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Abstract - This paper presents the application of the Synthetic 

Aperture Radar (SAR) localization method for indoor positioning 

of UHF-RFID tags when the robot-mounted reader antenna moves 

alongside multiple trajectories. By properly combining the phase 

data associated to a set of multiple paths, the synthetic apertures 

along the main directions enlarge and then the localization 

accuracy may improve. Besides, during consecutive inventory 

rounds, several tag position estimates are available and they can 

be profitably combined to minimize the localization uncertainty. 

Different combination approaches are investigated to determine 

the best choice to improve the localization performance. The 

method capabilities are discussed through a numerical analysis, by 

considering different configurations of the multiple apertures and 

different sources of measurement uncertainty. Finally, the 

proposed localization method is validated through an 

experimental analysis carried out with commercial RFID 

hardware and a robotic wheeled walker, in an indoor scenario, by 

employing different types of tags. The knowledge of the 

reader/robot trajectory required by the SAR method is here 

achieved with an optical system. 

 

Index Terms - Moving RