four paleofeces dating

from the Bronze Age to the Baroque period, which would indicate quite a recent

change in the gut community. However, to spot the critical time points when this shift in

the human gut microbiome began requires more ancient samples spanning a wider

time range; of particular interest would be samples from the past two or three

centuries, where major dietary and medical changes occurred. Overall, our results

support the theory that the shift from traditional- to an industrial Westernized lifestyle

might be the driving force for changing the human gut microbiome from its ancestral

state (Blaser 2017; Pasolli et al. 2019; Tett et al. 2019; Sonnenburg and Sonnenburg

2019).

In one of the Iron Age samples (i.e. 2604), the molecular analyses indicated

consumption of fermented food and beverages. The fungal analysis revealed a high

prevalence of Penicillium roqueforti and Saccharomyces cerevisiae, with clear signs of

domestication, which are nowadays involved in fermenting blue cheeses and alcoholic

beverages, respectively. Furthermore, the consumption of walnut (Juglans regia) in an

Eastern Alpine valley demonstrates that exotic foodstuffs were also part of

long-distance trade networks during prehistory (Scott et al. 2021).

Following rapidly in the wake of ruminant animal domestication (mainly cattle, sheep,

and goat), cheese production represents one of the oldest and widespread food

preservation techniques developed by humans (Fox et al. 2017). The oldest reported

chemical evidence for processing of milk into fermented products (i.e. cheese making)

is dated back to 5400 BCE in northern Europe (Salque et al. 2013). Other indications,

including actual preserved pieces of cheese, whey strainers, and recipes for cheese

production, were found in the middle east and the near east and in the Mediterranean

basin (Bottéro 1985; Greco et al. 2018; McClure et al. 2018). Here, we report strong

evidence for the domestication of the fungus Penicillium roqueforti in the course of food

processing, most likely to produce a cheese which closely resembles modern blue
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cheeses (non-Roquefort cheese clade, in Figure 4A). To our knowledge, this

represents the earliest known evidence for directed cheese ripening and affinage in

Europe, adding a crucial aspect to an emerging picture of highly sophisticated culinary

traditions in European prehistory (Heiss et al. 2021). Importantly, the production of blue

cheese involves a surface application of dry salt and therefore it is characterized by a

high salt content of up to 7.5% (w/w) (Cakmakci et al. 2012). The cheese curd could

have been collected, desiccated, and inoculated with the fungi in wooden cheese

containers like the ones excavated in the Hallstatt mines (Figure 4C). The presence of

P. roqueforti indicates a major step in ruminant milk processing from fresh to ripened

cheese, which offered in addition to new flavors several advantages to the Hallstatt

miners including longer storage, i.e. months, and less lactose content in the fermented

dairy product (Monti et al. 2019). The latter reduced lactose content may have helped

the ancient minors to better digest milk products, living in a time where lactose

persistence frequencies only started to rise in Europe (Burger et al. 2020). The

presence of salt as well as the constant temperature (8℃) and humidity inside the

Hallstatt mine workings represent ideal conditions for blue cheese production, following

the current cheese production standards (Cantor et al. 2017). It is noteworthy that the

early discovery of the Roquefort cheese was linked to Roquefort-sur-Soulzon caves, in

France, which maintain a temperature of 10 ℃ and ~ 90% humidity over the year. With

such conditions protecting the cheese from desiccation, these caves have been used

exclusively for centuries for ripening and ageing of the “Roquefort” cheese (Capozzi

and Spano 2011; Desmasures 2014).

Indications for the production of fermented alcoholic beverages in prehistory are

abundant, albeit frequently ambiguous (Heiss et al. 2020), and can be found in the

Near East, Middle East, Far East, and Europe (Schöttke and Rögener 2021; Liu et al.

2018; J. Wang et al. 2016; Guerra-Doce 2015). Evidence for the production of grape

wine in Europe and viniculture in the Near East date back to the 6th and 7th millennium

BCE (McGovern et al. 2017). Such evidence was mainly based on chemical residue

analysis, archaeobotanical analysis or indicated in ancient inscriptions. Recently

scientists claimed that they were able to revive an ancient yeast strain from Egyptian

potteries and used it to ferment beer (Aouizerat et al. 2019). Here we were able to

reconstruct > 90% of the S. cerevisiae genome from an Iron Age-dated paleofecal

sample. We used different molecular analysis at the genome level to infer the possible

routes of domestication for this yeast. Our results strongly suggested its being used in

beer fermentation. Together with the results of the dietary analysis that showed
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presence of different fermentable cereals, e.g. wheat, barley, and millets, we can

envisage how the fermentation was carried out.

It might be assumed that the fermentation was carried out in a spontaneous manner,

i.e. by adding water to wort, and allowing the fermentation process to take place by the

wild air-borne yeasts or the constitutional microbiota of the used cereals (Basso,

Alcarde, and Portugal 2016). We do not see, however, indications for other yeasts

species, such as Brettanomyces bruxellensis, that co-occur in spontaneously

fermented beers (Spitaels et al. 2014). In addition, we see clear indications of

domestication and continuous supply of new admixture components to this yeast,

which might suggest that fermentation vessels were repeatedly used for this purpose

or the inoculation of the fermentation batches has been done by back-slopping, i.e.

inoculation of new fermentation batches with portions of previous batches (Spitaels et

al. 2017). Albeit varied evidence for beer production in prehistoric Europe exists (Heiss

et al. 2020; Guerra-Doce 2015), these beers could not be preserved for longer time

periods and would have had to be consumed rapidly after production, which also

presupposes that the beer would have had to produced either in Hallstatt itself or in the

very near surroundings.

Considering the constant temperature of 8 ℃ inside the Hallstatt mines, it might be

expected that this yeast was used for production of lager-like beer, where fermentation

is carried out at low temperatures (also known as bottom-fermentation), and results in

a beer that can be stored for longer time periods (E. P. Baker et al. 2019). Historically,

however, the bottom-fermentation was most likely developed after the year 1553, when

the Duke of Bavaria Albrecht V forbade brewing during summer months (Dornbusch

1998). Additionally, Gonçalves and colleagues demonstrated that Saccharomyces

pastorianus strains, which are hybrids of S. cerevisiae and another Saccharomyces

species and are used for production of lager beers, belong to the main beer clade

(Figure 4D) (Gonçalves et al. 2016). Therefore, we postulate that the beer produced at

that time is similar to nowadays pale beer, produced mainly by top-fermenting S.

cerevisiae strains.

Conclusions

Paleofeces material displays a unique archaeological information source that provides

precious insights into the diet and gut microbiome composition of our ancestors. Here

we had access to four paleofeces samples from the Hallstatt salt mine dated from the
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Bronze Age to the Baroque period. The constant annual temperature and high salt

concentrations inside the mine perfectly preserved both plant macroremains and

biomolecules (DNA and protein) in the paleofeces. We demonstrate the indispensable

complementarity of using microscopic and molecular approaches in resolving the

paleofecal dietary residual components and to reconstruct the ancient gut microbiome.

Furthermore, we extended our paleofeces microbiome analysis to focusing on key

microbes that are involved in food processing which opens new avenues in

understanding fermentation history. Additional samples from different time points will

provide in the future a more fine-scaled diachronic picture which may help to

understand the role of dietary changes in shaping our gut microbiome and how much

this was further influenced by modern lifestyles or medical advances recently

introduced with the industrialization/Westernization.

2.6 Materials and Methods

2.6.1 Sampling site, paleofeces samples, radiocarbon dating

In this study, we subjected four paleofeces samples to in-depth microscopic and

molecular analysis. The paleofeces material stems from Bronze Age and Iron Age

mine workings in the Hallstatt salt mines in Upper Austria (Figure 1A, B, C and Table

S1). Three paleofeces (2610, 2604, 2611) were recovered in 1983, 1989 (2604) and

2003 (2610) through wet-sieving of larger blocks of prehistoric production debris

excavated in the mine workings. One additional paleofeces (2612) was sampled in

2019 in situ at the site Edlersbergwerk-oben with sterile sampling tools. This sample

was not subjected to wet-sieving. All four samples (using approx. 500 mg each) were

subjected to radiocarbon dating at the Curt-Engelholm-Centre for Archaeometry in

Mannheim, Germany (Figure 1C and Table S2). The remaining material has been used

for microscopic and molecular analyses.

2.6.2 Microscopic analysis of the paleofeces

Before chemical treatment of the paleofeces the surface of each sample was stripped

off to avoid contamination. Then rehydration in a 0.5% solution of trisodium phosphate

for 72 hours (Pearsall 2015). After olfactory and visual testing, the liquid was screened

through 500, 250, 125, and 63μm steel meshes, and the outwash was kept for further

microfossil studies. Plant macro remains were picked out of the fractionated residues in

the steel meshes and then identified and quantified under a stereo microscope with

magnifications up x63. The identification of the plant remains was conducted with
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identification keys (Cappers, Bekker, and Jans 2006; Neef, Cappers, and Bekker 2012)

and the reference collection of the Department of Botany, Innsbruck University, was

consulted for comparative purposes.

2.6.3 DNA extraction, library preparation and sequencing

The molecular analysis of the paleofeces samples was conducted at the ancient DNA

laboratory of the EURAC Institute for Mummy Studies in Bolzano, Italy. Sample

documentation, sample preparation and DNA extraction were performed in a dedicated

pre-PCR area following the strict procedures required for studies of ancient DNA: use

of protective clothing, UV-light exposure of the equipment and bleach sterilization of

surfaces, use of PCR workstations and filtered pipette tips. The DNA was extracted

from the paleofeces samples (200 mg) using a chloroform-based DNA extraction

method according to the protocol of Tang and colleagues with minor modifications

(Tang et al. 2008). To test whether the wet-sieving step during the classical

archaeological excavation results in an “wash-out” effect of DNA from the paleofeces,

we re-hydrated additional 200 mg material of two samples (2611, 2612) in 1ml of 0.5N

Na3PO4 (tri-sodium phosphate)-buffer for 18h at RT (R. I. Gilbert and Mielke 1985).

After re-hydration, the samples were centrifuged (5000g, 5 min) and both the

supernatant (2611RW, 2612RW) and the pelleted paleofeces (2611R, 2612R) were

subjected to DNA extraction as described above. From all DNA extracts

double-indexed libraries were generated for the sequencing runs with a modified

protocol for Illumina multiplex sequencing (Kircher, Sawyer, and Meyer 2012; Matthias

Meyer et al. 2012). Libraries were first shallow sequenced on an Illumina MiSeq

platform and then deep sequenced on Illumina HiSeq2500 and HiSeqX10 platforms

using 101–base pair (HiSeq2500) and 151–base pair (MiSeq, HiSeqX) paired-end

sequencing kits. For details to the metagenomic datasets please refer to Table S3.

Data are available from the European Nucleotide Archive under accession no.

PRJEB44507.

2.6.4 Pre-processing of the sequence data, general taxonomic overview,

human DNA analysis

The paired Illumina reads were firstly quality-checked and processed (adapter removal

and read merging) as previously described in (Maixner et al. 2018). Initially we tested

for the above-described possible DNA wash-out effect by assigning taxonomically the

microbial reads using MetaPhlAn 3.0 (Beghini et al. 2021) in the shallow sequenced

MiSeq datasets of the untreated samples (2611, 2612), the washed and pelleted
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paleofeces (2611R, 2612R), and the supernatant (2611RW, 2612RW). For all

subsequent analyses, we used the combined sequencing data available for each

sample (Table S3). First, we assessed a general taxonomic profile of the sequencing

reads using DIAMOND (v2.0.7) blastx search (Buchfink, Reuter, and Drost 2021)

against the RefSeq non-redundant protein database (nr). The DIAMOND tables were

converted to rma6 (blast2rma tool) format (--minPercentIdentity 97), imported into

MEGAN6 software (Huson et al. 2016), and subsequently visualized using the Krona

tool (Ondov, Bergman, and Phillippy 2011). Next, we assessed the endogenous human

DNA content in the paleofeces samples by aligning the sequence reads against the

human genome (build Hg19) (Rosenbloom et al. 2015) and the human mtDNA

reference genome (rCRS) (Andrews et al. 1999) using BWA (H. Li and Durbin 2009)

with a seed length of 1,000. The minimum mapping and base quality were both 30. To

deduplicate the mapped reads, we used the DeDup tool

(https://github.com/apeltzer/DeDup). For details to the mapping results please refer to

Table S10. The resulting bam files were used to check for characteristic aDNA

nucleotide misincorporation frequency patterns and for the fragment length distribution

using the DamageProfiler tool (Neukamm, Peltzer, and Nieselt, n.d.). Mitochondrial

human contamination rates were assessed using Schmutzi (Renaud et al. 2015). The

sex of the mapped human reads was assigned using a Maximum likelihood method,

based on the karyotype frequency of X and Y chromosomal reads (Skoglund et al.

2013). Variants in the mitochondrial genome were called using SAMtools mpileup and

bcftoools (H. Li and Durbin 2009) with stringent filtering options (quality>30). The

haplogroup was identified by submitting the variant calling file to the HaploGrep

website (Weissensteiner et al. 2016).

2.6.5 Comparing paleofeces microbiome structure to contemporary

metagenomic datasets

To compare the paleofeces microbiome structure with contemporary individuals’, we

downloaded 9,368 publicly available shotgun metagenomes representing modern-day

human populations (N = 9,207), and, as a control, environmental soil sample (N = 161).

Each metagenome was characterized by source (human or soil), and in the case of

human samples, by body-site, and whether from a Westernized or non-Westernized

population. The term “non-Westernized” describes a population that follows a

traditional non-urbanized lifestyle encompassing factors such as diet, hygiene, and with

no or limited access to medical healthcare and pharmaceuticals (e.g. antibiotics) as

previously described (Brewster et al. 2019; Pasolli et al. 2019; Tett et al. 2019).
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Afterwards, we performed profiling of the microbial composition of each metagenomic

sample using MetaPhlAn 3.0 (Beghini et al. 2021) using default settings.

We first analyzed the prevalence of top 15 ancient-sample enriched species in the

context of global populations using a subset (N = 8,968) of shotgun metagenomes that

are stool samples from healthy adult individuals characterized by non-Westernization

(Table S16). A species was counted as presence in a sample if the relative abundance

was above 0.01%. Next, we randomly selected 662 metagenomes (132 oral cavity and

530 stool samples) from all publicly available human metagenomes, along with 161 soil

metagenomes, for profiling of the metabolic pathways using HUMAnN 3.0 (Franzosa et

al. 2018) with default settings (Table S17). The Python script humann_renorm_table.py

as part of the pipeline was used to normalize the metabolic pathways to relative

abundance, followed by converting individual profiles into a merged abundance table

using the utility script humann_join_tables.py. For the same selected metagenomic

samples, the individual profiles of microbial composition generated by MetaPhlAn 3.0

as described above were similarly merged into a single abundance table using a

python script merge_metaphlan_tables.py. Subsequently, the merged abundance

tables were used for calculating Bray-Curtis’s distance with logarithmic transformation

based on which a Principal Coordinates Analysis was performed using python package

scikit-bio (version 0.5.6; http://scikit-bio.org/).

2.6.6 Molecular characterization of ancient diet

The merged reads were searched for homology, using BLAST search, against different

specific DNA barcoding databases (Figure S4). Specifically, the databases of plant

Internal transcribed spacers (Banchi et al. 2020), RuBisCo-large subunit and Maturase

K genes (rbcL/matK, v3.boldsystems.org), and chloroplast genomes

(ncbi.nlm.nih.gov/genome/organelle) were used to identify the plant dietary

components. The BOLD database of the cytochrome c oxidase subunit I gene (COI,

v3.boldsystems.org) was used to specifically target the animal diet and intestinal

parasites. The UNITE database of the fungal ITS gene database (unite.ut.ee) was

used to identify potential food processing fungi. Finally, to target all the eukaryotic

dietary and diet-related components, the reads were aligned against the currently

available full mitochondrial and chloroplast genomes of the NCBI database

(Coordinators and NCBI Resource Coordinators 2012) using BWA (H. Li and Durbin

2009) with default parameters. Subsequently, to obtain a taxonomic overview of the

aligned reads we performed a sequence similarity search using BLASTn (Altschul et al.
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1990) with default parameters against the complete NCBI-nt database (Coordinators

and NCBI Resource Coordinators 2012).

Both the resulting BLAST and the previously created DIAMOND tables were converted

to rma6 (blast2rma tool) format and imported into MEGAN6 software (Huson et al.

2016). The read counts at genus- and species-level were exported as csv files and

imported into R-Studio software for further analysis.

To distinguish the true hits from the false hits, we applied two filters as follows: i) For

the BLAST and DIAMOND tables, we only considered hits of ≥ 90 % identity and ≥ 90

% coverage of each query read; then ii) We considered the sample positive for a

certain component only if it shows incidence in majority of databases of that

component, e.g. the sample 2604 was considered positive for Bos taurus, because it

contained true hits for mitochondrial-, COI-, and nr-databases; and finally iii) for the

plant dietary components, we used the plantiTS database as a primary filter, since it is

highly curated and recently updated. So, we initially filtered out all the plantiTS

negative taxa then considered the same majority rule.

Finally, we used transformed sums of counts of the genera and species that passes the

aforementioned filters into normalized log base 2 (log10 reads million-1) and plotted them

as dot-plots proportional to their abundances. The dendrogram to the left of the dot-plot

represent the phylogeny based on NCBI taxonomy

(ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi).

Selected identified taxa were further subjected to in-depth analysis by mapping the

quality-filtered sequence reads against organellar (mitochondrial and chloroplast) and

nuclear genomes using bowtie2 (v1.2.1.1) and the parameter “end-to-end” (B.

Langmead and Salzberg 2013) (for details to the references used please refer to the

Table S10). In two cases where the previously described molecular dietary analysis

resulted in an assignment down to the genus level (Triticum spp., Ascaris spp.) we

assessed an appropriate reference sequence by mapping the sequence reads against

selected chloroplast and mitochondrial genomes using BWA (H. Li and Durbin 2009)

(with default parameters) implemented in the program FastQ Screen (Wingett and

Andrews 2018), and selected as reference the species that belongs to one of these

two genera and has the most specific hits. After the bowtie2 alignment against the

reference sequences the mapped reads were deduplicated and checked for damage

patterns as described above for the human DNA. For details to the mapping results
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please refer to Table S10. Organellar sequences that showed higher than 70% read

coverage were further subjected to phylogenetic analysis as previously detailed

(Maixner et al. 2018). In brief, a consensus FASTA sequence was generated using the

ANGSD tool (Korneliussen, Albrechtsen, and Nielsen 2014) and together with other

comparative datasets subjected to a multiple alignment using the MAFFT multiple

sequence alignment program (Katoh et al. 2002). Phylogenetic analysis were

performed by applying distance-matrix, maximum-parsimony, and maximum-likelihood

methods implemented in the ARB software package (Ludwig et al. 2004):

neighbor-joining (using the Jukes-Cantor algorithm for nucleic acid correction with 1000

bootstrap iterations), DNA parsimony (PHYLIP version 3.66 with 100 bootstrap

iterations), and DNA maximum-likelihood [PhyML (Guindon and Gascuel 2003) with

the HKY substitution model]. The number of informative nucleotide positions used for

the phylogenetic analysis and the bootstrap support is indicated in the respective figure

captions.

2.6.7 Genome-level analysis of ancient fungi - Variant calling

The sample 2604 showed high prevalence of Penicillium roqueforti and

Saccharomyces cerevisiae DNA allowing further genome-level comparative analysis

with modern datasets (Table S12, Table S13). As comparative datasets, we included

the recently published genomic data of 34 P. roqueforti (Dumas et al. 2020) as well as

157 S. cerevisiae (Gallone et al. 2016).

We mapped the quality-filtered reads against the reference genomes of Penicillium

roqueforti FM164 and Saccharomyces cerevisiae S288c, independently, using bowtie2

(v1.2.1.1) and the parameter “end-to-end” (B. Langmead and Salzberg 2013). Using

samtools (H. Li and Durbin 2009), the mapping qualities of < 30 were filtered out and

the bam files were sorted and indexed. The read duplicates were marked and removed

using the DeDup tool (github.com/apeltzer/DeDup/) and new read-groups were

assigned using the “AddOrReplaceReadGroups” of Picard tools

(broadinstitute.github.io/picard/). Then, we used the Genome Analysis Toolkit 4

(GATK4) (gatk.broadinstitute.org) to call genome variants, following the best practices

workflow as follows: i) Variants within each of the single bam files were called using the

tool “HaplotypeCaller”; ii) The resulting VCF files were combined into a single file using

the tool “CombineGVCFs”; iii) The combined VCF file was then genotyped using the

tool “GenotypeGVCFs”; iv) InDels were filtered out and only single nucleotide

polymorphisms (SNPs) were kept using the tool “SelectVariants”; and finally v) the VCF
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file was filtered to include SNPs with minor allele frequency (MAF) of ≥ 0.05-0.1 and ≤

10% missing data. A total of 120359 and 375629 SNPs were resolved for P. roqueforti

and S. cerevisiae, respectively.

2.6.8 Phylogenetic- and population structure analysis

To analyze the phylogenetic relationship of the stains, we used the vcf-kit to convert the

SNP datasets (vcf files) to fastA alignment format (Cook and Andersen 2017). Then we

used the Fasta2phylip.pl script to create PHYLIP alignment files

(mullinslab.microbiol.washington.edu), which were then subjected to maximum

likelihood (ML) phylogenetic analysis using RAxML (v8.2.12), following generalized

time reversible substitution model (GTR) and GAMMA model of rate heterogeneity

(Stamatakis 2014). Best-scoring ML trees were searched after 1000 bootstrap

replicates and visualized and annotated using the interactive tree of life, iTOL tool

(itol.embl.de).

To infer the degree of admixture and the number of populations in the analyzed

datasets (120337 SNPs for P. roqueforti and 136712 S. cerevisiae), we carried out

unsupervised population structure analysis using ADMIXTURE (v1.3.0), testing K in the

range of 3 to 10 (Alexander and Lange 2011). The best K values were determined

based on the lowest cross-validation error (cv) and maximum likelihood.

2.6.9 Functional marker genes

To infer the potential functions of the modern and ancient Saccharomyces cerevisiae

yeast strains based on their genome sequence, we searched for the presence of

functional marker genes (RTM1, BIO1/BIO6, and Regions A/B/C) that were recently

described by (Gonçalves et al. 2016). The RTM1 gene is responsible for conferring

resistance to the toxicity of molasses, and therefore it is assumed to be positively

selected in beer yeast strains (Ness and Aigle 1995). While the genes BIO1 and BIO6,

which are involved in de novo synthesis of biotin, are highly selected in sake

fermenting yeasts (Wu, Ito, and Shimoi 2005). The regions A, B, and C are horizontally

transferred genomic regions from other yeast genera, e.g. Kluyveromyces, Pichia, and

Zygosaccharomyces (Novo et al. 2009). These regions contain 39 genes distributed

over 3 different chromosomes (Table S14) and are assumed to play a role in wine

fermentation. To search for these marker genes, we used bowtie2 to map the quality

filtered reads of our sample as well as the recently published S. cerevisiae comparative

genomic data (Gallone et al. 2016), against the individual genes. Then, we considered
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a gene as present if it is covered ≥ 90 % with 3x depth (Table S10). For phylogenetic

tree annotation (Figure 3D), the regions A/B/C were considered present if any of the

genes was positive, while BIO1/BIO6 were considered positive if both genes were

positive.

2.6.10 Proteomic analysis

Paleofeces samples (ID 2610, 2604, 2611, 2612) and a blank control sample to

highlight any contamination were resuspended in 800 µL 5% sodium dodecyl sulfate,

50 mM triethylammonium bicarbonate (TEAB, pH 8.5) and disrupted at 4°C using three

2.8 mm ceramic beads (Qiagen, USA) and a Precellys 24 homogenizer (Bertin Corp,

USA) at 6500 rpm for 30 s. Samples were transferred to Eppendorf tubes and

centrifuged at 4,000 rpm for 7 min, the supernatant removed and centrifuged twice at

13,000 g for 10 min. The supernatant was subjected to the S-Trap™ mini spin column

digestion protocol (ProtiFi, USA). Briefly, samples were acidified with 12% phosphoric

acid in water (pH ≤ 1). Binding/wash buffer (100 mM TEAB (final) in 90% methanol)

was added to each sample at 6.4 x the volume of each sample. Samples were

vortexed and applied to the S-Trap column in ≤ 500 µL aliquots until the entire sample

was loaded. After each sample load the S-Trap column was centrifuged at 4,000 g for

30 s. Samples were cleaned by adding 3x 400 µL binding/wash buffer and

centrifugation at 4,000 g for 30 s after each wash, and 1 min after the last wash.

Proteins were digested on the S-Trap at 37 °C for 13 h by adding 125 µL digestion

buffer containing trypsin gold (Promega, USA) in 125 mM NH4HCO3. The S-Trap was

rehydrated with 100 µL 125 mM NH4HCO3 and peptides eluted with 80 µL 125 mM

NH4HCO3, 80 µL 0.2% formic acid in water, and 80 µL 50% acetonitrile in water.

Peptide eluates were pooled and dried under centrifugal evaporation (Savant,

Thermo-Fisher Scientific, USA).

Samples were analyzed by high-resolution nano LC-MS/MS on an Orbitrap Eclipse

Tribrid mass spectrometer (Thermo-Fisher Scientific, USA) equipped with an Easy-nLC

1000 (Thermo-Fisher Scientific, USA). Peptides were resolubilized in 50 µL 0.1%

formic acid in water. 5 µL of each sample were loaded onto a 2 cm Acclaim PepMap

100 trap column (75 um ID, C18 3 µm, Thermo-Fisher Scientific, USA) and separated

using a 50 cm C18 2 µm Easy Spray column (ES903, Thermo-Fisher Scientific, USA)

using a 120-minute gradient. Mobile phase A consisted of 0.1% formic acid in water,

and mobile phase B consisted of 0.1% formic acid in acetonitrile. The gradient used

5% to 22% mobile phase B over 105 minutes, followed by separation from 22% to 32%
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mobile phase B over the remaining 15 minutes. The column was washed and

equilibrated at 95% and 5% mobile phase B, respectively, over 40 minutes following

each run. The flow rate was set at 300 nL/min and the column was heated at 45°C.

Mass spectra were acquired on the Eclipse mass spectrometer using data dependent

acquisition (DDA) with dynamic exclusion. The precursor scan range was from

375-1500 m/z at 120,000 resolution and 100% normalized target AGC (4e5) with a 50

ms maximum injection time. The duty cycle was set to acquire as many MS/MS spectra

as possible over a three second period following each precursor scan. A 1.2 m/z

selection window was used to acquire MS/MS spectra at 30,000 resolution, a

normalized AGC target of 100% (5e4), 54 ms maximum injection time, and fragmented

using HCD with a normalized collision energy of 30. Dynamic exclusion was set to 60

seconds, with peptide match set to preferred and isotope exclusion turned on. Charge

exclusion was set to 1 and greater than 7.

The raw mass spectra files were converted to mzML (Martens et al. 2011) format using

msConvert from ProteoWizard (Kessner et al. 2008) and analyzed using the

Trans-Proteomic Pipeline (TPP v6.0.0-rc16 Noctilucent) (Deutsch et al. 2015). The

analysis pipeline consisted of database searching with Comet (version 2018.01 rev. 4)

(Eng, Jahan, and Hoopmann 2013) against a 17-species UniProt FASTA database

(Table S18) and shuffled decoy sequences. Comet parameters included variable

modifications of +15.994915 Da (Met, Cys, His, Tyr, Trp, and Phe), and +0.984016

(Asn and Gln). A precursor tolerance of 20 ppm was set, a fragment bin tolerance of

0.2 and fragment bin offset of 0. Semi-enzymatic cleavage with up to 3 missed

cleavages was allowed, and an isotope error tolerance of 3. Peptide-spectrum matches

(PSMs) were validated using PeptideProphet (Andrew Keller et al. 2002) and iProphet

(Shteynberg et al. 2011). Protein inference was performed using ProteinProphet

(Nesvizhskii et al. 2003). Relative quantitation of protein groups was performed using

StPeter (Hoopmann et al. 2018). Observed protein groups for each sample were

derived from the set of protein groups validated with ProteinProphet at an estimated

1% false discovery rate (FDR). Those protein groups were then curated by removing

any group that intersected with the set of protein groups identified in the blank control

analysis. A list of observed peptides was created from the peptide sequences that were

used to infer the final set of protein groups. The peptide list was then filtered to contain

only those peptides with a probability below a 1% FDR threshold as determined from

the iProphet analysis.

Further, the peptide sequences of each sample were imported into Unipept 4.0

Desktop version (Singh et al. 2019), and subjected to LCA assignment, and filtered out
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the following: i) peptides assigned to bacteria; ii) peptides assigned to multiple species;

iii) single peptide incidences that uniquely infer a species presence (Data S1). Finally,

functional annotation of the samples was carried out on different taxonomic levels to

infer the molecular function of the obtained peptides.

2.7 Supplementary materials

2.7.1 Supplemental figures

Figure S1. Wet-sieving step during the classical archaeological excavation
results in an “wash-out” effect of DNA from the paleofeces. Before subjecting
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the material to further in-depth molecular analysis, we tested whether the currently
used wet-sieving step during the archaeological excavation and recovery of the
paleofeces from the salt mine may have a negative “wash-out” effect on the DNA
that is initially present in the material. We tested this effect on the paleofeces sample
2611, that has been recovered in the year 1983 via wet-sieving, and sample 2612
(A) that has not been subjected to wet-sieving is still covered by salt crystals (B). (C)
Workflow to test the DNA “wash out effect. Both the “fresh” sample 2612 and the
wet-sieved sample 2611 were subjected to a re-hydration treatment and DNA has
been extracted from the untreated sample, the sedimented sample (R) and the
supernatant (RW). (D) Taxonomic analysis of the microbial DNA of the untreated,
rehydrated (R) paleofeces samples and the supernatant (RW). MetaPhlAn 3.0
heatmap of the top 25 species found in the different MiSeq datasets. Our “wash-out”
test analyzing the microbial DNA of shallow sequenced data of two re-hydrated
paleofeces (2611, 2612) revealed that “free” endogenous DNA becomes lost into the
aqueous phase when the material gets into contact with water (Figure S2).
Importantly, however, even after 18h of re-hydration, the paleofeces material still
retains sufficient DNA that resembles the bacterial taxonomic profile of the original
untreated sample. Therefore, we also consider the wet-sieved samples (2604, 2610,
2611) which were considerably shorter in contact with water as an important
information source for our molecular analysis.
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Figure S2. Taxonomic overview of the sequence reads in the merged shotgun
datasets of the paleofeces samples 2610 (A), 2604 (B), 2611 (C), and 2612 (D).
The metagenomic reads were taxonomically assigned using the Diamond tool
(Buchfink, Xie, and Huson 2015) against the NCBI non-redundant protein database.

Figure S3. DNA damage patterns (left) and read length distribution (right) of
the mitochondrial human reads in the paleofeces samples 2610 (A), 2604 (B),
2611 (C), and 2612 (D). The frequency of C to T base misincorporations at the 5´end
of the reads and the length distribution of the aligned reads has been assessed
using the DamageProfiler tool. For the details to the reference sequence used
please refer to the Supplementary Table S4.
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Figure S4. Workflow of the metagenome-based dietary analysis. To identify
animal, parasite, plant, and fungal components in the four paleofeces samples we
subjected the quality-filtered reads to a homology search (BLAST) against different
databases. After filtering candidate taxa using a presence/absence majority rule we
subjected selected taxa to further in-depth comparative sequence analysis.
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Figure S5. FastQ-Screen- and ancient DNA damage analyses of the ancient
plant dietary components in the samples 2610 and 2604. FastQ Screen analysis
of the quality-filtered sequence reads of the paleofeces samples 2610 (A) and 2604
(B) against the chloroplast genomes of selected members of the family Poaceae.
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FastQ Screen (Andrew 2011) was used with default parameters using BWA (Li and
Durbin 2010) as the alignment tool. The frequency of C to T base misincorporations
at the 5´end of the reads and the length distribution of the aligned reads has been
assessed using the DamageProfiler tool. DNA damage patterns and read length
distribution of the wheat (Triticum spp.) autosomal and chloroplast (C,E) reads and
chloroplast reads only (D,F) in the paleofeces sample 2610 (C,D) and 2604 (E,F).
For the details to the reference sequence used please refer to the Supplementary
Table S10.
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Figure S6. Phylogenetic analysis and ancient DNA damage analyses of the
ancient animal dietary components in the samples 2611. A, Phylogenetic
assignment of the partial cattle (Bos taurus) mitochondrial genome recovered from
the paleofeces sample 2611. The displayed tree was calculated using the
maximum-likelihood algorithm (PhyML) based on 16,412 informative positions. Black
circles symbolize parsimony and neighbor joining bootstrap support (>90%) based
on 100 and 1000 iterations, respectively. The scale bar depicts 0.1 substitutions per
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residue. The frequency of C to T base misincorporations at the 5´end of the reads
and the length distribution of the aligned reads has been assessed using the
DamageProfiler tool. DNA damage patterns (left) and read length distribution (right)
of the cattle (Bos taurus) autosomal and mitochondrial (B) reads and mitochondrial
reads only (C) in the paleofeces sample 2611. For the details to the reference
sequence used please refer to the Supplementary Table S10.
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Figure S7. FastQ Screen-, phylogenetic-, and ancient DNA damage analyses of
the ancient parasites of the samples 2604 and 2612. FastQ Screen analysis of
the quality-filtered sequence reads of the paleofeces samples 2604 (A) and 2612 (B)
against the mitochondrial genomes of selected members of the genus Trichuris spp.
and Ascaris spp. FastQ Screen (Andrew 2011) was used with default parameters
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using BWA (Li and Durbin 2010) as the alignment tool. C and D, Phylogenetic
assignment of the partial mitochondrial genomes of Trichuris spp. (A) and Ascaris
spp. (B) recovered from the paleofeces samples 2604 and 2612. The displayed trees
were calculated using the maximum-likelihood algorithm (PhyML) based on 13,189
(Trichuris spp.) and 14,265 (Ascaris spp.) informative positions. Black circles
symbolize parsimony and neighbor joining bootstrap support (>90%) based on 100
and 1000 iterations, respectively. The scale bars depict 0.1 substitutions per residue.
The frequency of C to T base misincorporations at the 5´end of the reads and the
length distribution of the aligned reads has been assessed using the DamageProfiler
tool. DNA damage patterns (top) and read length distribution (bottom) of the
roundworm (Ascaris spp.) autosomal and mitochondrial reads in the paleofeces
sample 2604 (E) and 2612 (F) and of the whipworm (Trichuris trichuria) autosomal
and mitochondrial reads in the paleofeces sample 2604 (G). For the details to the
reference sequence used please refer to the Supplementary Table S10.
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Figure S8. DNA damage patterns (top) and read length distribution (bottom) of
the autosomal reads of Penicillium roqueforti (A) and Saccharomyces
cerevisiae (B) in the paleofeces sample 2604. The frequency of C to T base
misincorporations at the 5´end of the reads and the length distribution of the aligned
reads has been assessed using the DamageProfiler tool. For the details to the
reference sequence used please refer to the Supplementary Table S10.
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Figure S9. Population admixture profiles as inferred by ADMIXTURE tool. The
analysis was carried out assuming K=2 to 22. Asterisk refer to the K values of lowest
cross validation error (cv). A total of 136712 SNPs were included in the final
analyzed dataset.

2.7.2 Supplemental tables

Tables and the respective captions are available at:
https://drive.google.com/drive/folders/1SJw250VIC13evZWL6p8O6RMAmMZ039nT?u
sp=sharing
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Chapter 3 | MetaClock: An integrated
framework to infer evolutionary history of
microbes from ancient and contemporary

metagenomic data
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3.1 Introduction to the chapter

In Chapter 3 I introduce a novel computational framework, MetaClock, which facilitates

strain-level phylogenetics and molecular clock analysis for microbiome members from

ancient and present-day populations. Chapter 2 showed how the general structure of

our gut microbiome has diverged from the ancestral state leveraging invaluable

information from paleofeces samples. In this Chapter, I will elaborate an automatic

computational pipeline which allows for effortlessly studying how and when strains of a

species have diverged in history directly using ancient and contemporary metagenomic

data. MetaClock can efficiently integrate microbial genomic information from ancient

and modern metagenomic data into a whole-genome alignment based on a reference

genome. It performs (i) strict quality control via authenticating microbial aDNA, (ii)

correction of misincorporated sites, and (iii) mapping of microbial aDNA sequences

against multiple modern references. Thus biases can be significantly minimised when

inferring downstream phylogenetic analyses. Whole genome divergence times can

then be estimated by using, as calibration in the molecular clock analysis, the carbon

dated ancient strain. By applying this approach to four paleofeces samples reported in

Chapter 2 and publicly available modern metagenomic datasets, we largely extended

the discovery in Chapter 2 uncovering detailed time-resolved diversification trajectories

for six common human microbiome members. This shows a great example of how and

when strains of microbiome members have diverged in the course of evolution using

ancient and contemporary metagenomic samples.

Contribution: In this study, I formulated the analysis concept with the support from my

supervisors Prof. Nicola Segata and Prof. Omar Rota-Stabelli, developed the

methodology, and implemented the software pipeline (in Python) and wrote supporting

software documentation. I carried out methodology evaluation using (semi)synthetic

data, performed evolutionary analysis applying this tool on six human gut microbes,

interpreted data and wrote the manuscript.
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MetaClock: an integrated framework to infer evolutionary
history of microbes from ancient and large-scale
metagenomic datasets

Kun D. Huang, Frank Maixner, Adrian Tett, Aitor Blanco-Míguez, Fabio Cumbo,
Moreno Zolfo, Lena Granehäll, Mohamed S. Sarhan, Kerstin Kowarik, Hans
Reschreiter, Andrea Silverj, Francesco Asnicar, Albert Zink, Omar Rota-Stabelli,
Nicola Segata

3.2 Abstract

Microbial Ancient DNA (maDNA) can be extracted from dental calculus, coprolites and

mummified specimens so as to help reconstruct the evolutionary history of

human-associated microbes. In the last decade, high-throughput sequencing of

maDNA coupled with genome-based phylogenetic approaches have shed light on

various human pathogenic bacteria. A comprehensive framework to extract, assemble,

and analyse maDNA from ancient metagenomes is however still missing, particularly in

the context of vast contemporary metagenomic data available. Here, we introduce a

novel approach to accurately reconstruct phylogenies from human microbiome species

and to estimate their divergence times. The method exploits ancient metagenomes and

large-scale modern metagenomic datasets. It is based on the extraction of strain-level

genomic information from ancient metagenomes by performing (i) strict quality control

via authenticating maDNA, (ii) correction of misincorporated sites, and (iii) mapping of

maDNA sequences against multiple modern references. This pipeline assures to

minimise biases when inferring downstream phylogenetic analyses. Whole genome

divergence times can then be estimated within our computational framework, by using

the carbon dated ancient strain to calibrate phylogenies based on contemporary

metagenomic data. In this study, we applied this tool to reveal time-resolved

evolutionary trajectories of six common human gut bacteria represented by 11,378

draft genomes from >10,000 metagenomes. With the increasing availability of ancient

microbial samples, our framework enables strain-resolved molecular-clocked

phylogenetic analyses to interrogate the evolutionary history of the human microbiota.
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3.3 Introduction

Estimation of divergence times on a phylogenetic framework (molecular clock dating)

plays an imperative role in understanding microbial evolutionary history. Divergence

estimates allow for example to trace the recent emergence of novel disease-associated

strains (Manara et al. 2018), or the appearance of pathogens back to the Paleozoic

Era (Lebreton et al. 2017). Divergences are typically estimated from sequence

alignments using a molecular clock approach on a bayesian framework (dos Reis,

Donoghue, and Yang 2016). Like all other clock studies, those on bacteria require one

or more a priori time (or rate) information to calibrate the number of mutations

observed in the alignments and scale them to time. In the absence of fossils, it is

possible for microbial clock studies to use empirically pre-estimated evolutionary rates:

this approach is however complicated by the generation time, a piece of information

unknown for unculturable bacteria. A more efficient way of calibrating the clock is to

use the tip-dating approach based on the age of samples. The presence of at least one

ancient strain in an alignment of present time bacteria is now an essential prerequisite

because the ancient strain serves as a calibration point for the whole dataset. Bacteria

however evolve relatively slowly compared to viruses for which tip-dating is being

routinely implemented (Kupczok et al. 2018; Sebastián Duchêne and Holmes 2018;

Sun, Wu, and Ke 2017). To accomodate for less number of mutations per site per unit

of time, the tip dating approach on bacteria requires therefore a large scale dataset

based on the whole genomes.

Ancient microbial genomes for molecular clock studies can be reconstructed from

ancient metagenomes, an approach still in its infancy and that has been successfully

used in the last few years. For example, the genome of an ancient Yersinia pestis, the

causal agent of plague, reconstructed from the metagenome of a tooth dated ~5,000

BP was successfully used to calibrate the Yersinia phylogeny and to prove that

emergence of plague in Eurasia much earlier than initially thought (Rascovan et al.

2019). We recently showed how the genome of an ancient Prevotella copri

reconstructed from pre-Columbian paleofeces could be used as a calibration to

uncover the evolutionary trajectory of the whole P. copri complex prior to human

migratory waves out of Africa (Tett et al. 2019). Similarly, we have shown the potential

of ancient genomes from paleofeces excavated in southwestern U.S.A by using

metagenome assembled genomes (MAGs) to infer the divergence times of a key

human symbiont Methanobrevibacter smithii, which provides a fresh clue of
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interrogating the evolutionary history of the human gut microbiota (Wilbowo et al.

2021)

It is clear that maDNA preserved in ancient specimens can provide valuable

information for investigating the divergences of the human microbiome. How to

precisely reconstruct ancient genomes from ancient metagenomic samples is however

a challenging task. The development of computational metagenomics (Nurk et al.

2017; Asnicar et al. 2020; Truong et al. 2017) over the past decade has provided many

strategies to study microbial evolution in the human microbiome, but the difficulty

becomes apparent when exploiting metagenomic samples drawn from ancient

remains. De novo metagenomic assembly has emerged as a powerful tool to recover

microbial genomic information with particular advantages of reconstructing genomes

for uncharacterized species (Pasolli et al. 2019; Karcher et al. 2020; Scholz et al. 2020;

Nagarajan and Pop 2013). Nonetheless, metagenomic assembly is complicated in

constructing fragmentary short sequences typically characteristic of aDNA into

extended contigs, and computationally unbearable in the case of deeply sequenced

samples which are common in ancient metagenomics studies (Weyrich et al. 2017;

Maixner et al. 2016; Jensen et al. 2019). Obtaining accurate assemblies from ancient

metagenomes requires laborious manual curation to mitigate chimeric contamination,

strain heterogeneity, and artificial mutations possibly stemming from aDNA damage

(Seitz and Nieselt 2017; Luhmann, Doerr, and Chauve 2017). Hence, it is difficult to

generalize existing approaches to ancient metagenomic datasets and low abundance

microbes.

For pathogenic members such as Yersinia pestis and Mycobacterium tuberculosis

which are highly clonal (Luhmann, Doerr, and Chauve 2017; Dos Vultos et al. 2008)

and with access to sufficient isolated reference sequences, assembly-free approaches

based on mapping metagenomic reads against reference genomes and extracting

single-nucleotide variants (SNVs) is a valid approach to capture evolutionary signals of

a species from ancient samples (Key et al. 2020; Schuenemann et al. 2018; Spyrou et

al. 2018; Peltzer et al. 2016). Similar strategies which also include non-polymorphic

sites have been employed in previous studies (Tett et al. 2019; Weyrich et al. 2017).

However, not only do they require tedious separate analysis relying on many

computational tools, but also introduce considerable biases in inferring phylogeny

when mapping reads against only a single reference (Bertels et al. 2014). As such, it

has remained challenging to extract microbial genomic information, reconstruct a

reliable strain-level phylogeny, and estimate the evolutionary timeline for a given
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species efficiently from ancient metagenomes in the context of enormous

contemporary metagenomic data.

Here we introduce MetaClock, an automated and integrated framework for studying

microbial evolutionary history exploiting ancient and present-day metagenomic

datasets. MetaClock can precisely extract genomic information directly from ancient

metagenomic samples and contemporary metagenomic datasets (metagenomes or

MAGs), authenticate the endogenous origin of aDNA and accommodate artificial

effects applying detailed quality controls. Performing it with multiple reference genomes

can significantly enhance the accuracy and reliability for downstream phylogenetic and

molecular clocking analyses. In this study, MetaClock allowed us to explore the

time-revolved evolutionary history of six gut non-pathogenic bacteria by leveraging a

large number of contemporary metagenomic datasets and newly discovered

paleofeces metagenomes.

3.4 Results

3.4.1 Automated reconstruction of microbial genomic information from large

contemporary metagenomics data and ancient shotgun metagenomes for

molecular clocking

We developed a novel computational framework to study the strain-level evolutionary

history of microbes, using both contemporary and ancient (meta)genomic data with

molecular clock techniques (Fig. 1a). The method can take as input both ancient and

contemporary (meta)genomic datasets to reconstruct the microbial genomic

information for genome-based phylogenetic and molecular clock analyses. It firstly

extracts genomic information directly from metagenomic datasets based on a

representative reference genome of the species of interest and reconstructs a genome

multiple-sequence alignment (MSA). If (meta)genomic datasets are provided without

assembly, base quality controls implemented as tunable parameters would be

performed on short-sequence reads in order to avoid the noise from strain

heterogeneity, sequencing and alignment errors in building consensus sequences with

bowtie2 (B. Langmead and Salzberg 2013) (Fig. 1a and see Methods). If assembled

genomes (single-amplified genomes (SAGs), isolate genomes or MAGs) are provided,

a homology-guided strategy is acquired to extract the genomic region of assembled

genomes having substantial sequence similarity with the reference, by tunably

restricting alignment length and percentage identity of BLASTn hits. Secondly, the

genomic information from both ancient and present-day samples are precisely
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integrated into one genome-wide MSA based on the same reference genome. Thus,

the pipeline captures genomic information from the whole genome and retains

sufficiently initial data to select the valuable signals for carrying out strain-level

evolutionary analysis in the subsequent steps. In addition, utilities are available for

efficient post-processing, such as cleaning of missing information, selection of targeted

genome region, results visualization, fast estimation for clocking signals and many

others, in order to assist users to achieve their study-dependent aims (see Methods
and Software availability).

Additionally, merging MSAs from mappings to multiple reference sequences allows for

unbiased phylogeny reconstruction (Bertels et al. 2014), hence within this framework

we exploited this concept and devised a novel strategy of combining multiple MSAs

from different references (Fig. 1b; Supplemental Fig. 1; see Methods). This new

feature complements existing approaches - they can result in unreliable phylogeny

reconstruction due to SNP extraction and mapping to a single reference (Bertels et al.

2014) - which are commonly used in phylogeny reconstruction in aDNA studies

(Peltzer et al. 2016; Spyrou et al. 2018; Schuenemann et al. 2018). Taken together,

MetaClock provides a complete computational environment to perform fine-grained

reliable investigation of microbial evolutionary history at the strain level from both

ancient and modern datasets with flexible parameters and without restriction on forms

of (meta)genomics data.
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Figure 1. The MetaClock pipeline. a, Metagenomic data as either short-sequence
reads or assembled contigs (SAGs or MAGs) are taken as input, with tunable
parameters for quality control, to reconstruct the genome multiple-sequence
alignment (MSA) which is guided by a reference sequence (prepared by users)
representative of one microbial species. A rich suite of post-processing and curation
features are provided in MetaClock, to generate a cleaned MSA based on which a
maximum likelihood (ML) phylogenetic tree is reconstructed. Single-nucleotide
variants (SNVs) analysis and temporal signal estimation can be optionally performed
to interpret strain-level evolutionary relations. The MSA can be further refined using
the multiple-reference mode of MetaClock (Fig. 1b), or be used in molecular clocking
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analysis by BEAST. Dashed lines represent optional procedures. b, MSAs from
different references can be produced through the pipeline described in (Fig. 1a) and
then combined using our newly devised algorithm (Supplemental Fig. 1) in order to
ameliorate the reliability of phylogenetic and clocking analyses.

3.4.2 Precise strain-resolved phylogeny reconstruction from metagenomes and

improved phylogeny accuracy when using multiple reference genomes

We first compared the method performance with a commonly used approach in

reconstructing a strain level phylogeny, i.e. generating assembled contigs using

metagenomic assembly followed by strict quality control, and subsequently building a

core gene alignment to reconstruct a phylogenetic tree. Focusing on Ruminococcus

bromii, we used semisynthetic metagenomic datasets (Fig. 2a; see Methods and Data
availability) and obtained 89 high-quality (completeness ≥90% and contamination

≤5%) R. bromii MAGs out of a total of 946 medium-quality MAGs (completeness ≥50%

and contamination ≤5%), reconstructed from semisynthetic metagenomic samples

containing synthetic R. bromii reads with coverage greater than 5X. We then compared

the phylogenies reconstructed with MetaClock using the recovered R. bromii MAGs or

the raw semisynthetic metagenomes directly against phylogenies reconstructed with

the aforementioned classical approach, and obtained similar topologies

(Supplemental Fig. 2). The congruence was further confirmed by an overall

correlation of 0.9783 (0.9716 when using as input contigs; Pearson’s correlation)

between pairwise branch length distances of the MetaClock-phylogenies and the ones

obtained with the classic approach (Fig. 2b). Moreover, our framework also shows a

credible consistency when using different types of DNA sequences (short-sequence

reads and assembled contigs), displaying an overall correlation of 0.9621 between

pairwise branch length distances from the inferred phylogenies (Fig. 2b). MetaClock

allows for extracting microbial genomic information from a complex metagenomic

environment for genetically close strains of a given species and to reconstruct a

genome phylogeny comparable with a classical more laborious method.

We further validated the method’s improvement when combining multiple MSAs from

different references using synthetic datasets generated from a known phylogeny which

is regarded as the reference tree (see Methods and Data availability). As a result, an

increasing number of references showed a clear decrease in the Robinson-Foulds

distance weighted on branch lengths between trees inferred by MetaClock and the

given phylogeny (Fig. 2c and 2d). The inferred phylogeny from combining nine

reference MSAs was, on average, 17.54% closer to the given tree compared to the one
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relying on only a single reference when validating on the synthetic dataset containing

only short-sequence reads (Fig. 2c). The performance even improved when using the

dataset containing both short-sequence reads and contigs-like sequences, showing a

38.85% drop (on average) in the deviation of the inferred trees (on nine references) to

the given tree (Fig. 2e). Likewise, the tree variability followed the same trend with an

increasing number of reference MSAs (Fig. 2e and 2f). The newly-devised algorithm of

combining multiple MSAs in MetaClock allows for an improved accuracy and a

decreased variability in strain-resolved phylogeny reconstruction, and it can ameliorate

the reliability of phylogenetic analysis based on only one single reference genome

which is to date widely adopted in ancient metagenomic studies (Peltzer et al. 2016;

Sabin et al. 2020b; Schuenemann et al. 2018; Spyrou et al. 2018; Key et al. 2020).

Figure 2. Method validation on (semi)synthetic data. a, The procedure of
generating semisynthetic metagenomes with empirical sequencing noise and
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confounding non-target species (see Methods). Ng indicates the number of
reference genomes used in generating synthetic reads; Nc gives the number of
increasing coverage depths chosen in generating synthetic reads; Nm is the number
of real metagenomes lacking Ruminococcus bromii and inhabited by other species;
N is the total number of semisynthetic metagenomes produced in the end of the
procedure. b, Correlation analysis of phylogenetic distances in the resulting trees
reconstructed manually using Roary (Page et al. 2015) followed by RAxML
(Stamatakis 2014) and automatically by MetaClock. c and d, Deviation of inferred
trees on multiple references to the given phylogeny, measured with Robinson-Foulds
distance weighted on branch lengths. The distance was measured between the
given phylogeny and each inferred tree from MetaClock using different numbers of
reference genomes in combining MSAs. e and f, Tree variability when using different
numbers of reference genomes, measured with pairwise Robinson-Foulds distances
weighted on branch length. The pairwise distances were measured between trees
built on the same number of references. Magenta-colored plot is based on the
dataset comprising only short-sequence reads, and blue-colored plot is based on
including both short-sequence reads and contigs-like sequences.

3.4.3 MetaClock reconstructed a high-resolution evolutionary relationship of

ancient and modern Ruminococcus bromii strains

R. bromii is prevalent in the human gut in present-day populations (Truong et al. 2017)

and ancient microbial samples (Supplemental Fig. 4). It is a keystone species and

known for degrading complex carbohydrates in the human colon (Ze et al. 2012), and

has been reported to be an important factor in human health (Petrov et al. 2017; Lv et

al. 2016; Ze et al. 2015). However, little is known about the evolutionary history of this

microbe, a fact that makes it an ideal candidate to demonstrate MetaClock’s utility in

reconstructing its evolution at the strain level. By applying MetaClock on R. bromii from

ancient metagenomic samples of gut contents and a large amount of contemporary

MAGs, we provide an automated comparative analysis and the first highly-resolved

evolutionary relationship of ancient and modern R. bromii strains.

We screened a total of 16 ancient gut metagenomes for the presence of R. bromii

using MetaPhlAn2 (Truong et al. 2015) and selected nine metagenomes with positive

signals for subsequent MetaClock analysis (Supplemental Fig. 4 and Fig. 3a, see

Data availability). We reconstructed the most complete phylogeny for R. bromii

including 3,976 MAGs (Supplemental Fig. 6 and see Methods) from which we

selected 40 representative genomes (30 high-quality MAGs and 10 reference

genomes, see Data availability) that were used with MetaClock for building the

phylogeny. As a result, MetaClock provides a merged MSA from multiple reference

MSAs and the respective visualization for reconstruction information (Fig. 3c).
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Optionally, endogenous origin of ancient metagenomic reads used in building

consensus genome sequences can be authenticated using aDNA damage patterns

(Fig. 3b). Pairwise SNV rates between strains can be calculated and visualized with a

clustered heatmap to guide the interpretation of the genetic closeness information (Fig.
3d). Finally, a strain-level phylogeny can be inferred based on the merged MSA which

can be manually curated with utility scripts provided in MetaClock (Fig. 3e and see

Methods). All these optional analyses can also be performed automatically by

selecting their respective parameters. Despite the small number of ancient

metagenomic samples, with MetaClock we were able to study the evolutionary

relationship of R. bromii strains from both ancient and present-day populations. From

these results, it appears that ancient strains are genetically distinct with respect to their

modern counterparts based on SNVs, except for sample 2612, which is the most

recent ancient specimen dating back to ~154 years (Fig. 3d). The resulting strain-level

phylogeny provides a finer structure for the phylogenetic placement of ancient and

contemporary strains (Fig. 3e).

Importantly, the results were generated based on verified aDNA evidenced by aDNA

damage patterns (Fig. 3b) and noises from for example aDNA damage effect and

single-reference mapping bias can be mitigated via our functions for damaged site

trimming and MSAs combing (see Methods). This analysis highlights the use of

MetaClock for efficiently reconstructing strain-level evolutionary relationships for a

given species leveraging ancient metagenomic samples and contemporary MAGs.
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Figure 3. Reconstructing strain-level evolutionary relationships for
Ruminococcus bromii using rich contemporary MAGs and ancient gut
microbiome samples in MetaClock. a, Ancient microbiome samples with their
historical time period, age determined by C14 dating (those dated by archaeological
methods rather than carbon dating are prefixed with tilde signs), and reference. b,
Damage patterns automatically estimated with mapDamage2.0 (Jónsson et al. 2013)
(as part of the framework) of metagenomic reads used in building consensus
sequences from ancient samples. The blue line indicates the average frequency of C
to T substitutions at the 5’ ends of reads from mapping against multiple references
(N=10), and the red line indicates the average frequency of G to A substitutions at
the 3’ ends of reads from mapping against multiple references (N=10). The shaded
areas illustrate standard deviation. c, Visualization of the reconstructed genome
MSA. Reconstruction score indicates non-missing information in genome regions.
Samples showing a poor genome-wide reconstruction score are highlighted with
sample names. d, Pairwise SNV rates of reconstructed R. bromii genomes. e,
Automated phylogenetic placement by ML phylogenetic approach (Stamatakis 2014)
( implemented as part of the framework) of ancient samples, reference genomes and
MAGs after excluding poorly-reconstructed samples (2604, Zape28, and Zape5,
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highlighted in Fig. 3c).

3.4.4 MetaClock reconstructs evolutionary timelines for typical gut microbial

members using molecular dating analyses

Measuring the evolution of human-associated microbes exploiting carbon dated

ancient metagenomic samples has gathered interest because it provides evolutionary

insights into our ancestors’ microbiome (Rascovan et al. 2019; Spyrou et al. 2018;

Weyrich et al. 2017; Key et al. 2020) and how our microbiome has diverged in the past

(Tett et al. 2019; Wibowo et al. 2021). Here, we selected six common human gut

species (Ruminococcus bromii, Prevotella copri Clade A, Clostridium ventriculi,

Catenibacterium mitsuokai, Eubacterium rectale, and Intestinibacter bartlettii) because

of the abundant species-level marker genes detected in ancient samples and rich

contemporary reconstructed genomes (N = 11,378) (Supplemental Fig. 4 and

Supplemental Table 2). We next calibrated their genome phylogenies reconstructed

using MetaClock with intensive molecular clock models using carbon dated ancient

samples (see Methods and Data availability). The evolutionary modelling provided

fresh insights into gut microbiome evolution from three complementary aspects. Firstly,

we observed different demographic patterns of the target species (Supplemental
Table 3). Four species (R. bromii, P. copri Clade A, C. ventriculi, and C. mitsuokai)

were estimated to have undergone an exponential growth population, while the E.

rectale population has been showing a constant growth rate in the past. The

demographic pattern of I. bartlettii was instead inferred to fit a coalescent Bayesian

skyline model characterized by a higher number of parameters, suggesting a

piecewise-constant change in population size through time (A. J. Drummond et al.

2005) (Supplemental Table 3 and Supplemental Fig. 7). Secondly, the mutation rates

vary between species, exemplified by the heterogeneous ranges of median rate

estimates for strains of each species (Fig. 4 and Supplemental Table 3). Likewise,

except for E. rectale whose strains were estimated to evolve at the same rate, at least

one order of magnitude difference in evolutionary rate was observed separately in

strains of other five species (Fig. 4 and Supplemental Table 3). Of note, our rate

estimates of target species are in agreement with genome-scale evolutionary rates

reported for other bacteria, and are slower than those of pathogenic members such as

Acinetobacter baumannii which was reported to evolve at >10-5 mutation per site per

year (Sebastian Duchêne et al. 2016). Generally evolutionary rates have been

estimated for pathogenic microbes (Rascovan et al. 2019; Spyrou et al. 2018; Key et

al. 2020; Sabin et al. 2020b). The analysis of these six microbes demonstrates
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MetaClock offers the ability to easily study the evolutionary rates of human microbes of

broader interest.

The evolutionary timeline of human microbiome species can represent an important

proxy for the long-established association with the host’s evolutionary history. Here,

the mean age estimates of whole R. bromii species can trace back as early as around

750 ka (Fig. 4a) when hominins started developing sophisticated human behaviors

such as stone knapping, tool use and floral and faunal consumption (Alperson-Afil et

al. 2009). The lineages of P. copri subspecies Clade A were estimated to begin

radiating ~2 million years ago (Fig. 4b), with a 95% highest posterior density (HPD)

interval 70.42 ka ~ 4.88 mya (Supplemental Table 3) which is in line with a previous

observation in terms of HPD overlap (Tett et al. 2019). Intriguingly, the radiation of C.

ventriculi, C. mitsuokai, and I. bartlettii were estimated to have occurred in the time

window when Homo sapiens began to establish facial, mandibular and dental features

which aligns to modern humans at around 315 thousand years before present (Hublin

et al. 2018), with median estimates ranging from ~250 to ~450 thousand years ago

(Fig. 4c, 4d, and 4f). The evolutionary timeline of E. rectale based on 44 modern

genomes representing a phylogenetic diversity of ~8,000 contemporary strains and

three carbon dated ancient genomes as calibration indicates that the initial

diversification occurred ~120 ka (95% highest posterior density interval: 44-217ka)

(Fig. 4e and Supplemental Table 3; see Methods), coincides with the period when

modern humans migrated from Africa 90-194 ka before present (Hershkovitz et al.

2018). The evolutionary modelling analysis within MetaClock provided the first

time-resolved evolutionary investigation based on multiple species into the human gut

microbiota, which can serve the best proxy for studying further the long-term

relationship of hosted members and our human ancestors.
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Figure 4. Time-resolved phylogenetic trees of six typical intestinal species
inferred from MetaClock using molecular clocking techniques. Ancient samples
used as tip calibrations were highlighted with magenta stars. Based on an intensive
comparison of clocking models, a relaxed clock was used to best explain the
evolutionary history for a, Ruminococcus Bromii, b, Prevotella copri Clade A, c,
Clostridium ventriculi, d, Catenibacterium mitsuokai, and f, Intestinibacter bartlettii. A
strict clock model was used for e, Eubacterium rectale. The inferred rate variants
among strains are indicated by a gradient color scale for branches in each tree,
except for E. rectale whose strains were estimated to evolve at a constant rate).

3.5 Methods

MetaClock provides an automated computational environment for reconstructing the

evolutionary history of human microbiome species from contemporary and ancient

populations. This method involves constructing whole-genome MSA for strains of a

given species directly from the metagenomic reads, MAGs, SAGs or isolated genomes.

Simultaneously, it performs quality controls, strain-level SNV analysis, automated

aDNA authentication, sophisticated MSA curation, genome phylogeny inference

(based on maximum-likelihood principle), estimation of temporal signal (Fig. 1a).

Moverover, having acknowledged the possible aDNA damage effect and biases from

mapping reads against only one single reference genome, we developed two novel

features to mitigate these effects: (i) a priori trimming on the end of reads where

post-mortem damage was frequently observed, which can be tuned with a specific
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parameter, and (ii) combining multiple MSAs from different reference genomes (Fig. 1b
and Supplemental Fig. 1). Evolutionary timelines and long-term evolutionary rates for

microbial species can then be estimated within our framework by leveraging molecular

clocking on both contemporary metagenomic datasets and carbon dated ancient

metagenomic samples (see Software availability).

3.5.1 The MetaClock algorithm

A MetaClock analysis starts with the python script metaclock_mac.py (Metagenome

Alignment Constructor) to align metagenomic reads (no assembly provided as input) in

each sample against a single reference genome using Bowtie2 (B. Langmead and

Salzberg 2013) (Fig. 1a). A consensus genome sequence is then reconstructed for

each sample that minimizes all the following criteria: (i) alignment quality, (ii) length of

aligned reads, (iii) site coverage, (iv) identity of aligned reads, and (v) SNP edit

distance. All the criteria for quality control can be tuned with specific parameters. Sites

are filled with gaps if any of the criteria above are not met. For sequencing reads from

ancient metagenomic data, in order to rule out potential effect of aDNA damage on

downstream phylogenetic and clocking analysis, the read ends where post-mortem

cytosine deamination frequently occurs can be trimmed to a user defined trimming

distance. Optionally, if assembled contigs are provided they can be aligned against the

same reference using blastn (Altschul et al. 1990) (Fig. 1a). Contig-to-reference

alignment hits are selected based on alignment length and percentage identity which

are tunable parameters, with lowest e-value and highest bit-score set as default for

selecting best unique hits. Afterwards, either consensus sequences from reads or

genomic regions where substantial sequence similarity is shared by contigs and the

reference are integrated into a whole-genome MSA based on the same reference

genome as backbone. Thus, the resulting MSA and reference genome have the same

length, with missing information being filled with gaps. Additionally, aDNA

authentication can be automatically performed prior to trimming on read ends by

estimating damage patterns by the integration of mapDamage2 (Jónsson et al. 2013),

and pairwise SNV rates (the number of SNVs divided by the number of sites, when

only considering sites without gaps) can be estimated between strains as well.

A handful of post-processing steps are available for assessing and tailoring raw MSA in

order to maintain sufficient phylogenetic signals for subsequent fine-grained analyses.

Specifically, the overall completeness of MSA is first assessed, using

metaclock_visualizer.py which estimates genome-wide gap ratio in a sliding-window
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manner with the user-defined window size and step size. The resulting visualization

serves as an intuitive guide for further tailoring steps. Once confidence is obtained for

MSA completeness, a tailoring procedure can be executed using metaclock_tailor.py to

precisely remove missing information in the MSA. The tailoring procedure can be

performed by two modes: metaclock_tailoring.py basic and metaclock_tailoring.py

landscape. The basic mode allows users to remove missing information by specifying

target samples to be retained and a maximum threshold for missing information in a

column, or by just simply performing automated trimming with TrimAI

(Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009) embedded as part of the script.

On the other hand, the landscape mode provides a more detailed investigation into

MSA based on genomic landscape. It partitions the whole MSA into many divided

MSAs based on the reference genome annotation profile provided by the user. If no

annotations are provided, MetaClock will automatically annotate the reference genome

using Prokka (Seemann 2014). For each partitioned MSA, the length, missing

information, SNV density, pairwise genetic distances, and biological features (tRNA,

coding and noncoding sequences) can be estimated (see Software availability).

Users can then select and concatenate the interesting partitioned MSAs into a single

alignment concatenation based on the assessment of genomic landscape.

Next, the processed MSA is then used by MetaClock to reconstruct a ML genome

phylogeny using RAxML (Stamatakis 2014) and to estimate temporal signal (Andrew

Rambaut et al. 2016) if sample ages are provided. Afterwards, a parameterized

clocking analysis can be performed on the MSA using external softwares like

BEAST2(Bouckaert et al. 2014) or a further MSA refining can be achieved using

multiple references before clocking analysis as detailed below.

3.5.2 Refining MSA combining multiple references for reliable phylogenetic

analysis

Bertels et al. have shown that biases can be considerably reduced by combining MSAs

from mappings to multiple reference sequences (Bertels et al. 2014). We were inspired

to exploit this concept and implemented it within our framework. Alignment columns

from all MSAs built on different references are merged into a final set of alignment

columns by performing the following steps (Fig. 1b and Supplemental Fig. 1). Firstly,

substantial similar regions between references are searched using blastn (Altschul et

al. 1990) and resulting hits are selected, restricting a flexible parameter of alignment

length and percentage identity by users. Secondly, similar sites (the sites within similar
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regions) are all indexed for extracting corresponding columns from reference MSAs. To

have a flexible control over the length of final combined alignment, we thirdly acquired

the concept of ‘coreness’ to select similar sites for selecting columns from reference

MSAs. Users can decide the number of reference genomes a site must be present in

order to extract alignment columns from reference MSAs. Lastly, selected columns

from different reference MSAs are estimated to generate a consensus column based

on a majority ratio given by the user, and all consensus columns are then concatenated

into a final merged MSA.

3.5.3 Method validation and evaluation

To evaluate the method's performance, MetaClock was applied to semisynthetic and

synthetic datasets. The validation was first performed on 175 semisynthetic

metagenomic datasets (Supplemental Table 5 and see Data Availability) which were

made by mixing synthetic reads of R. bromii strains with real metagenomic samples (in

which R. bromii was screened for absence using MetaPhlAn2 (Truong et al. 2015) Fig.
2a). Synthetic reads were generated using GemSIM (McElroy, Luciani, and Thomas

2012), with the provided error model for Illumina paired-end reads (101bp), from five

reference genomes at coverages from 0.5X to 100X (Fig. 2a). The semisynthetic

metagenomes were subjected to de novo metagenome assembly using metaSPAdes

(Nurk et al. 2017), contigs binning using MetaBAT2 (Kang et al. 2019), quality

assessment using CheckM (Parks et al. 2015), and taxonomic assignment using

PhyloPhlAn 3.0 (the phylophlan_metagenomic script with “-d SGB.Sep20”) (Asnicar et

al. 2020). R. bromii MAGs above high quality (completeness ≥90%; contamination

≤5%) and the corresponding semisynthetic metagenomes, along with other eight R.

bromii genomes (which were not used for producing synthetic reads; accession

numbers: GCF_002834225, GCF_002834235, GCF_003464295, GCF_003466165,

GCF_003466205, GCF_003466225, GCF_003466725, GCF_003469265), were then

used for comparing MetaClock with a classic method based on core gene alignment.

Firstly, we tested MetaClock on semisynthetic metagenomes containing R. bromii

reads at coverage greater than 5X (because assembly failed for samples with R. bromii

coverage lower than 5X) and the eight reference genomes. Secondly, we tested

MetaClock on the corresponding R. bromii MAGs and the same eight reference

genomes. Default settings were used. Thirdly, coding sequences of same MAGs and

reference genomes were predicted using Prokka (Seemann 2014) first and the core

gene alignment was then reconstructed using PRANK (Löytynoja 2014) as part of the
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Roary pipeline (Page et al. 2015) with default parameters. The core gene alignment

was then used to infer a ML phylogeny using RAxML (Stamatakis 2014) under a GTR

model of substitution with 4 gamma categories and 100 bootstrap pseudoreplicates.

We visually inspected the consistency of phylogenetic structures generated by those

three manners using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/), and a

further quantification was provided by a Pearson correlation analysis of pairwise

branch length distances from phylogenies built by different approaches.

Next, the method’s accuracy and variability was evaluated on synthetic datasets

generated by a given phylogeny when using multiple references. A known phylogeny

(see Data availability) was first given to simulate 10 nucleotide sequences at length of

2Mbp using Seq-Gen (v1.3.4) (A. Rambaut and Grassly 1997) under GTR model with

gamma distribution of four categories. Synthetic data were generated by sampling

reads from each simulated nucleotide sequence with coverage 5X using GemSIM

(McElroy, Luciani, and Thomas 2012) with an error model for paired-end Illumina reads

(101bp). We then used metaclock_mac.py with default configuration settings to

reconstruct 10 MSAs using each of the simulated sequences as a reconstruction

reference and the synthetic reads as input from the remaining nine genomes,

separately. (Supplemental Fig. 3a). MSAs from different references were combined

from two to nine references using metaclock_combiner.py with default parameters

(Supplemental Table 1), and metaclock_tailor.py basic was used to clean the

combined MSA on which a ML genome phylogeny was inferred simultaneously. The

accuracy was determined by the deviation of inferred phylogeny of combined MSAs to

the known phylogeny measuring branch length weighted Robinson-Foulds Matrix

(Robinson and Foulds 1979). Likewise, we estimated the pairwise tree distances, using

the same matrix, between trees inferred combining the same number of references in

order to evaluate phylogeny variability with the change of number of reference

genomes used.

In addition, to evaluate the performance in a more realistic scenario - the input

comprises short-sequence reads which can hardly be assembled as is common in

ancient metagenomic studies and assembled contigs that are relatively easy to obtain

from contemporary samples - we repeated the evaluation described above on a more

complex synthetic datasets. We first simulated 20 sequences with length of 2Mbp

based on a known phylogeny (see Data availability) comprising 20 taxa. Ten

simulated sequences were used to generate synthetic reads with 5X coverage and the

remaining 10 sequences were used directly as contigs-like sequences. MetaClock was
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applied as described above using this new dataset composed of both synthetic reads

and continuous sequences (Supplemental Fig. 3b), and the accuracy and variability

were validated in the same manner as described above.

3.5.4 Ancient samples from gut content

In this study, we considered 16 shotgun sequencing metagenomes from ancient

human gut content to demonstrate the main usages of MetaClock computational

framework. The analyzed metagenomes include the gut content of the Iceman and 11

ancient coprolite samples reported previously (Tett et al. 2019; Borry et al. 2020;

Hagan et al. 2020), as well as four newly discovered ancient coprolite specimens from

Hallstatt, Austria (see Data Availability). The details about these four paleofeces

samples are reported in another tandem study (Maxiner et al. 2021).

3.5.5 Preprocessing ancient metagenomic samples

Sequencing reads of all ancient metagenomics samples used in this study were

subjected to stringent quality checks using an integrated preprocessing pipeline

(https://github.com/SegataLab/preprocessing). The preprocessing procedure includes

adaptor removal, trimming position with sequencing quality <15, discarding reads with

mean quality <15 and with length <30nt, and filtering out human DNA sequences by

mapping reads to the Homo sapiens reference (build hg19) already implemented in the

pipeline.

3.5.6 Species-level taxonomic abundance estimation for ancient metagenomic

samples

To decide target species which should be enriched in ancient samples, all

preprocessed ancient metagenome samples used in this study were estimated for

taxonomic abundance at the species level using MetaPhlAn2 (Truong et al. 2015) with

default parameters. Afterwards, the estimated species abundance was visualized using

hclust2.py with parameters “--ftop 25 --f_dist_f braycurtis --s_dist_f braycurtis”.

3.5.7 Exploring phylogenetic diversity of selected species using a large body of

contemporary MAGs

We first retrieved 33 reference genomes for six species enriched in ancient samples

from the NCBI genome database available as of (Supplemental Table 6). Due to the

underrepresentation of genetic diversity from reference genomes we also considered
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MAGs available for the five species in public repositories. To this end, we downloaded

all the MAGs considered in six previous metagenomics assembly investigations

(Pasolli et al. 2019; Almeida et al. 2019; Forster et al. 2019; Asnicar et al. 2021;

Nayfach et al. 2019) and further applied the whole metagenomic assembly pipeline on

additional metagenomes from other eight studies (Tett et al. 2019; Shao et al. 2019;

Rosa et al. 2018; Hansen et al. 2018; Mehta et al. 2018; Visconti et al. 2019; Wampach

et al. 2018; Jie et al. 2017; Thomas et al. 2019). The metagenomic assembly pipeline

is based on the procedure described in a previous study (Pasolli et al. 2019).

Specifically, metagenomic reads were assembled into contigs using MEGAHIT (D. Li et

al. 2015), and then were aligned back against the assembled contigs (>1000nt) using

Bowtie2 (version 2.2.3; “--very-sensitive-local”) (B. Langmead and Salzberg 2013). The

resulting BAM files were sorted and used for contig binning using MetaBAT2 (Kang et

al. 2019) with default settings to generate putative genomes. Quality assessment was

performed on the putative genomes using CheckM with lineage-specific workflow using

default parameters (Parks et al. 2015). We only retained MAGs of medium- and

high-quality. Finally, we assigned a taxonomic label to MAGs downloaded or

reconstructed in this study using PhyloPhlAn 3.0 (the phylophlan_metagenomic script

with parameter “-d SGB.Sep20”) (Asnicar et al. 2020), and selected those with

taxonomy assigned to our target species for subsequent analysis.

Finally, we reconstructed a large-scale strain-resolved phylogeny for each target

species using corresponding reference genomes and MAGs using PhyloPhlAn3.0

(Asnicar et al. 2020) with parameters “--diversity low --fast” in order to capture the

maximum genetic diversity of each selected species in the contemporary datasets.

3.5.8 Reconstructing a high-resolution evolutionary relationship of R. bromii

genomes using MetaClock

We selected a common human gut bacterial species, R. bromii, as an example to

reconstruct its high-resolution evolutionary relationships using ancient paleofeces

samples and large-scale present-day metagenomic datasets. We firstly selected as

ancient input data nine ancient metagenomic samples containing abundant genomic

information from R. bromii (Supplemental Fig. 4), and selected as contemporary input

data 30 high quality MAGs, along with 10 reference genomes (accession numbers:

GCF_002834165, GCF_002834225, GCF_002834235, GCF_003458325,

GCF_003459405, GCF_003463575, GCF_003464295, GCF_003466165,

GCF_003466725, GCF_003469265), representative of a large R. bromii phylogeny
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comprising 3,669 genomes (Supplemental Fig. 6 and see Data availability).

Secondly, metaclock_mac.py script was used to reconstruct 10 genome-wide MSAs,

one for each of the reference genomes listed above, with default configuration settings

and parameters: “--authentication --SNV_rate”. Here, metaclock_mac.py reconstructed

genomic information directly from ancient metagenome samples and contemporary

assembled genomes guided by 10 different reference genomes. In the meantime,

ancient DNA authentication was executed automatically on aligned reads using

mapDamage2 (Jónsson et al. 2013) embedded as part of the pipeline, and pairwise

SNV rates between genomes were estimated and visualized simultaneously. Thirdly,

individual MSAs were combined into one refined MSA using the

metaclock_combiner.py script with default parameters, in order to minimize bias from

mapping against a single reference genome.

The refined MSA was visualized using the metaclock_visualizer.py script, with

parameters: “--window-size 10000 --step-size 2000”, for assessing the genome-wide

reconstruction quality. Using metaclock_tailor.py basic, poorly-reconstructed genomes

were excluded first and then columns in the alignment containing >5% missing

information were removed, and a ML phylogeny based on the curated alignment was

simultaneously inferred with parameter: “--raxml_tree”. To confirm the consistency we

repeated the same procedure for the alignment in which the poorly-reconstructed

genomes were retained (Supplemental Fig. 5).

3.5.9 Estimating time-resolved evolutionary history for multiple common human

gut species with molecular clocking in this framework

We applied MetaClock on real metagenomic datasets, combining with molecular clock

models, in order to estimate evolutionary timescales for six species. These six species

were selected for their representativeness as typical human symbionts and presence in

at least nine ancient samples (Supplemental Fig. 4). For the species with >100

modern genomes, we selected from 20 to 40 high-quality modern genomes including

MAGs and reference genomes, in order to represent the diversity of the species

(Supplemental Fig. 6 and Supplemental Table 2). For P. copri Clade A, we directly

used 27 high-quality representative MAGs from a previous study (Tett et al. 2019), and

for C. ventriculi, we used all available modern publicly available genomes (N=13).

Having prepared the modern genomes to represent the genetic diversity for each target

species, we applied metaclock_mac.py on the ancient samples and the selected

83

https://paperpile.com/c/QQdBy8/DJf9i
https://paperpile.com/c/QQdBy8/v1As


contemporary genome datasets for each target species using a default configuration

setting in order to generate individual MSAs from different references (Supplemental
Table 2). Afterwards, individual MSAs from each species were combined into one

refined alignment using metaclock_combiner.py with default parameters, followed by a

simple post-processing step using metaclock_tailor.py basic to remove

poorly-reconstructed genomes (missing information ≥50%), reconstructed ancient

genomes without direct carbon dated ages, and then trim gappy columns (missing

information ≥5%). The combined MSA for each species was used to explore the

evolutionary history with intensive molecular clocking modelling in the subsequent

steps.

Here, BEAST2 (version 2.5.1) (Bouckaert et al. 2014) was used to infer the

evolutionary timescale for each target species. Well-reconstructed ancient genomes

with the corresponding origin samples being accurately radiocarbon dated were used

as tip calibrations (Supplemental Table 4). For each target species, we analysed eight

alternative evolutionary models (Supplemental Table 3) and selected the best-fit clock

and demographic models to interpret its evolutionary history. Model comparison was

performed calculating Log Bayes factors based on marginal likelihood estimation by

path sampling (Baele et al. 2012), only considering simulations with adequate effective

sample size (ESS) for majority parameters (Supplemental Table 3) (Andrew Rambaut

et al. 2018). A consensus tree was summarized for each species using TreeAnnotator

(Alexei J. Drummond and Rambaut 2007) with 10% burnin, 95% posterior probability

limit, maximum clade credibility to determine target tree type. Each consensus tree

estimated under the model suggested by the highest Log Bayes factor was visualized

using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).

3.6 Discussion

Here, we have devised a new computational framework that allows strain-resolved

phylogeny and evolutionary timeline to be estimated directly from metagenomic reads,

MAGs, SAGs or isolated genomes from ancient and contemporary populations, and we

employed it to investigate the time-measured evolutionary history for six common

human gut species using a large number of present-day metagenomic samples and

ancient metagenomes. This framework enables the reconstruction of evolutionary

history using both contemporary and ancient metagenomic data for many common

microbes without the laborious efforts such as screening presence of target species

relying on PCR techniques (Schuenemann et al. 2018; Maixner et al. 2016), in-solution
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capture to enrich DNA for a target species (Maixner et al. 2016; Sabin et al. 2020b;

Spyrou et al. 2018), and can be utilised without de novo metagenome assembly which

can be particularly challenging for ancient metagenomes (Quince et al. 2017; Seitz and

Nieselt 2017). The approach utilizes reference genomes as representatives of species

to efficiently extract full genomic information from metagenomes, and searches for

sufficiently similar regions. It precisely integrates genomic information from different

types of sources (short-sequence reads and assembled contigs) into a whole-genome

MSA. By combining multiple MSAs from different references, MetaClock significantly

improves the accuracy of phylogenetic inference compared to using only one single

reference. Moreover, MetaClock provides other features (including post-processing

utilities, visualization, aDNA damage analysis, SNV analysis, genome phylogeny

inference and temporal signal estimation for further molecular clock analysis) to

efficiently study ancient metagenomes in the context of vast amounts of contemporary

metagenomic data available. Combining molecular clock techniques within MetaClock

allows us to infer time-resolved evolutionary history of microbes from large-scale

metagenomic datasets at an unprecedented scale. In this study, we reconstructed a

detailed evolutionary history of common human gut members which serves as a

valuable proxy to study the association of common microbes with our human

ancestors.

In this work we detailed the evolutionary trajectories of non-pathogenic human gut

microbiome species, which helps explain the diversity of commensals observed in

contemporary datasets (Tett et al. 2019; Karcher et al. 2020). Strains from the same

species (with the exception for E. rectale) were evolving at various rates and the rate of

one strain varies through its evolutionary timeline, with lower evolutionary rates than

those of pathogenic members (Sebastian Duchêne et al. 2016). Non-pathogenic

members clearly could have appeared very early, even with the most recent one, E.

rectale which started radiating before the first wave of human migration out of Africa

and with the earliest one, P. copri Clade A whose diversification occurred way before

the Homo sapiens began to develop physiological features which aligns to modern

humans. These observations about the evolution of non-pathogenic species contrasts

to the swifty and new emergence frequently observed in pathogenic agents, for

example, the very recent radiation of Yersinia pestis (Rascovan et al. 2019) and

Mycobacterium tuberculosis (Sabin et al. 2020b).

More essentially, the capability to reconstruct the highly-resolved evolutionary history

for microbes directly from contemporary and ancient metagenomics datasets is a

85

https://paperpile.com/c/QQdBy8/0bcQJ+cTSiU+kE0xm
https://paperpile.com/c/QQdBy8/0bcQJ+cTSiU+kE0xm
https://paperpile.com/c/QQdBy8/F1vVI+JFN4Q
https://paperpile.com/c/QQdBy8/F1vVI+JFN4Q
https://paperpile.com/c/QQdBy8/v1As+cf58E
https://paperpile.com/c/QQdBy8/5DzNg
https://paperpile.com/c/QQdBy8/4J7B8
https://paperpile.com/c/QQdBy8/cTSiU


critical move to investigate, to a large scale, how symbionts have been associated with

their human hosts in the course of long-term evolution. Ancient DNA advances, with

particular strength in pathogens, have unearthed the buried historical past between

agents and hosts (Key et al. 2020; Spyrou et al. 2018; Rascovan et al. 2019;

Schuenemann et al. 2018). It will be equally important to explore the evolutionary past

of microbial members common in contemporary populations even without evidence of

relating to diseases. Similar approaches can also start to interrogate the association of

the evolutionary history of the human gut microbiota and that of human, e.g. the

relationship of P. copri complex with Westernisation (Tett et al. 2019) and the

diversification timeline of Methanobrevibacter smithii, a key human symbiont,

reconstructed from paleofeces (Marsha et al., 2021). This is of particular interest in the

era when a large effort has been put into studying human evolution and migration using

ancient DNA advances, with which a detailed microbial evolutionary history can

complement understanding what happened between our ancestors and their symbionts

in the deep past.

Reconstructing evolutionary relationships between strains will also increasingly scale

up shotgun metagenomics analysis in ancient microbial communities. We have only

demonstrated how to establish the linkage between ancient gut microbiota and rich

present-day metagenomic data focusing on six typical intestinal species, and a greater

picture of the microbial evolutionary past can be drawn applying our framework to other

host-associated environments like the oral cavity, for instance. Such studies relying on

ancient and contemporary metagenomes have been carried out within scope of

specific species (Weyrich et al. 2017), but the capability to integrate vast amounts of

modern metagenomics data with fast-growing ancient shotgun metagenomes for many

species makes MetaClock framework an advanced approach for effortlessly

interrogating the microbial evolutionary history.

Limitation of methodology

Our methodology has limitations. First, our method depends on reference genomes

provided by users. Studies have shown that unknown microbes are common in ancient

samples (Wibowo et al. 2021). Thus, our tool is still inadequate in exploring novel

species from ancient samples. Second, while MetaClock is able to estimate temporal

signals for the input dataset, a proper divergence estimate should be preceded by a

model comparison in order to define the most fitting set of evolutionary models/priors

(replacement models, clock models, demographic model) in BEAST2 (Bouckaert et al.
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2014). We will continue developing the pipeline in the near future by automatizing the

part of extensive clocking model comparison.
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3.12 Supplementary materials

3.12.1 Supplemental figures

Supplemental Figure 1. Combining multiple MSAs from different references. (1)
Generate genome MSAs using different reference sequences (Fig. 1a), separately.
(2) Search for highly similar sequences between references using blastn(Altschul et
al. 1990) with the hit length and percentage identity being set as tunable parameters,
and document positions within similar regions for site selection in the sequences in
the subsequent step. (3) Taking Taxon2 as an example taxon, select the site in the
sequences from different reference alignments based on the documented position
coordinates and calculate the consensus by applying nucleotide dominance ratio
(majority rule by default). (4) Concatenate all taxon sequences calculated by merging
sites from multiple references.
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Supplemental Figure 2. The visual inspection with FigTree v1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/) of phylogenetic trees reconstructed on
semisynthetic metagenomic datasets (coverage of 5X, 10X, 20X, and 100X) and the
corresponding R. bromii MAGs using MetaClock (reads input and contigs input) and
those based on core gene alignment generated with Roary (Page et al. 2015)
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followed by RAxML (Stamatakis 2014). Nodes with bootstrap values lower than 75
were highlighted and inconsistent branches were marked as red.

Supplemental Figure 3. Schematic illustration of reconstructing individual
genome alignment in the MetaClock framework using synthetic datasets. a,
Genome sequences were generated by a given phylogeny containing 10 taxa using
Seq-Gen(v1.3.4) (A. Rambaut and Grassly 1997) and the corresponding synthetic
reads were generated using GemSIM (McElroy, Luciani, and Thomas 2012).
metaclock_mac.py was applied on the synthetic data to produce 10 MSAs, each
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from one simulated sequence as a reference. b, Genome sequences were
generated by a given phylogeny comprising 20 taxa using the same way as (a.), but
genome 1-10 (illustrated as solid lines) were used to generate synthetic reads using
GemSIM (McElroy, Luciani, and Thomas 2012) and genome 11-20 (illustrated as
dashed lines) were used as input of continuous sequences. Afterwards,
metaclock_mac.py was employed on this synthetic data with reference being
available only from continuous sequences. Yellow stars indicate reference genomes
used in alignment reconstruction with metaclock_mac.py.
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Supplemental Figure 4. Specie-level taxonomic abundance of top 25 species found
in all ancient samples used in this study. Species highlighted with red box are
common gut species and found to be abundant in ancient samples as well. Hence,
they are selected as example species to be used in MetaClock in order to study their
time-revolved evolutionary histories.

92



Supplemental Figure 5. Phylogenetic placement based on ML approach
(Stamatakis 2014) implemented in MetaClock of ancient samples, reference
genomes and MAGs when automated missing information trimming was executed.
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Supplemental Figure 6. Phylogenetic diversity of four target species which
have >100 MAGs available from contemporary populations. Each phylogenetic
tree was reconstructed using PhyloPhlAn3.0 (Asnicar et al. 2020) and red dots
indicate those selected in MetaClock analysis.
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Supplemental Figure 7. Coalescent Bayesian skyline plot. The effective
population size of I. bartlettii, estimated by the coalescent Bayesian skyline model
using BEAST2 (Bouckaert et al. 2014), changes in the course of evolution. The plot
was generated using Tracer1.7 (Andrew Rambaut et al. 2018), and the solid line
indicates mean value and the blue shade suggests 95% highest density posterior
interval.

3.12.2 Supplemental tables

Captions of supplemental tables are reported below. Tables are available at:

https://drive.google.com/drive/folders/1UvSGp06COxxGeJKqBiiXGMzWx9kNTgtt?usp

=sharing

Supplemental Table 1. The number of possible alignments resulting from
combining various numbers of alignments from different references when using
10 reference genomes.

Supplemental Table 2. Basic statistics of genome alignment reconstruction
using MetaClock for each species. #Positive samples indicates the number of

ancient samples in which the target species were detected using MetaPhlAn 2.0

(Truong et al. 2015); #Modern genomes available gives the total number of available
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reference genomes and MAGs from contemporary metagenomic datasets; #Modern

MAGs selected for MetaClock indicates the number of modern MAGs selected from

#Modern genomes available based on the large-scale phylogenetic structure built

using PhyloPhlAn3.0 (Asnicar et al. 2020) (Supplemental Figure 6); #Modern

reference genomes selected for MetaClock indicate the number of reference genomes

retrieved directly from the NCBI RefSeq database. #Taxa (in total) in the combined

alignment for clocking is the total number of taxa (comprising those from both ancient

and contemporary datasets) in the combined alignment refined by MetaClock and

subsequently used for molecular clocking analysis.

Supplemental Table 3. BEAST2 model comparison for each species. The best

clock and demographic models (highlighted with *) were selected, comparing the null

model (highlighted with ^) with alternative models by Log Bayes factor based on

marginal likelihood estimation using path sampling (Baele et al. 2012) for each target

species. Model comparison was performed only on simulations with sufficient MCMC

mixing which was visually checked using Tracer1.7 (Andrew Rambaut et al. 2018) for

adequate effective sample size (ESS) of majority parameters.

Supplemental Table 4. The archaeological periods, C14 dating ages and
geographical locations of ancient samples used as tip calibrations.

Supplemental Table 5. The description of semi-synthetic metagenomes used for
MetaClock validation. real_metagenome_sample_name indicates five real

metagenomic samples drawn from a previous study (Asnicar et al. 2017) and screened

for absence of target species R. bromii. MetaClock_target_genome gives seven strains

of R. bromii used for generating synthetic reads and then added in the real

metagenomic samples; MetaClock_target_genome_coverage is the coverage used for

synthesizing reads from each genome strain.

Supplemental Table 6. The accession number of reference genomes from six
selected species under NCBI database.
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Chapter 4 | Metagenomic analysis of ancient
dental calculus reveals unexplored diversity

of oral archaeal Methanobrevibacter
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4.1 Introduction to the chapter

In this chapter, I extend the application of the tool introduced in Chapter 3 to

interrogate the evolutionary history of microbes from the other human microbial

ecosystem, the oral cavity. This is an important extension because the success will

promise a wider user community considering the existing and continuingly growing

number of ancient oral metagenomes (Weyrich et al. 2017; Mann et al. 2018; Velsko et

al. 2019; Warinner et al. 2014). In the study presented in this chapter, we firstly

described the microbial composition in the 20 newly sequenced human calculus

metagenomes from archaeological samples and then compared with publicly available

oral samples, with an intriguing discovery of rich archeal Methanobrevibacter traces.

Afterwards, We next sought to reconstruct ancient Methanobrevibacter genomes

employing de novo metagenomic assembly. We uncovered two uncharacterized

Methanobrevibacter species by placing the newly reconstructed genomes in the whole

phylogeny of Methanobrevibacter genus. We then established their evolutionary

diversity regarding time span and geographical locations using the approach I

elaborated in Chapter 3. This work sets as an important example of the potential of the

tool described in Chapter 3 in establishing a fine-grained evolutionary diversity for

microbiome members which are present in both ancient and contemporary populations

in the other human microbial ecosystem such as the oral cavity.

Contribution: In this study, I mainly contributed to de novo metagenomic assembly on

our unpublished ancient calculus samples, to identify the novel species in the

Methanobrevibacter genus, to reconstruct the evolutionary diversity of three most

abundant Methanobrevibacter species in the ancient samples. I interpreted the data

and wrote the manuscript with the other joint first author.
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Metagenomic analysis of ancient dental calculus reveals
unexplored diversity of oral archaeal Methanobrevibacter

Lena Granehäll*, Kun D. Huang*, Adrian Tett, Paolo Manghi, Alice Paladin, Niall
O’Sullivan, Omar Rota-Stabelli, Nicola Segata, Albert Zink, Frank Maixner

* these authors contributed equally

4.2 Abstract

Background: Dental calculus (mineralized dental plaque) preserves many types of

microfossils and biomolecules, including microbial and host DNA, and ancient calculus

are thus an important source of information regarding our ancestral human oral

microbiome. In this study, we taxonomically characterized the dental calculus

microbiome from 20 ancient human skeletal remains originating from Trentino-South

Tyrol, Italy, dating from the Neolithic (6000-3500 BCE) to the Early Middle Ages

(400-1000 CE).

Results: We found a high abundance of the archaeal genus Methanobrevibacter in the

calculus. However, only a fraction of the sequences showed high similarity to

Methanobrevibacter oralis, the only described Methanobrevibacter species in the

human oral microbiome so far. To further investigate the diversity of this genus, we

used de novo metagenome assembly to reconstruct 11 Methanobrevibacter genomes

from the ancient calculus samples. Besides the presence of M. oralis in one of the

samples, our phylogenetic analysis revealed two hitherto uncharacterised and

unnamed oral Methanobrevibacter species, that are prevalent in ancient calculus

samples sampled from a broad range of geographical locations and time periods.

Conclusions: We have shown the potential of using de novo metagenomic assembly

on ancient samples to explore microbial diversity and evolution. Our study suggests

that some members of the pre-industrial human oral microbiome such as the newly

discovered archaeal species are now rare in the modern human oral microbiome.

Keywords: ancient DNA, ancient dental calculus, oral microbiome, metagenomics, de

novo assembly, Methanobrevibacter
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4.3 Background

Dental calculus develops via the mineralization of plaque, which can remain for

millennia on ancient skeletal remains. It displays a specific microniche in the oral cavity

and has been shown to perfectly preserve ancient biomolecules (DNA, proteins,

metabolites) (Mackie et al. 2017; Velsko et al. 2017; Warinner, Speller, and Collins

2015) and dietary microfossils (pollen, starch) (Hardy, Buckley, and Copeland 2018).

Ancient dental calculus have therefore been used as a source of information to study

the composition and functional properties of oral microbial communities, diets and

health in the past (Warinner et al. 2014; Weyrich et al. 2017). For example, changes in

the oral microbial composition from the Neolithic to the Industrial Revolution has

indicated that dietary shifts have played a key role in altering our oral microbial

ecosystems (Adler et al. 2013). Further studies of ancient calculus have identified the

presence of various keystone oral pathogens (Warinner et al. 2014), in particular

members of the so called “red-complex”, a group of bacteria highly associated with

periodontal disease, as well as the presence of inflammatory host response proteins

(Warinner et al. 2014; Bravo-Lopez et al. 2020; Jersie-Christensen et al. 2018; Mann et

al. 2018; Neukamm et al. 2020; Velsko et al. 2019; Ziesemer et al. 2015). Despite this,

little is known about the role and diversity of non-bacterial microbes in ancient dental

calculus. In comparison to modern plaque and calculus, ancient calculus have

reportedly a higher abundance of archaea, dominated by the genus

Methanobrevibacter (Velsko et al. 2019). Currently, Methanobrevibacter oralis is the

only isolated and characterized Methanobrevibacter species in the human oral

microbiome (Ferrari et al. 1994), but undetermined Methanobrevibacter species have

been continuously found in ancient dental calculus (Weyrich et al. 2017; Mann et al.

2018; Ziesemer et al. 2015; Huynh et al. 2016) in as high abundances as >60 %

(Ziesemer et al. 2015). This frequent occurrence has allowed the reconstruction of a

draft genome of a member of Methanobrevibacter from a Neanderthal calculus which

was denominated Methanobrevibacter oralis neanderthalensis, the only reconstructed

ancient Methanobrevibacter genome to date (Weyrich et al. 2017). Despite the high

abundance of Methanobrevibacter spp. in ancient dental calculus and its possible

involvement in periodontal disease (Griffen et al. 2012; Lepp et al. 2004), the current

knowledge on the diversity and role of these methanogens in the human oral

microbiome is limited. To better understand the complex diversity and evolution of the

oral microbiome, here we analysed dental calculus from ancient human remains from

Trentino-South Tyrol region in Northern Italy, spanning from the Neolithic to the Early

Middle Ages (Figure 1). Apart from studying the overall microbial community of the
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samples, we focused on the less studied archaeal component of the oral microbiome

and de novo metagenomic assembled ancient genomes of 76 members of the genus

Methanobrevibacter. We discovered two hitherto unknown archaeal

Methanobrevibacter species and show that the actual Methanobrevibacter genetic

diversity is much larger than previously thought. This has important implications for

understanding the evolution of the dental calculus microbiome in humans in the last

few millennia.

Figure 1. A) Spatial and B) temporal location of the 20 dental calculus samples in
this study. Archaeological time periods based on Festi et al. (2014). C) Dental
calculus on the mandibular teeth of the early medieval individual 2100, found in the
burial site of Burgusio Santo Stefano (St. Stephan ob Burgeis) in South Tyrol, Italy.
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4.4 Methods

4.4.1 Individuals

Ancient dental calculus from 20 individuals found in various archaeological sites in

Trentino-South Tyrol, Italy, spanning from the Neolithic to the Early Middle Ages (Figure

1, Additional file 2: Table S1), were subjected to in-depth metagenomic analysis to

characterise the oral microbiome and further describe the diversity of the genus

Methanobrevibacter. Anthropological analysis (sex and age at death estimations) and

radiocarbon dating of the human remains from the Early Middle Age were previously

published in (Paladin et al. 2020), and the prehistoric individuals were analysed

according to the same methods. Periodontitis and caries assessments were performed

by qualitative measurements (Additional file 2: Table S1). Periodontitis was determined

to be present or absent. Severity of caries was determined using a scoring system of

0-4, where 0 is “absent” and 4 indicates a “severe destruction of the dental crown due

to caries”.

4.4.2 Sampling, DNA extraction and sequencing

All genetic laboratory work was conducted in the dedicated ancient DNA lab of the

Institute for Mummy Studies at Eurac Research, Bolzano, Italy. Dental calculus

(10-66mg) was removed from the surface of each tooth using sterile tweezers and

probes. Each sample was sprayed with 3% H 2O2, and then exposed to UV light for 10

minutes to sterilize the calculus surface. Overnight DNA extraction was done using a

solution of 0.5M EDTA, 20 mg/ml proteinase K and 0.1M N-Laurylsarcosine, modified

from (Rohland, Siedel, and Hofreiter 2010) and (Damgaard et al. 2015). Extracts were

concentrated using 10K Amicon® filter devices and purified using Qiagen® MinElute

PCR Purification Kit. Extraction blanks were included for every five samples.

Single-indexed adapted libraries were prepared according to Meyer and Kircher 2010

(M. Meyer and Kircher 2010) with unique 7 bp indexes. The libraries were pooled and

paired-end sequenced on an Illumina Hiseq4000, including one of the extraction

blanks. Data is available from the European Nucleotide Archive under accession no.

PRJEB43389.

4.4.3 Pre-processing sequencing data

Paired Illumina sequences were merged and adapters were trimmed using PEAR

(Zhang et al. 2014) with a minimum merging overlap and minimum sequence length of
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25 bp. Per base quality was set to 25, and trimmed using QualityFilterFastQ (Kircher

2012). After quality control, all samples were filtered against the reads in the extraction

blank to reduce cross contamination effects (https://sourceforge.net/projects/bbmap/)

(Bowers et al. 2017).

4.4.4 Pre-processing comparative datasets

For comparative analysis, previously published ancient and modern dental calculus

metagenomic sequences from humans, Neanderthals and baboons (Warinner et al.

2014; Weyrich et al. 2017; Mann et al. 2018; Velsko et al. 2019; Ottoni et al. 2019)

were downloaded and pre-processed as described above. Cutadapt (Martin 2011) was

used to remove adapters from single end read dataset, with otherwise the same quality

cut-offs. Modern plaque, tongue dorsum, stool and skin samples were collected from

the human microbiome project (HMP) (Consortium and The Human Microbiome

Project Consortium 2012) (Additional file 2: Table 122 S2). Soil samples were

downloaded from a study of Johnston and colleagues (Johnston et al. 2016). Modern

tongue dorsum, skin, stool, plaque and soil datasets were trimmed and adapters

removed with Cutadapt, with a minimum sequence length of 30 bp, and the per base

quality cut off of 20. Only samples reported with low contamination and with

>6,000,000 reads after pre-processing were used for comparative and statistical

analysis to match the amount of reads in the Trentino-South Tyrolean calculus dataset.

4.4.5 Authentication

After pre-processing, taxonomic assignment was performed using MetaPhlAn2

(version 2.7.7) (Truong et al. 2015). For ancient samples, the non-default minimum

read length threshold was set to 30 bp to adjust for short aDNA fragments

(--read_min_len 30).

To authenticate the metagenomic sequences as coming from an ancient oral source

we first used Sourcetracker2 (Knights et al. 2011) on species-level data to identify the

source of possible contaminants. Other comparative datasets were used as sources

(soil, tongue dorsum, skin, and modern calculus).

A species-level PCoA was also performed to confirm the oral origin of the ancient

dental calculus sequences in comparison to microbial communities from plaque,

tongue dorsum, skin, modern and ancient calculus. Bray-Curtis distances were
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calculated based on the normalized taxonomic assignment

(https://ggplot2.tidyverse.org/) (Wickham 2016).

To assess typical ancient DNA damage of the metagenomic reads, MapDamage2

(Jónsson et al. 2013) was run on sequences aligned to the genomes of

microorganisms detected in the calculus samples. Pre-processed reads were aligned

to the highest abundant identified taxa (> 2.3% average abundance) in the

Trentino-South Tyrolean calculus dataset, as well as the members of the red complex:

Bacteroidetes oral taxon 274 (NZ_GG774889.1), Desulfobulbus oral taxon 041

(GCA_000349345.1), Eubacterium saphenum (NZ_GG688422.1), Fretibacterium

fastidiosum (GCA_000210715.1), Porphyromonas (NC_018142.1), Streptococcus

sanguinis (NC_009009.1), Tannerella forsythia (NC_016610.1) and Treponema

denticola (NC_002967.9). Alignment to microbial genomes was performed using

Bowtie2 (Ben Langmead and Salzberg 2012), with the ‘very sensitive local setting’ (-D

20 -R 3 -N 1 -L 20 -I S,1,0.50) and deduplicated using DeDup v0.11.3

(https://github.com/apeltzer/DeDup). Alignment quality was set to 30.

4.4.6 Human DNA analysis

Pre-processed sequences from the ancient dental calculus were aligned to the human

reference genome (build hg19) using BWA (H. Li and Durbin 2009) with seed disabled

and then deduplicated using DeDup. Minimum mapping quality was set to 30.

MapDamage2 was used to assess ancient DNA damage on human reads. Genetic

sexing was performed as described in (Skoglund et al. 2013). Genetically determined

sex was used for subsequent analysis, except when the genetic sex could not be

determined in which case anthropologically determined sex was used.

4.4.7 Calculus microbiome taxonomic characterisation

Prior to the diversity and statistical analysis all samples were normalized to 6,000,000

reads (using seqtk version 1.3-r106, https://github.com/ lh3/seqtk) to match the lowest

number of sequences in the Trentino-South Tyrolean dataset. Bray-Curtis distances

between oral microbiomes (ancient calculus, modern calculus, plaque, tongue dorsum)

were calculated based on the normalized taxonomic assignment from MetaPhlan2

using Qiime2 (Bolyen et al. 2019) and visualized with ggplot2.
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4.4.8 Analysis of Methanobrevibacter abundance

To determine differences in microbial composition between ancient and modern

calculus, especially differences in Methanobrevibacter abundance, a linear discriminant

analysis was performed on phylum, genus and species abundances using LEfSe

(Segata et al. 2011). The threshold on the logarithmic LDA score for discriminative

features was set to 4. Differences in phylum abundance between ancient and modern

was visualized using pheatmap in R (Kolde and Kolde 2015), only showing phyla >2%

abundance. A t-test from the R package ggpubr (Alboukadel 2018) was used to

determine differences in each phyla that were statistically significant between the two

groups.

We tested whether there were any correlation between the abundance of

Methanobrevibacter and various categories of metadata (level of periodontitis, age,

sex, time period, etc.) using Kruskal-Wallis rank sum test and pairwise Wilcoxon tests

in R. Correlations between species were calculated with Spearman’s correlation with

the Hmisc package in R (Harrell and Harrell 2019).

4.4.9 Microbial genome reconstruction from ancient calculus samples

Each of the 20 pre-processed ancient calculus samples in this study were subjected to

de novo metagenome assembly using metaSpades (version 3.10.1; default

parameters) which was evaluated to outperform among other metagenome assemblers

(Forouzan et al. 2018; Nurk et al. 2017). We obtained 92,485 contigs (> 1,000 nt)

which were kept for further processing. Reads were aligned against contigs using

Bowtie2 (version 2.2.9; ‘--very-sensitive-local’) and the output was used for contigs

binning using MetaBAT2 (version 2.2.9; ‘-m 1500’), resulting in 117 bins (i.e., putative

genomes) (Ben Langmead and Salzberg 2012; Kang et al. 2015). The putative

genomes were assessed for completeness, contamination and strain heterogeneity

using CheckM (version 1.0.7; lineage specific workflow), to select the set of final draft

genomes considered (Parks et al. 2015). Based on recent guidelines, we selected

medium-quality (MQ) genomes that had completeness > 50% and contamination < 5%,

resulting in 76 metagenome assembled genomes (MAGs) (Bowers et al. 2017). Each

of the microbial genomes was assessed for genome size (bp), number of contigs,

contig N50 values, mean contig length and the longest contig (Table S7) using QUAST

(Gurevich et al. 2013). To assert the endogenous origin of reconstructed microbial

genomes, we checked each genome for nucleotide misincorporation rate patterns
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which instrument to authenticate ancient sequences. The BAM files of alignment

between reads and contigs were processed using mapDamage2 (default parameters)

(Jónsson et al. 2013). Finally, we assigned a taxonomic label to each reconstructed

microbial genome using PhyloPhlAn3.0 (phylophlan_metagenomic, ‘-d SGB.Aug19’)

(Asnicar et al. 2020).

4.4.10  Phylogenetic analysis of Methanobrevibacter genomes

To place the newly reconstructed ancient Methanobrevibacter genomes in the

phylogenetic context of Methanobrevibacter genus, we used a total of 64 modern

assembled genomes (52 reference genomes (Additional file 2: Table S13) and 12

MAGs from a previous large-scale metagenomic investigation (Pasolli et al. 2019))

representative of 17 known Methanobrevibacter species. Core genes were searched

within ancient MAGs (n = 11) and their contemporary counterparts (n = 64), and were

then concatenated into a core gene alignment of 42,225 bp length using PRANK

(Löytynoja 2014) which is implemented in Roary pipeline (version 3.13.0; ‘-i 80 -cd 90

-e -mafft’) (Page et al. 2015). To reconstruct the phylogenetic tree, we used RAxML

(8.1.15) (Stamatakis 2014) under a GTR model of substitution with 4 gamma

categories and 100 bootstrap pseudo replicates.

We then sought to reconstruct a more precise phylogeny for three subtrees partitioned

from the Methanobrevibacter genus tree built as described above, using two similar but

complementary methods. Firstly, we performed the phylogenetic analysis using RAxML

(as described above) on the core gene alignment using genomes from three subtrees,

respectively. Core gene alignments were produced using PRANK with parameters of

85% identity (90% for genomes in the subtree 3 due to the fact that subtree 3 contains

fewer genomes) for gene clustering and of gene presence in >90% across genomes

for defining core genes for each subtree. Secondly, we used the same RAxML

phylogenetic method on the multiple sequence alignment (MSA) reconstructed based

on the whole genome region. The whole-genome MSA for three subtrees were

reconstructed, by firstly aligning whole genome sequences (as query genomes) from

each subtree against one selected reference genome (GCA_003111605 for subtree 1;

GCA_003111625 for subtree 2; GCA_001639275 for subtree 3) with BLASTn

(‘-word_size 9’) (Altschul et al. 1990). Afterwards, genomic regions where query

genomes and the reference genome share a substantial sequence similarity (BLASTn

hits with length >500 bp and identity percentage >95%) were selected to generate the

whole-genome MSA, followed by excluding columns having >10% missing.
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To further support the phylogenetic distances with a method based on the genome

similarity, we also estimated the average nucleotide identity (ANI) pairwise distances

using pyani (version 0.2.6; option ‘-m ANIm’) (Pritchard et al. 2016) for two subtrees

(subtree 1 and subtree 2) which comprise the 10 newly reconstructed and

uncharacterized Methanobrevibacter genomes from our ancient calculus samples. The

measurement was performed on the whole genome sequences and on the core gene

alignments generated above as well.

Next, we explored the strain-level phylogenetic diversity of the three

Methanobrevibacter species with particular interest (the two newly discovered

Methanobrevibacter oralis) including 82 publicly available oral microbiome samples

(from 10 contemporary and 72 ancient individuals) (Additional file 2: Table S2). An

alignment-based approach was used to reconstruct the whole genome alignment.

GCA_001639275 was selected as a reference for a known species, M. oralis, and

reconstructed MAGs with highest completeness and lowest contamination were

selected as representatives of ancient lineages from subtree 1 and those from subtree

2 (here calc_2086.bin.1 for those from subtree 1 and calc_2094.bin.7 for those from

subtree 2) due to a lack of reported reference in the public database (Additional file 2:

Table S7). For previously published metagenomic samples, draft genomes were

generated using a python script consensus.py from package cmseq

(https://github.com/SegataLab/cmseq). It aligned metagenomic reads of each sample

against single references and extracting consensus sites of aligned reads. Sites

covered by reads were filled with gaps if: (1) mapping quality < 30, 243 (2) coverage <

3 folds, (3) minimum identity of reads < 97%, (4) aligned read length < 30nt, (5)

minimum dominant allele frequency < 80%. Newly sequenced samples of this study

from which Methanobrevibacter genomes could not be obtained by de novo assembly

were also subjected to the same approach. For other newly sequenced samples whose

MAGs are available, we aligned contigs against the same selected references using

BLASTn (‘-word_size 9’). A whole-genome MSA was compiled based on the same

single reference, integrating reconstructed draft genomes and highly-similar sequences

(>95% identity percentage and >500 bp length) of aligned MAGs. We cleaned each

alignment, excluding sequences with >50% gaps and then removing columns

containing >10% missing data. The cleaned alignments were used in reconstructing

the phylogenetic trees with RAxML as above. Recombination events for these two

subtrees were analysed using ClonalFrameML (Didelot and Wilson 2015) (v1.25,

default parameters) under a ML phylogenetic context. Alignments were masked from

recombination by replacing genomic regions affected by recombination with gaps using
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python script maskrc-svg (https://github.com/kwongj/maskrc-svg). The ML phylogeny

was estimated for masked alignments. The process was iteratively repeated until no

recombination events were detected. To confirm the phylogeny built on the MAGs from

this study, we also reconstructed draft genomes from short-sequencing reads of the

same metagenomic samples using the alignment-based approach as described above

and then repeated the same phylogenetic analysis.

4.4.11 Functional annotation and pangenome analysis of the ancient

Methanobrevibacter bins

In order to analyse the potential difference in function between the three

Methanobrevibacter species (M. oralis, TS-1 and TS-2) the assembled ancient

Methanobrevibacter bins were annotated with prokka (Seemann 2014) and uniref90.

The pangenome for each of the three species was determined using Roary (Page et al.

2015). The M. oralis pangenome was created using the four M. oralis assembled

genomes (GCA_001639275, GCF_000529525.1, GCF_900289035.1 and

GCF_902384065.1) present in Genbank, as well as the ancient M. oralis bin from

sample 2102. We determined genes that were unique to the two ancient

Methanobrevibacter pangenomes by excluding genes found in the M. oralis

pangenome. To find common genes missed by the automatic selection we then

manually inspected the gene tables, removed M. oralis orthologs found in OrthoDB (vs

10.1) and finally conducted a blastn search to find any similar sequences in M. oralis

and other Methanobrevibacter species.

4.4.12 Methyl coenzyme M reductase (mcrA) gene analysis

The methyl coenzyme M reductase complex (Mcr) is a key enzyme in methanogenesis,

and one of its subunits, mcrA, is a common marker gene for methanogenic archaea

(Evans et al. 2019). To determine if this pathway was present in the ancient genomes,

we extracted the mcrA gene sequences from the Methanobrevibacter-assembled

genomes after annotation with prokka. For samples that had not generated any

Methanobrevibacter bins the metagenomic sequences were aligned to the mcrA gene

from their phylogenetically closest genomes (M. oralis DSM 7256, TS-1 or TS-2).

These additional mcrA sequences were extracted from the aligned bam-files with

ANGSD (version 0.918) and samtools faidx (version 1.10) (Korneliussen, Albrechtsen,

and Nielsen 2014). Only bases covered at least 3 times and with a minimum alignment

score of 30 were used for the consensus sequence. (angsd -dofasta 2 -doCounts 1

-setMinDepth 3 -minQ 30). The mcrA dataset was complemented with mcrA
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sequences from currently available genomic datasets of species in the genus

Methanobrevibacter (n=13). First, all DNA sequences were translated into amino acids

by using the Perform Translation tool in the ARB software package (Ludwig et al.

2004). The mcrA sequence alignment was automatically inferred with the ClustalW

protein alignment program (Thompson, Higgins, and Gibson 1994), implemented in the

ARB software package and then manually refined by using the ARB sequence editor.

The amino acid alignment of selected samples were further examined for the

conservation of important positions in the catalytic site (Ermler et al. 1997; Borrel et al.

2019). For the phylogenetic analysis of the mcrA gene, the nucleic acid sequences

were re-aligned according to the corresponding amino acid sequences with the

respective tool in the ARB software. Phylogenetic analysis was performed by applying

distance-matrix, maximum-parsimony, and maximum- likelihood methods implemented

in the ARB software package: neighbour-joining (using the Jukes-Cantor algorithm for

nucleic acid correction with 1000 bootstrap iterations), DNA parsimony (PHYLIP

version 3.66 with 100 bootstrap iterations), and DNA maximum-likelihood [PhyML

(Guindon and Gascuel 2003) with the HKY substitution model]. In total 1541 alignment

columns were used for phylogenetic analysis.

4.5 Results

4.5.1 Taxonomic characterisation and authentication of the ancient calculus

microbiome

We sampled the dental calculus from 20 individuals found in 11 burial sites located in

Trentino-South Tyrol (Figure 1, Additional file 2: Table S1), Italy, and subjected them to

shotgun metagenomic sequencing. Most of the individuals showed signs of oral

diseases, with 80% (16/20) of them affected by periodontitis, which were severe (level

2) in 70% (14/20) of the cases. 75% (15/20) of the individuals showed carious lesions

of very high level (destructive decays) (Additional file 2: Table 2). Only two individuals

(10%) did not show any signs of oral disease.

To authenticate the sequences as coming from an oral source and to determine the

composition of the microbiome, they were first taxonomically profiled with MetaPhlAn 2

(Figure 2A). We found a total of 222 microbial species in the Trentino-South Tyrolean

dataset (Additional file 2: Table 3). The most abundant phyla were Firmicutes,

Proteobacteria, Actinobacteria, and Bacteroidetes, consistent with the reported major

phyla in the expanded Human Oral Microbiome Database eHOMD and other ancient
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calculus microbiomes (Warinner et al. 2014; Weyrich et al. 2017; Escapa et al. 2018).

Of the 25 highest abundant species (Figure 2A), 21 were categorised as oral in

eHOMD, and 13 of them have been associated with periodontitis. These include the

“red complex” members Treponema denticola and Tannerella forsythia (Socransky et

al. 1998), but also species from the genera Methanobrevibacter and Desulfobulbus,

anaerobes found in periodontal deep pockets and regarded as "late colonisers'' of oral

plaque (Griffen et al. 2012; Lepp et al. 2004). Further species-level PCoA analysis

based on Bray-Curtis distances showed that our dental calculus samples cluster

together with previously published ancient calculus samples (Figure 2B), and showed

similarities to modern calculus (mineralized plaque sampled from living humans, as

opposed to the living biofilm which constitutes plaque), but were distinctly different from

the other modern human datasets used for comparison (plaque, tongue dorsum, skin

and stool) (Additional file 1: Figure S1). We did not find any further clustering of the

calculus samples based on the time period of the sample or the health status, origin,

sex, and age at death of the individuals (Additional file 1: Figure S2). Additional

analysis using Sourcetracker2 also showed that of the reads stemming from a known

source, a majority were from oral sources (predominantly modern calculus and plaque)

(Additional file 1: Figure S3). All samples displayed post-mortem damage typical for

ancient DNA for the selected highest abundant microbial species (Additional file 1:

Figure S4, Additional file 2: Table S4), indicating that the reads are stemming from the

ancient calculus and not from recent microorganisms. In addition to the microbial DNA,

the calculus metagenomic sequences contained on average 0.12% human DNA

(Additional file 2: Table S5). Genetic sex of the human host could be determinated for

18 of the individuals. Post-mortem damage in the human reads was detected in all

samples (Additional file 2: Table S5). Altogether, all samples were considered authentic

and used for downstream analysis, except sample 2100 which had substantially fewer

reads and was therefore not used for further comparative analysis.
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Figure 2. Taxonomic analysis of the microbial composition of the ancient dental
calculus samples collected. A) MetaPhlAn heatmap of the top 25 species found in
the ancient calculus. B) Species-level Principal Coordinate Analysis (PCoA) of
β-diversity (Bray Curtis distances) considering the microbiome from ancient calculus
(this study, (Warinner et al. 2014; Weyrich et al. 2017; Mann et al. 2018; Velsko et al.
2019; Ottoni et al. 2019) modern calculus (Velsko et al. 2019), plaque and tongue
dorsum (HMP) (Consortium and The Human Microbiome Project Consortium 2012).

4.5.2 Methanobrevibacter is highly abundant in ancient calculus

We sought to compare the taxonomic profiles of the Trentino-South Tyrolean ancient

calculus to a total number of 76 published ancient and modern calculus samples

(Additional file 2: Table S2) to determine if there was a difference in microbial

community composition between the different tissues. We observed in both ancient

and modern calculus microbiomes high abundances of members of Firmicutes,

Proteobacteria, Actinobacteria, and Bacteroidetes, whereas members of
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Euryarchaeota, Fusobacteria, Synergistetes, Spricohaetes and Candidatus

Saccharibacteria were underrepresented, indicating a similar pattern between the

ancient calculus and its contemporary counterpart regarding the taxonomic

composition at the phylum level (Figure 3A). However, ancient calculus had on average

8 times higher amounts of Euryarchaeota than modern calculus (p=2.4e-07) (Figure

3A). This was represented by the genus Methanobrevibacter, the only archaeal genus

present in the calculus samples which was found to be one of the major features to

explain the differences between ancient and modern calculus microbiomes (LDA score

= 4.62) (Figure 3B). Other species significantly represented in the ancient calculus

include T. denticola, E. saphenum and Desulfobulbus oral sp. 041 (Additional file 1:

Figure S5, Additional file 2: Table S6).

Methanobrevibacter sequences were present in all Trentino-South Tyrolean samples

(0.11-47.3% relative abundance), and in five samples it constituted the dominant taxa

of the whole microbiome (22.5-47.3% relative abundance) (Additional file 2: Table S3).

The abundance of Methanobrevibacter was one of the driving components of the

clustering of calculus microbiomes, displaying a gradient of abundance across the first

coordinate of the PCoA plot which attributed to 34.4% of the variance in the dataset

(Figure 3C). Statistical analysis revealed no correlations between the abundance of

Methanobrevibacter and different groups of metadata in all calculus samples, including

the recorded oral diseases, sex, and age at death. Looking at correlations between

abundances between Methanobrevibacter and other species, we found several

positive and negative correlations (Additional file 2: Table S6). Two out of four observed

positive correlations of Methanobrevibacter was to other bacterial species that have

been associated with periodontitis, e.g. Filifactor alocis, (corr=0.3328, p=0.000982),

and Streptococcus anginosus (corr= 0.3377, p= 0.000815).
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Figure 3. Differences in microbial taxonomic profiles between ancient and modern
calculus and Methanobrevibacter abundance in dental calculus A) Phylum
abundance (%) in ancient and modern calculus. Phyla that are statistically different
between the two tissues are marked with asterisks (* p ≤ 0.05, **** p ≤ 0.0001). B)
Differences in genera between ancient and modern calculus (LEfSe). C)
Species-level Principal Coordinate Analysis of the β-diversity (Bray Curtis distances)
of all ancient and modern calculus samples showing the abundance of
Methanobrevibacter. Previously published ancient calculus from Mann et al. 2018,
Warinner et al. 2014, Weyrich et al. 2017, Velsko et al. 2019, Ottoni et al. 2019, and
modern calculus from Velsko et al. 2019.

4.5.3 Metagenome assembly of calculus samples reveals two novel

Methanobrevibacter species, TS-1 and TS-2

We sought to reconstruct bacterial and archaeal genomes from ancient calculus

specimens from the Italian Trentino-South Tyrolean region, performing de novo

metagenome assembly on each calculus metagenomic sample. From the 20 calculus,

we reconstructed a total of metagenome assembled genomes (MAGs). All

reconstructed MAGs were processed by strict quality measurement including
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completeness, contamination, and strain heterogeneity, resulting in 76 of them to be

considered of medium quality (MQ) or above as proposed by recent guidelines

(Bowers et al. 2017) (completeness > 50% and contamination < 5%). The endogenous

origin of these 76 genomes were authenticated with each displaying clear damage

patterns at the both ends of reads (Additional file 1: Figure S6). At the species level

only 16 of the genomes are close enough (Mash distance (Ondov et al. 2016) < 5%) to

the genome with a known species-level taxonomic label as defined by the

Species-level Genome Bin (SGB) analysis (Asnicar et al. 2020; Pasolli et al. 2019)

(Additional file 2: Table S8). The remaining genomes (n=60) were assigned as

unknown.

Additionally, a total of 11 ancient genomes were identified to be within the

Methanobrevibacter genus (Additional file 2: Table S8) and fell in three separated

subtrees when placed in phylogenetic context with all publicly available representatives

of the genus Methanobrevibacter (Figure 4A). One genome fell within the M. oralis

clade with a Mash distance < 2% from the M. oralis reference genome, the other 10

ancient genomes formed two independent clades which were clearly distinct to other

Methanobrevibacter species. The phylogeny of each subtree can be repeated and with

an improved resolution at branch length when reconstructing the maximum likelihood

tree separately using genomes from each subtree (Additional file 1: Figure S7). The

ANI pairwise distances between the newly reconstructed Methanobrevibacter genomes

and the closest modern relatives showed a limited distance among ancient genomes

based on both the core genome and whole genome (Additional file 1: Figure S8).

Conversely, ancient genomes were strikingly distant from the modern closest relatives,

with mean distance >15% in subtree 1 and subtree 2, in terms of both core and whole

genome (Additional file 1: Figure S8). The high ANI distance between ancient genomes

and modern representatives, in both subtree 1 and subtree 2, suggests that the ancient

genomes could represent two newly discovered species which have not yet been

previously reported based on current operational ANI-based consensus on assigning

strains to species (Pasolli et al. 2019; Tett et al. 2019; Goris et al. 2007; Jain et al.

2018; Konstantinidis and Tiedje 2005).

The distinction of ancient genome clades in subtree 1 and subtree 2 is further

supported by the clade separation with a clearly long branch length in the subtree

phylogeny based on core genome as well as based on whole genome (Additional file

1: Figure S7A, S7B, S7C and S7D). These two candidate species (TS-1 for ancient

genomes from subtree 1 and TS-2 for those from subtree 2) thus represent novel
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lineages that are however not present anymore in the contemporary oral microbiome,

or at least not prevalent enough to be detected by comparing with Methanobrevibacter

genomes from modern metagenomics datasets.

Figure 4. Phylogenetic analysis of ancient and modern Methanobrevibacter diversity.
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The colors in the trees corresponds to the age of the samples: Paleolithic: >12000
BCE, Neolithic: 6000-3500 BCE, Copper Age: 3500-2200 BCE, Bronze Age:
2200-1000 BCE, Early Middle Age: 400-1000 CE, High Middle Age: 1000-1300 CE,
Modern time: 1492 CE - present. A) Phylogenetic tree showing the
Methanobrevibacter MAGs with modern Methanobrevibacter genomes B)
Geographical location of ancient calculus samples placed in the phylogenetic context
in (C, D and E). C) Phylogenetic tree of ancient calculus samples aligned to the
highest quality TS-1 MAG (>50% covered at least 3 folds). D) Phylogenetic tree of
ancient calculus samples aligned to the highest quality TS-2 MAG (>50% covered at
least 3 folds). E) Phylogenetic tree of samples aligned to M. oralis (50% covered at
least 3 folds).

4.5.4 Phylogenomic analysis provides historical insights into temporal diversity

of three ancient-sample enriched Methanobrevibacter species

Studies focusing on modern oral microbiomes have consensus on the pivotal role

methanogenic archaea play in human oral health (Lepp et al. 2004; Horz and Conrads

2011; Grine et al. 2018). The good-quality Methanobrevibacter genomes we recovered

from ancient calculus samples of this study allowed us to study their evolutionary

diversity, during a long-term period, at an unprecedented resolution. We firstly explored

the phylogenetic position of newly reconstructed Methanobrevibacter MAGs in the

whole diversity of genus Methanobrevibacter (Figure 4A). This was further supported

by the consistent phylogenetic structure reconstructed independently using genomes

from each subtree (Additional file 1: Figure S7).

Secondly, to study the biodiversity of three species represented by the 11

Methanobrevibacter MAGs obtained in this study, we performed comparative analysis

exploiting 82 publicly available calculus metagenomes (Additional file 2: Table S2).

Reconstructed Methanobrevibacter MAGs were divided into three groups based on

their phylogenetic placement: group 1 included genomes from subtree 1; group 2

comprised genomes placed in the subtree 2; the single genome clustering with M.

oralis lineages in the subtree 3 was assigned to group 3 (Figure 4A). We detected

genomic signals of those three clades in the publicly available oral metagenomic

samples by aligning metagenomic reads against the selected representative genomes.

At length, seven samples showed at least 50% of the TS-1 representative genome

covered at >3X, 12 samples for TS-2 and 25 samples for M. oralis (Additional file 1:

Figure S9). These high-coverage samples were further included in phylogenetic

analysis along with Methanobrevibacter MAGs reconstructed in this study.
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Leveraging a total of 102 calculus samples (20 of this study and 82 from previous

studies) which spanned ~50,000 years and were collected from eight countries across

three continents shed light on the temporal and geographical diversity, from prehistory

to modern era, of three Methanobrevibacter species enriched in ancient samples. We

used a maximum likelihood approach to build a strain-resolved phylogeny based on

the MSA reconstructed aligning metagenomic reads (or MAGs if available in the

samples) against genome sequences calc_2084.bin.1, calc_2094.bin.7, and

GCA_001639275, respectively representative of TS-1, TS-2, and M. oralis. To

maximize the number of samples possibly being included without losing phylogenetic

resolution, we used only samples which have >50% reference genome covered at >3X

and retained only positions covered across >90% of genomes. Additionally, to

ameliorate the phylogeny reliability, we iteratively removed the regions which were

affected by homologous recombination until no recombination events were detected.

We observed that the novel candidate species TS-1 have continuously presented from

Late Pleistocene Age, Copper Age, Bronze Age, Iron Age, to Late Middle Ages (Figure

4C). The earliest evidence of its presence could be found in two 48,000 year old

Neanderthal samples in one of which a Methanobrevibacter oralis like genome was

previously reported to be present as well (Weyrich et al. 2017). The two Neanderthal

lineages of TS-1 seem to be the ancestral to the more recent lineages from Italy,

Mongolia and Ireland (Figure 4C). We did not observe any signature of this species in

the modern calculus samples, and the latest record could be only traced in medieval

samples from Ireland (Figure 4C, Additional file 1: Figure 9). Likewise, TS-2 has

dispersed over multiple countries across continents during at least the last 5,000 years

(Figure 4D). Compared to TS-1 and TS-2, M. oralis-like strains appear to be more

prevalent in relatively recent samples from the 6th century CE to the modern era with a

wide genetic diversity across multiple geographical locations (Figure 4E). Taken

together, our phylogenetic analysis indicates that the three Methanobrevibacter (M.

oralis, TS-1, TS-2) found in ancient dental calculus from a broad geographic range

show first signs of a temporal diversification. To further verify these findings, it is

however necessary to increase the statistical power by including more calculus

samples in the future.

To verify the phylogeny which was reconstructed using MAGs we also performed the

same phylogenetic analysis using draft genomes reconstructed by mapping

metagenomic reads against a single reference genome. We obtained identical

phylogenies for TS-1 and M. oralis (Additional file 1: Figure S10) when metagenomic

reads were used directly. This added analysis further supports that the MAGs
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generated in this study possess good sequence quality to perform high-resolution

phylogenetic analysis. While a certain extent of phylogeny variability was observed in

the TS-2 between using MAGs and using draft genomes reconstructed by the

alignment-approach, most of these tips were arisen from nodes supported by low

bootstrapping values (Additional file 1: Figure S10). The alternated phylogeny

observed in TS-2 could also be because of effects from homologous recombination.

Our recombination analysis using ClonalFrameML (Didelot and Wilson 2015) showed 3

times the amount of recombination events in TS-2 than in M. oralis, and 30 times than

in TS-1 (Additional file 1: Figure S11).

4.5.5 Functional analysis of the calculus Methanobrevibacter species reveal

similarities to other Methanobrevibacter species

To determine if there were any functional differences between the two newly

discovered Methanobrevibacter species present in the ancient calculus samples

compared to M. oralis, we characterised and annotated their respective pangenomes.

1628 genes were found in the TS-1 pangenome, 2676 genes in the TS-2 pangenome,

compared to the 2649 genes in the M. oralis pangenome (Additional file 2: Tables

S9-S10). Due to the characteristics of ancient DNA (e.g. damage and loss of DNA over

time), we only compared genes that were present in TS-1 and TS-2, but not present in

M. oralis. Uniref90 annotations provided 5 genes that were only present in TS-1. These

genes were either involved in metabolic or genetic information processing pathways

(Additional file 2: Tables S11-S12). Further comparative sequence analysis show that

all 5 genes are also present in Methanobrevibacter species others than M. oralis, eg.

M. smithii, M. millerae and M. olleyae. 21 genes were present in TS-2 but not M. oralis,

the majority being involved in metabolic pathways. 68.6% (16/21) of the genes showed

a high sequence similarity to other Methanobrevibacter species, of which more than

half (12/21) were most similar to Methanobrevibacter sp. YE315. Three genes involved

in metal uptake and glycolysis indicate a functional differentiation of TS-2 to M. oralis.

These include the Molybdate ABC transporter permease protein ModB present in 7 of

the 8 TS-2 MAGs, the Nicotianamine synthase-like protein present in all TS-2 MAGs,

and Phosphoenolpyruvate synthase that was found in two TS-2 MAGs.
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4.5.6 Methyl Coenzyme M Reductase mcrA gene in oral Methanobrevibacter

species

To characterize further functionality in the three calculus Methanobrevibacter species,

we extended our analysis to one component of the Methyl Coenzyme M Reductase,

the key enzyme in methanogenesis which catalyses the final and rate-limiting step in

methane biogenesis (Evans et al. 2019). We focused our analysis on the mcrA subunit

encoding gene, a widely-used marker gene for methanogen classification. Importantly,

all ancient Methanobrevibacter MAGs in the newly described clades harbour the mcrA

gene. The mcrA gene phylogeny of all calculus samples and selected modern

Methanobrevibacter isolates shows a highly similar tree topology to the whole genome

phylogeny and also separates the two new clades from M. oralis and other known

Methanobrevibacter species. (Additional file 1: Figure S12). Further comparison of the

mcrA amino acid alignment revealed in all three oral Methanobrevibacter clades a high

conservation of most amino acid residues that were previously described to interact

with CoM, CoB, F430 cofactors and that are part of the substrate cavity wall or have

post-translational modifications (Ermler et al. 1997; Borrel et al. 2019). Only in one

catalytic site, which is part of the substrate cavity wall, TS-1 encodes a tyrosine and not

a phenylalanine, which both M. oralis and TS-2 share at that position (Additional file 1:

Figure S13).
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4.6 Discussion

In this study we analysed ancient calculus samples utilizing de novo metagenome

assembly techniques to increase the knowledge of the oral microbiome and its diversity

over time, with a particular focus on the periodontitis-associated archaeal genus

Methanobrevibacter. All analysed samples, independently of the site and the time

period, contained both ancient endogenous microbial DNA and traces of the human

host DNA. Taxonomic characterisation and authentication of the metagenomic data

showed that the studied samples mainly consist of oral microbial members and that

there are only few signs of external contamination from other environments (e.g. soil).

Overall, the calculus samples of all analysed individuals (independently on the sex, age

at death or diseases) had a taxonomic composition similar to what has been previously

found in other ancient calculus studies (Weyrich et al. 2017; Mann et al. 2018; Velsko

et al. 2019) and a major proportion of the discovered microorganisms have been

associated with periodontitis (Socransky et al. 1998; Pérez-Chaparro et al. 2014;

Elabdeen et al. 2015; Takeuchi et al. 2001; Haririan et al. 2014). These include the red

complex members Treponema denticola and Tannerella forsythia (Socransky et al.

1998) but also species from the genera Methanobrevibacter and Desulfobulbus, late

colonisers of oral plaque and found in deep periodontal pockets (Griffen et al. 2012;

Lepp et al. 2004). Many of these taxa were also defining for the ancient calculus

microbiome, compared to modern calculus samples which were instead characterised

by taxa associated with healthy plaque, eg. Streptococcus sanguinis, Lautropia

mirabilis, Rothia dentocariosa, Neisseria sicca and Neisseria elongate (Donati et al.

2016; Colombo et al. 2009). This may indicate a difference in the level of maturation,

and, possibly, disease state, in the calculus samples, between ancient and modern

calculus as previously reported (Velsko et al. 2019).

Consistent with previous observations (Mann et al. 2018; Velsko et al. 2019; Ziesemer

et al. 2015), we also found that Methanobrevibacter members are profoundly abundant

in our samples (up to 47.3%), which could be related to the association of

Methanobrevibacter enrichment and oral disease. In modern patients the abundance of

Methanobrevibacter spp. have been correlated to the severity of periodontitis (up to

18.5% in severe periodontitis), and M. oralis and Candidatus Methanobrevibacter sp.

has been found in plaque from periodontitis patients as well (Lepp et al. 2004; Huynh

et al. 2015; Belay et al. 1988). However, we could not find any such statistically

significant correlation between Methanobrevibacter abundance and periodontitis in our
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dataset, although 75% of the samples showed signs of periodontitis, possibly making a

skewed sampling bias. While the correlation was still unclear even when we expanded

our dataset by including more previously published ancient and modern calculus

samples with reported health status, there were indications of the presence of a

non-healthy microbiome in the samples and Methanobrevibacter was positively

correlated to other species associated with periodontitis (Additional file 2: Table S6. It is

thus clear that further studies are needed to shed light on the complexity of the

non-healthy oral microbiome and its implications for human health. The role of

Methanobrevibacter members in human health will be characterized further in the

future with an increasing availability of metagenomic samples from ancient and

contemporary oral environments.

Of note, the high abundance of Methanobrevibacter observed in ancient calculus could

also be related with taphonomic processes (Ziesemer et al. 2015). Post-mortem decay

could skew the abundance of microorganisms in ancient calculus through overgrowth

of certain taxa after the individual has died. Similarly, DNA preservation in ancient

samples could be biased between microbial species due to their genomic GC-content

(Mann et al. 2018) or differences in cell wall composition (Warinner et al. 2014, 2017)

which could both confer stability to DNA after death. Furthermore, as calculus has

been created over the lifetime of an individual, the abundance of taxa in ancient

calculus most likely does not represent a single snapshot of a microbial community.

The plaque microbiome can also change over time in one individual (Utter, Mark

Welch, and Borisy 2016), which makes quantitative comparisons between plaque,

modern and ancient calculus difficult.

The classical alignment-based methods depending on reference genomes are

common in ancient DNA studies (Weyrich et al. 2017; Spyrou et al. 2019; Key et al.

2020), but they hamper the detection of new species, genome rearrangement, and

large indels or regions which are no longer present in extant microbial genomes.

Abundant archaeal reads in the calculus samples allowed us to perform de novo

metagenomic assembly, which resulted in the reconstruction of 11 novel ancient

Methanobrevibacter genomes. Unexpectedly, besides only one genome clustering with

a known species, M. oralis, the other 10 ancient genomes formed two independent

clades (TS-1 and TS-2.) which are clearly distinct to other Methanobrevibacter species

(Figure 4A). The ancient genomes within each new clade were all closely related to

each other, and highly dissimilar from modern genomes within their respective subtree

(>15% ANI) (Additional file 1: Figure S8). This suggests the presence of a higher
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diversity of human oral Methanobrevibacter than has been previously known and

confirms that de novo assembly is a valuable tool for identifying new microbial species

(J. L. Baker et al. 2021; McLean et al. 2015) studying microbial evolution and ecology,

even in ancient metagenomics investigations (Brealey et al. 2020; Luhmann, Doerr,

and Chauve 2017; Krause-Kyora et al. 2018). Many challenges still come with the

assembly of ancient DNA due to its fragmented and damaged nature, one limitation

being the risk of incorporation of ancient DNA damage into the assemblies. However,

we found no evidence of misincorporation in either the damage patterns retrieved after

realigning the reads from each sample to their respective MAG (Additional file 1: Figure

S6), or the comparison of genomes reconstructed by alignment-based methods or de

novo assembly (Additional file 1: Figure S10).

After screening our samples, and the 82 previously published ancient and modern

calculus samples, we found sequences from at least one of the three oral

Methanobrevibacter species (M. oralis, TS-1 and TS-2) in 61 samples (59.8%) (Fig

4C-E). We also found a trend in the prevalence of Methanobrevibacter pertaining to

sample age. M. oralis was more prevalent in modern and younger ancient calculus,

and the oldest calculus sample containing >50% coverage of M. oralis was the sample

2102 dating back to the 7th century. In contrast, TS-1 was more prevalent in older

samples and was completely absent in calculus younger than 700 years. Of the 8

samples containing the highest coverage of TS-1, six were over 3000 years old,

including the 48,000-year-old Neanderthal sample. TS-2 was found in both prehistoric

and younger samples, spanning at least 6000 years. The phylogenetic analysis of TS-2

also showed that the prehistoric genomes within this species fall together in the tree.

We did not observe a clear geographical pattern associating with the phylogeny of the

three Methanobrevibacter species, but they were found in a broad range of

geographical regions in Eurasia and Americas (Figure 4B-4E).

The discovery of two new oral Methanobrevibacter clades and the coexistence of

different clade members in the same ancient calculus raises the question whether

there exists functional differentiation that could explain the sharing of the same

ecological niche. The annotation of the newly assembled Methanobrevibacter

genomes revealed a similar gene content between M. oralis and TS-1 and TS-2. The

two TS-1 MAGs had a lower completeness than the TS-2 MAGs, as well as only two

genomes instead of 8, which could account for the fewer found genes in their

pangenomes (1628 genes in the TS-1 pangenome, 2676 genes in the TS-2

pangenome). All MAGs belonging to TS-1 and TS-2 contained the mcrA gene, one of
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the key genes in methanogenesis, indicating that members of the two new clades use

the same anaerobic respiratory pathway like M. oralis. Besides this major functional

similarity, we detected three genes in TS-2 that are absent in M. oralis and that could

potentially confer additional nutritional advantages and niche adaptation within the oral

cavity. The first one, modB, encodes the Molybdate ABC transporter permease protein

ModB, a part of the molybdopterin biosynthesis pathway and methanogenesis

(Lurie-Weinberger, Peeri, and Gophna 2012). Genes in this pathway have been found

to be the result of lateral gene transfer in M. smithii, potentially as an adaptation to the

human gut and increasing metal uptake. Secondly, one of the genes unique to TS-2,

and present in all 8 TS-2 MAGs, is coding for a Nicotianamine synthase protein.

Archaeal homologues of this gene have been found in other Methanobrevibacter

species, e.g. M. ruminatum (Laffont and Arnoux 2020). Nicotianamine likely also

facilitates in metal uptake. Several metals, like iron, are a limited resource in the oral

cavity (R. Wang et al. 2012) and these genes could therefore potentially confer a

nutritional advantage to TS-2. Thirdly, a putative gene coding for Phosphoenolpyruvate

synthase (Pyruvate, water dikinase) was found in two TS-2 MAGs. The gene is present

in other archaeal microbes, including M. smithii and is involved in carbohydrate

metabolism and the Embden–Meyerhof–Parnas (EMP) pathway (Samuel et al. 2007;

Tjaden et al. 2006), thus playing a role in autotrophic growth (Eyzaguirre, Jansen, and

Fuchs 1982).
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4.7 Conclusions

In this study we have shown the potential of using de novo metagenomic assembly on

ancient DNA sequences to explore the diversity and evolution of oral microbial

members. Our analysis unearthed two newly discovered Methanobrevibacter species

prevalent in calculus from individuals living several thousands of years ago and

indicated a possible decline of Methanobrevibacter diversity in the human oral

microbiome over time. Previous studies have similarly suggested a change in the oral

microbiome over time, displaying less diversity observed in modern samples (Adler et

al. 2013). This is in line with a 16S rRNA gene analysis based on calculus samples

dating back to the 14th to 19th century, showing a decreasing Methanobrevibacter

diversity but with an increase of M. oralis in the modern population (Huynh et al. 2016).

However, such decline in the microbiome diversity over time seems not to be specific

to the oral environment. Much of the human microbiome diversity today is found in

non-westernised populations (Pasolli et al. 2019; New and Brito 2020). For example,

the diversity of a common gut microbe, Prevotella copri, has been shown to be higher

in modern non-westernised populations, as well as in ancient individuals, compared to

westernised populations, indicating a shift in diet is a likely factor of the decline in

human microbiome diversity (Tett et al. 2019). Conversely, some human pathogens

have been shown to become more specialised and diverse in the beginning of the

Neolithisation process (Key et al. 2020). Changing lifestyles and diets over the

centuries and the modern-day medical usages (e.g. antibiotics) might play a

considerable role in depleting human microbiome diversity (Adler et al. 2013; Ferrer et

al. 2017), and hence it may help explain the observed loss of Methanobrevibacter

diversity in the recent past. Further studies with fast-growing metagenomic data from

both ancient and contemporary populations will certainly enhance our understanding of

Methanobrevibacter members whose diversity has not been fully unravelled yet.
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4.9.1 Supplemental figures
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Figure S1. Authentication of endogenous origin for 76 newly reconstructed microbial
genomes.
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Figure S2. A) Species-level principal coordinate analysis of all comparative datasets
used in this study (ancient calculus, modern calculus, plaque, tongue dorsum, skin,
stool and soil). B) Species-level principal coordinate analysis with oral datasets and
filtered to only oral species. The list of 235 oral taxa used for this analysis were
determined by identification of taxa present in all oral datasets from the HMP (buccal
mucosa, hard palate, keratinized gingiva, palatine tonsils, saliva, subgingival plaque,
supragingival plaque, throat, tongue dorsum), where the taxa needed to be present
at > 0.1% in at least one oral sample as well as present at any abundance in at least
10% of the total number of oral samples to be included.
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Figure S3. Species-level Principal coordinate analysis plots based on Bray-curtis
distances, visualising normal confidence ellipses (levels=0.75) for each group of
metadata: A) Sex B) Age at death C) Country D) Time period of individual (based on
archaeological periods from Festi et al. 2014). E) Occurrence of periodontitis. F)
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Occurrence of caries.

Figure S4. Sourcetracker analysis for all Trentino-South Tyrolean calculus samples
indicating the proportions of each source dataset based on species-level taxonomic
abundances.
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Figure S5. Frequency of C to T transitions in reads mapped to the highest abundant
taxa present in the Trentino-South Tyrolean calculus dataset, Desulfobulbus oral
taxon 041 (GCA_000349345.1), estimated by MapDamage.
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Figure S6. Species level linear discriminant analysis (LDA) effect size (LEfSe)
between ancient and modern calculus.
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Figure S7. Resolution-improved phylogeny of subtrees based on the core and whole
genome. (A), (C), and (E) indicate subtree1, subtree2, and subtree3, based on core
gene alignment generated by MAFFT(Katoh and Standley 2013), respectively. (B),
(D), and (F) indicate subtree1, subtree2, and subtree3, based on the whole genome
alignment, respectively (see Method). The orange star highlights ancient genomes
and the red circle emphasizes the long branch length.
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Figure S8. Genetic distance pairwise distances within ancient genomes and
between ancient and modern genomes in subtree 1 (TS-1) and subtree 2 (TS-2)
respectively, measured by ANI.
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Figure S9. Alignment-based assessment for species coverage across publicly
available metagenomic samples. Reference genome GCA_001639275 represents
M. oralis, newly reconstructed genome calc_2084.bin.1 represents TS-1, and
calc_2094.bin.7 was used for another species TS-2.
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Figure S10. Strain-resolved phylogeny of newly discovered Methanobrevibacter
species TS-1 (A), TS-2 (B) and Methanobrevibacter oralis (C), reconstructed using
draft ancient genomes from alignment-based approach. Branches variable in
phylogenetic position from those in Figure 4D are marked as red.

Figure S11. The number of recombination events (normalized by the total number of
genomes in the alignment) detected in TS-1, TS-2 and M. oralis, using
ClonalFrameML (Didelot and Wilson 2015).
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Supplemental Figure S12. Maximum likelihood tree based on a mcrA nucleic acid
sequence alignment. Sequences marked with an asterisk indicate mcrA sequences
used for amino acid analysis. Black circles symbolize parsimony and neighbour
joining bootstrap support (>60%) based on 100 and 1000 iterations, respectively.
The scale bar depicts 0.1 substitutions per residue.
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Supplemental Figure S13. Alignment of mcrA amino acid sequences from selected
Methanobrevibacter genomes. Catalytic sites are indicated with color and an asterisk
indicates the only site with an amino acid difference between the
Methanobrevibacter spp.

4.9.2 Supplemental tables

Tables and the captions are available at:

https://drive.google.com/drive/folders/1B0TdPAbzW9R8a5EAaSjHYTmjmL21H2lu?usp

=sharing
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Chapter 5 | Applications of the methodology
in other works
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In this chapter, I discuss three published collaborative works I contributed to and was

involved as a co-author during my doctoral training. All works reported in this chapter

are closely related to the methodology development I introduced in Chapter 3; the

article in 5.1 includes evolutionary history reconstruction for Prevotella copri,

accomplished using analytical approach that was the prototype of the developed

version of the methodology elaborated in Chapter 3; the article in 5.2 introduces

another example of calibrating the evolutionary timeline of Methanobrevibacter smithii

using ancient gut microbiome within the computational framework I detailed in Chapter
3; the work in 5.3 includes an example of applying the methodology described in

Chapter 3 to reconstructing the genome-based phylogeny of Eubacterium rectale.

Each work is introduced by a brief statement of the project rationale, followed by the

linkage with the methodology elaborated in Chapter 3, and closed by a short

description of my role in the research. For each work, I demonstrate only the abstract,

the section I contributed to and the access to the article published.
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5.1 The Prevotella copri Complex Comprises Four Distinct Clades

Underrepresented in Westernized Populations

This article in which I am the second author was published in Cell Host & Microbe in

2019. The approach I designed for reconstructing the evolutionary history for Prevotella

copri is the most original version of the methodology elaborated in Chapter 3. This is

the first published work describing the evolutionary history of commensal bacteria

directly using rich metagenomic data. In this study, we first reported that P copri is not

a monotypic species but comprises four clades characterized by distinct phylogenetic

placement, functions, and metabolic pathways. Secondly, we discovered the P. copri

complex is more prevalent in populations with non-Westernized lifestyles and clades

are frequently co-present within non-Westernized individuals. Thirdly, combining

ancient gut content and molecular clocks we reconstructed a diversification timeline for

the four clades of the whole complex, which postulates a trend that the presence of P.

copri is decreasing in the Westernized world. In Chapter 3, I refined and generalized

the approach in order to reconstruct the evolutionary history for more given microbial

species which are present in human populations using ancient and contemporary

metagenomic data.

Contribution:
In this study, my main contribution is reconstructing ancient strains of P. copri,

genome-based phylogenetic analysis, and calibrating the phylogeny using

reconstructed ancient strains within the Bayesian molecular clocking framework. I

initially sought to reconstruct ancient genomes of P. copri from paleofeces samples for

four clades. The resulting reconstructed genomes were inspected with stringent quality

controls and ancient DNA authentication in order to ascertain the reliability of genomic

information integrated for downstream analysis. Afterwards, qualified reconstructed

ancient genomes were aligned against core genes shared among strains from four

clades, generating core gene alignments containing both modern and ancient strains.

Phylogeny congruence was inspected for all core genes before generating alignment

concatenation in order to minimize the effect of horizontal gene transfer. The curated

genome alignment concatenation was used for placing ancient strains in the whole P.

copri genome-based phylogeny and reconstructing a time-revolved evolutionary

history. In the part of reconstructing evolutionary history for the P. copri complex, I

performed Bayesian molecular clocking analysis and carried out intensive model

selection in order to describe the evolutionary history with sufficient reliability. As a

result, we revolved a clear divergence timeline of P. copri four clades: the whole
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complex began to diversify ~6.5 million years ago; the diversification of three main

clades is around ~3.5 and ~2.5 million years ago; despite the recent date estimation of

clade divergence, even at the lowest estimation (420 ka), this occurred well before the

first human migration waves out of Africa which is around 90 - 194 ka years ago. Taken

together, all our estimates indicate that the four clades of the P. copri complex were a

feature of our pre-migratory human ancestors.

The abstract and the section related to this thesis is reported below, and the full-text

article can be accessed here:

https://www.sciencedirect.com/science/article/pii/S1931312819304275

The Prevotella copri Complex Comprises Four Distinct Clades
Underrepresented in Westernized Populations

Adrian Tett, Kun D. Huang, Francesco Asnicar, Hannah Fehlner-Peach, Edoardo
Pasolli, Nicolai Karcher, Federica Armanini, Paolo Manghi, Kevin Bonham, Moreno
Zolfo, Francesca De Filippis, Cara Magnabosco, Richard Bonneau, John Lusingu,
John Amuasi, Karl Reinhard, Thomas Rattei, Fredrik Boulund, Lars Engstrand,
Albert Zink, Maria Carmen Collado, Dan R. Littman, Daniel Eibach, Danilo Ercolini,
Omar Rota-Stabelli, Curtis Huttenhower, Frank Maixner, Nicola Segata

Cell Host & Microbe, 2019

Abstract

Prevotella copri is a common human gut microbe that has been both positively and

negatively associated with host health. In a cross-continent meta-analysis exploiting

>6,500 metagenomes, we obtained >1,000 genomes and explored the genetic and

population structure of P. copri. P. copri encompasses four distinct clades (>10%

inter-clade genetic divergence) that we propose constitute the P. copri complex, and all

clades were confirmed by isolate sequencing. These clades are nearly ubiquitous and

co-present in non-Westernized populations. Genomic analysis showed substantial

functional diversity in the complex with notable differences in carbohydrate metabolism,

suggesting that multi-generational dietary modifications may be driving reduced

prevalence in Westernized populations. Analysis of ancient metagenomes highlighted

patterns of P. copri presence consistent with modern non-Westernized populations and

a clade delineation time pre-dating human migratory waves out of Africa. These

findings reveal that P. copri exhibits a high diversity that is underrepresented in

Western-lifestyle populations.
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5.1.1 P. copri Diversity in Ancient Human Gut Contents Resembles that of

Non-Westernized Populations and Gives Insights into Its Evolutionary History

To ascertain if the high P. copri prevalence and co-presence of the four clades in

non-Westernized populations reflects the composition in ancient human gut

microbiomes, we analyzed the gut content of four archaeological samples. We studied

material from the lower intestinal tract and lung tissue of the Iceman, a 5,300-year-old

natural ice mummy (Spindler 2013). The Iceman genetically belongs to the Early

European Farmers and originated and lived in Southern Europe, in the Eastern Italian

Alps (Haak et al. 2015; Andreas Keller et al. 2012; Lazaridis et al. 2014; Müller et al.

2003) (Figure 5A). We also analyzed three coprolite samples (fossilized feces) (Figure

5A) recovered from the pre-Columbian (1,300 ± 100 BP) site “La Cueva de los Muertos

Chiquitos” from Durango, a Northwestern state of Mexico (Brooks et al. 1962) (see

STAR Methods).

We found the P. copri complex to be present in both the Mexican and the European

ancient gut metagenomes (Figure 5B). All samples had at least two P. copri clades

(clades A and C), and in two coprolites, all four clades could be detected. The higher

prevalence of clade A and C in our ancient samples mirrors the tendency of

modern-day populations (both Westernized and non-Westernized) where these two

clades are more prevalent (Figure 3A). To discount the possibility of a non-ancient gut

origin, we verified that the P. copri reads displayed damage patterns indicative of

ancient DNA (Figures S5A and S5B) (Orlando, Gilbert, and Willerslev 2015), and in a

control sample (Iceman lung tissue), no P. copri clades were detected (positive for only

a single marker of the 2,448 P. copri complex specific markers) (Figure 5B). Two

characteristics point toward a similarity between the ancient samples and modern

non-Westernized populations. First, P. copri is common in the ancient samples like

non-Westernized samples. Second, the ancient samples are characterized by a high

clade co-presence (presence of 2 to 4 distinct clades) as observed in non-Westernized

individuals. While we have only analyzed a small number of ancient metagenomes, we

show that the likelihood of observing a high co-presence in the non-Westernized

samples by chance is very low (Figure S5C). Together, the similarities between ancient

and contemporary non-Westernized individuals suggest that the P. copri carriage

pattern in non-Western populations is more akin to our ancestors.

To calibrate a P. copri phylogeny, we screened all ancient samples and found that one

coprolite (sample 2180, radiocarbon dated AD 673 to 768, see STAR Methods) had
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sufficiently high coverage of clade A to be used for tip calibration (see STAR Methods).

Model selection indicated that this dataset is best modeled by a strict clock suggesting

a constant rate of evolution through time and in different P. copri clades (see STAR

Methods). All our divergence estimates converged satisfactorily on clear posterior

means (Figure 5C) and the age estimates indicate that P. copri began to diversify (split

of clade B) ∼6.5 million years ago (Figure 5C). The diversification of clades A, D, and C

is estimated to have occurred between ∼3.5 and ∼2.5 million years ago (Ungar and

Sponheimer 2011; Wood and Collard 1999). The differentiation within each of the

clades is instead relatively recent with the median estimates following that of the

emergence of Homo sapiens circa 315 ka (Hublin et al. 2017). Despite the range in

estimated clade divergence, even at the lowest estimation (420 ka), this occurred well

before the first human migration waves out of Africa circa 90–194 ka years ago (Grün

et al. 2005; Hershkovitz et al. 2018). This would indicate that the four clades of the P.

copri complex were a feature of our pre-migratory human ancestors.

Further support of P. copri clade diversification prior to migration is that the high

prevalence of all four clades and clade co-presence within an individual is a consistent

feature of disparate non-Westernized populations in Africa, Oceania, South America,

and Asia. This, together with the estimation of clade divergence, implies the P. copri

complex has been a long-standing feature of the human microbiome. This analysis and

the observed multi-generational decrease in the prevalence of Prevotella strains in

non-Western migrants upon Westernization (Vangay et al. 2018) suggests that the

underrepresentation of P. copri in Westernized populations could be due to its loss in

response to Westernization. This loss has rapidly occurred in an almost infinitesimal

time frame relative to host-microbe coevolution.
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Figure 5. Ancient Microbiomes and the Evolutionary History of the P. copri Complex
(A) Ancient Mexican coprolite samples and intestinal and lung tissue sampled from
the Iceman, a natural ice mummy.
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(B) Percentage of positive P. copri clade-specific markers identified in each ancient
metagenomic sample.
(C) Time-resolved phylogenetic tree of the P. copri complex; magenta star indicates
the ancient coprolite sample, 2180 (see STAR Methods).
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5.2 Reconstruction of ancient microbial genomes from the human

gut

This work I collaborated with a large panel of other researchers around the world was

published in Nature in 2021. The part of exploring Methanobrevibacter smithii

evolutionary history in this study can be taken as a great example for how to employ

the approach elaborated in Chapter 3 on real metagenomic data for investigating the

evolutionary history of a given species. In this work, we firstly reconstructed a good

number of high- and medium-quality ancient microbial genomes, and compared them

with modern metagenomic data in the aspect of phylogenetic relationship, functional

features. Secondly, we focused on reconstructing the evolutionary history for a pivotal

human species, Methanobrevibacter smithii, by leveraging the ancient samples and

rich contemporary metagenomic data. Finally, we uncovered that our ancestral gut

microbiome resembles the present non-industrial human gut microbiome, which

postulates an unignorable trend - our gut microbiome diversity is declining in the

procedure of industrialization. Moreover, using the approach reported in Chapter 3 can

potentially open the black box of evolutionary history for many microbial species.

Contribution:
In this work, my contribution concentrated on exploring the evolutionary history of M.

smithii performing the approach reported in Chapter 3. Firstly, I placed reconstructed

ancient M. smithii genomes in the whole M. smithii phylogeny with available modern

genomes in order to investigate the evolutionary relationship between ancient and

modern strains. Secondly, I reconstructed a genome-based phylogeny using ancient

strains and selected modern strains which represent the whole diversity of this species.

Lastly, I built an evolutionary timeline of M. smithii, calibrating the phylogeny using the

temporal signals from ancient strains within the Bayesian framework. The result

demonstrates how M. smithii strains have radiated in evolution during the past 100,000

years ago.

The abstract is reported below, and the full-text article can be accessed here:

https://doi.org/10.1038/s41586-021-03532-0
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Reconstruction of ancient microbial genomes from the
human gut

Marsha C. Wibowo, Zhen Yang, Maxime Borry, Alexander Hübner, Kun D. Huang,
Braden T. Tierney, Samuel Zimmerman, Francisco Barajas-Olmos, Cecilia
Contreras-Cubas, Humberto García-Ortiz, Angélica Martínez Hernández, Jacob M.
Luber, Philipp Kirstahler, Tre Blohm, Francis E. Smiley, Sonia A. Ballal, Sünje
Johanna Pamp, Julia Russ, Frank Maixner, Omar Rota-Stabelli, Nicola Segata, Karl
Reinhard, Lorena Orozco, Christina Warinner, Meradeth Snow, Steven LeBlanc,
Aleksander D. Kostic

Nature 2021

Abstract

Loss of gut microbial diversity (Smits et al. 2017; De Filippo et al. 2010; Yatsunenko et

al. 2012; Obregon-Tito et al. 2015; Angelakis et al. 2016; Tett et al. 2019) in industrial

populations is associated with chronic diseases (Blaser 2017), underscoring the

importance of studying our ancestral gut microbiome. However, relatively little is known

about the composition of pre-industrial gut microbiomes. Here we performed a

large-scale de novo assembly of microbial genomes from palaeofaeces. From eight

authenticated human palaeofaeces samples (1,000–2,000 years old) with

well-preserved DNA from southwestern USA and Mexico, we reconstructed 498

medium- and high-quality microbial genomes. Among the 181 genomes with the

strongest evidence of being ancient and of human gut origin, 39% represent previously

undescribed species-level genome bins. Tip dating suggests an approximate

diversification timeline for the key human symbiont Methanobrevibacter smithii. In

comparison to 789 present-day human gut microbiome samples from eight countries,

the palaeofaeces samples are more similar to non-industrialized than industrialized

human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a

markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well

as enrichment of mobile genetic elements relative to industrial gut microbiomes. This

study facilitates the discovery and characterization of previously undescribed gut

microorganisms from ancient microbiomes and the investigation of the evolutionary

history of the human gut microbiota through genome reconstruction from palaeofaeces.
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5.2.1 Methanobrevibacter smithii tip dating

Next, we estimated the divergence times of M. smithii using two filtered (contigs < 1%

damage were removed) ancient M. smithii genomes from samples UT30.3 and UT43.2

for tip calibrations (Methods and Supplementary Fig. 3a). Bayesian inference under a

strict clock and the most fitting demographic model (Supplementary Table 7) shows

that the ancient M. smithii genomes fall within the known diversity of contemporary M.

smithii genomes (Fig. 3 and Supplementary Fig. 3a) and that M. smithii began to

diversify around 85,000 years ago with a 95% highest posterior density (HPD) interval

of 51,000–128,000 years (Fig. 3). This timeline is moderately later than the timeline of

its sister species Methanobrevibacter oralis (HPD = 112,000–143,000 years) (Weyrich

et al. 2017). The two estimates are compatible in terms of HPD overlap, and both

occurred within or slightly after the estimated first human migration waves out of Africa

around 90,000–194,000 years ago (Grün et al. 2005; Hershkovitz et al. 2018). In

addition, the origin of the lineage leading to the two ancient M. smithii genomes is

between 40,000 and 16,000 years ago (mean = 27,000 years ago). These estimates

predate (although there is overlap towards the earlier 95% posterior estimates) the

accepted age of human entry into North America through the Beringia bridge

(20,000–16,000 years ago). The results did not significantly change when potential

aDNA damage sites were removed (Supplementary Fig. 3b and Supplementary

Information section 8), suggesting that damage did not notably affect our MAGs. We

also validated these divergence date estimates using raw sequence divergence

calculations (Extended Data Fig. 10 and Supplementary Information section 8).

Overall, we show that using ancient genomes for calibrating M. smithii phylogenies, we

could evolutionarily match previous studies of M. oralis (Weyrich et al. 2017). This

supports the potential of using ancient MAGs to study the evolutionary history of gut

symbionts. However, whether species within the genus actually follow the indicated

diversification timeline needs to be investigated with additional ancient

Methanobrevibacter genomes that span different time periods.
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Fig. 3 | Evolutionary context of a key human gut symbiont. A time-measured
phylogenetic tree of M. smithii reconstructed based on the core genome using a
Bayesian approach under a strict clock model. Purple and orange violin plots
illustrate the 95% HPD values (in parentheses) of estimated mean ages for the
diversification of M. smithii and the split of the lineage leading to ancient M. smithii
(highlighted in red), respectively.
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Supplementary Fig. 3 | Methanobrevibacter smithii phylogeny and tip dating.
a, A whole phylogeny of M. smithii. Ancient M. smithii MAGs are highlighted in red.
Contemporary M. smithii genomes included in the Bayesian phylogenetic analysis
are displayed in yellow. b, Comparison of tip dating results using three different
versions of ancient M. smithii genomes: pre-filtered genomes (left panel), filtered
genomes (middle panel; contigs with <1% damage were removed), and filtered
genomes after trimming of the first and last 5bp of the reads (right panel). The results
are consistent among the three versions.
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Extended Data Fig. 10 | Comparison of Methanobrevibacter smithii divergence
dates from BEAST2 analysis vs. raw genetic distance calculations
(Supplementary Information section 8; related to Fig. 3). a, Diagram showing the
different M. smithii groups and genetic distances calculated. b, Pairwise sequence
divergences between M1 & M2 strains, A & M2 strains, and A & M1 strains (M1_M2
n = 96; A_M1 n = 48; A_M2 n = 8). Data are presented as boxplots as described in
the Methods section. c-d, Comparison of distribution of systematic differences
between M1 & M2 and A & M2 divergences and BEAST2 estimates. c, The
systematic differences based on pairwise sequence divergences (measured by SNV
rate) between M1 & M2 and A & M2 strains. d, The products of the clock rates
(substitution/site/year) inferred using BEAST2(Bouckaert et al. 2014)
(Supplementary Table 7) and the inferred age of the common ancestor of the ancient
strains. e-f, Comparison of distribution of pairwise time-resolved systematic
differences based on raw sequences divergence and the distribution of existing
inferred clock rates. e, Time-resolved systematic differences calculated by dividing
systematic differences (Extended Data Fig. 10c) with the average C14 date of the
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paleofeces used in molecular clocking analysis. f, Clock rates inferred by BEAST2
analysis (Supplementary Table 7). g, Raw-sequence-based divergence dates
between A & M1 strains, re-calibrated using time-resolved systematic differences. h,
Distribution of raw-sequence-based divergence dates when low-frequency outliers
are excluded. i, Distribution of estimated divergence dates between A & M1 strains
based on BEAST2 analysis.
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5.3 Analysis of 1321 Eubacterium rectale genomes from

metagenomes uncovers complex phylogeographic population

structure and subspecies functional adaptations

This work in which I was involved as a co-author was published in Genome Biology in

2020. In this work, I applied the approach reported in Chapter 3 on reconstruction of

genome phylogeny for Eubacterium rectale within the Bayesian framework. This study

mainly focused on characterizing the geographical diversity and population structure of

Eubacterium rectale, one of the most prevalent human gut bacteria, combining

large-scale metagenomic analysis, population genetics, and phylogenetics. It revealed

an unprecedented diversity of Eubacterium rectale regarding the geographical

dispersal and host population structure.

Contribution:
In this study, I mainly focused on reconstructing a rooted genome phylogeny for

exploring the divergence order of four subspecies in the course of E. rectale evolution.

The strategies of accomplishing this analysis were based on the computational

framework which has been discussed in detail in Chapter 3.

The abstract is reported below, and the full-text article can be accessed here:

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02042-y

Analysis of 1321 Eubacterium rectale genomes from
metagenomes uncovers complex phylogeographic population
structure and subspecies functional adaptations

Nicolai Karcher, Edoardo Pasolli, Francesco Asnicar, Kun D. Huang, Adrian Tett,
Serena Manara, Federica Armanini, Debbie Bain, Sylvia H. Duncan, Petra Louis,
Moreno Zolfo, Paolo Manghi, Mireia Valles-Colomer, Roberta Raffaetà, Omar
Rota-Stabelli, Maria Carmen Collado, Georg Zeller, Daniel Falush, Frank Maixner,
Alan W. Walker, Curtis Huttenhower and Nicola Segata

Genome Biology 2020
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Abstract

Background

Eubacterium rectale is one of the most prevalent human gut bacteria, but its diversity

and population genetics are not well understood because large-scale whole-genome

investigations of this microbe have not been carried out.

Results

Here, we leverage metagenomic assembly followed by a reference-based binning

strategy to screen over 6500 gut metagenomes spanning geography and lifestyle and

reconstruct over 1300 E. rectale high-quality genomes from metagenomes. We extend

previous results of biogeographic stratification, identifying a new subspecies

predominantly found in African individuals and showing that closely related non-human

primates do not harbor E. rectale. Comparison of pairwise genetic and geographic

distances between subspecies suggests that isolation by distance and co-dispersal

with human populations might have contributed to shaping the contemporary

population structure of E. rectale. We confirm that a relatively recently diverged E.

rectale subspecies specific to Europe consistently lacks motility operons and that it is

immotile in vitro, probably due to ancestral genetic loss. The same subspecies exhibits

expansion of its carbohydrate metabolism gene repertoire including the acquisition of a

genomic island strongly enriched in glycosyltransferase genes involved in

exopolysaccharide synthesis.

Conclusions

Our study provides new insights into the population structure and ecology of E. rectale

and shows that shotgun metagenomes can enable population genomics studies of

microbiota members at a resolution and scale previously attainable only by extensive

isolate sequencing.
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Conclusions
Reconstructing and dating the divergence of microbiome species is of great interest for

investigating the evolutionary history of the human microbiota. The state of the art is to

recover microbial genomes from carbon dated ancient metagenome samples and use

these genomes as calibration points for molecular clock dating analyses. It is a

laborious task. An integrated computational framework is needed to scale up such

investigations, particularly at the circumstance of continuously growing amounts of both

ancient and contemporary metagenomic data available.

To address this challenge and facilitate metagenomics studies focused on interrogating

the evolutionary history of the human microbiota, in this thesis I presented a novel

computational framework and showcased its successful applications on real

metagenomic datasets to uncover the underlying delicate evolutionary history of many

human microbiome species.

In Chapter 2 I showed how our gut microbiota has diverged from its ancestral state

from the bird’s-eye view of microbial composition and metabolic features, and this

divergence could be associated with Westernized lifestyles including diet change and

modern medical access. This work set the best proxy for investigating further the

evolution of the human microbiome by comparing ancient metagenomic samples with

present-day metagenomic datasets.

In Chapter 3 I presented an integrated computational framework, MetaClock for

reconstructing and dating the diversification timeline of microbiome species. I devised

an automated pipeline which can precisely extract and integrate genomic information

from ancient and contemporary metagenomic samples, and further build a

time-resolved phylogeny for strains of microbiome species with molecular clock dating.

In addition, I applied this approach to six common human gut members and uncovered

underlying coevolution between microbiome and the host, for example the estimated

diversification time of Ruminococcus bromii is approximately 750 ka when hominins

started developing sophisticated human behaviors such as stone

knapping(Alperson-Afil et al. 2009). This integrated pipeline has greatly contributed to

the field by allowing for reconstructing the evolutionary history of other microbiome

members (see Chapter 4).
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In Chapter 4 I demonstrated a detailed application of MetaClock in the circumstance of

oral microbiome, recovering the evolutionary diversity of three Methanobrevibacter

species two of which are novel species. In this work, the strain-level phylogenetic

analysis performed using MetaClock revealed striking evolutionary diversity of three

Methanobrevibacter species in the deep past but the diversity is clearly declining at

present. This could be related to the recent change in the human lifestyle. This work

promised a wider usage of MetaClock expanding applicable ecosystems from human

gut to oral cavity, thus it can also contribute to the field focused on oral microbiome.

In Chapter 5 I reported other studies in which MetaClock played an important role in

investigating the fine-grained evolutionary history of the human microbiota.

Overall, the work discussed in this dissertation demonstrates a contribution to

computational metagenomics and particularly to the direction where the interest of

investigating the evolution of human microbiota using ancient metagenomic samples is

gathering pace. The framework has been successfully applied in several

circumstances to uncover the underlying evolutionary history of microbiota and the

co-evolution with the host by focusing on certain members. To reconstruct a more

complete map which can depict how one strain diverged into the other and the

corresponding time for many species in the human microbiota, we need to discover

more species that are prevalent and abundant in both ancient and present-day

metagenomic samples. The continuously growing number of archaeological human

microbiome samples excavated will promise more microbial species to be recovered

from the long past. Analyzing them with their modern counterparts in this framework

will give fresh insights into the unexplored evolutionary history of the human

microbiota.

Future perspectives

The studies discussed in this dissertation promise several interesting aspects where

combining metagenomics, phylogenetic concepts and molecular clock dating is

emerging as a powerful tool in investigating the evolutionary history of the human

microbiota. I would like to elaborate three potential research directions to follow up in

the future.

1. Dating the evolutionary history of oral microbiome members. In Chapter
2 and Chapter 3 we explored a detailed divergence pattern of the human
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microbiome structure before and after the industrialization, and further

reconstructed time-resolved phylogenies for six common human gut bacteria.

This largely expanded our understanding about how the human gut microbiome

has diverged in the past from the level of general microbiome structure to that

of specific species. While in Chapter 4 we investigated the evolutionary

diversity of oral microbiome using three Methanobrevibacter species as

examples, unlike gut microbiome species studied in Chapter 3 and 4, an

evolutionary timeline for these oral species is still missing. Thus, I would like to

carry on MetaClock analysis on these three Methanobrevibacter species in

order to reconstruct a time-measured evolutionary history of the human oral

microbiome.

2. Expanding MetaClock analysis coupling with metagenomic assembly
advances. Applications of MetaClock are largely focused on known microbial

species in the studies reported in my dissertation. It could hinder a better

understanding about our microbiome evolution because the human microbiome

consists of large amounts of the unknown. In Chapter 4, we demonstrated how

we recovered two novel Methanobrevibacter species and built their strain-level

phylogenies by combining de novo metagenomic assembly and MetaClock

analysis. In the future, we would like to employ this strategy to human gut

microbiome members so as to complement the limitations in Chapter 2 and

Chapter 3 where only known species were studied.

3. Fully Automatizing the section of molecular clock dating in the
MetaClock pipeline. MetaClock is a highly integrated framework for studying

the evolutionary history of the human microbiome directly using ancient and

contemporary metagenomic samples. It is fully automated from extracting

metagenomic reads and reconstructing a strain-level phylogeny to estimating

temporal signals for further molecular dating. However, to perform intensive

model selection for molecular clock dating analysis users still need to execute

external softwares such as BEAST2 following our detailed instructions in the

tutorial. Model selection is a very daunting task and requires expertise in

Bayesian phylogenetic analysis. I wish to fully automate this part in the

MetaClock pipeline, so that users will feel more comfortable with performing

likewise analysis in the MetaClock framework without overloaded prior

knowledge.
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With a continuously growing number of ancient metagenomes being available and the

increase of computational capability, this methodology will enable us to reconstruct a

more complete evolutionary history of human microbiome members and their

association with the host evolution. It can certainly increase our understanding about

how our microbiota has been shaped in the past.
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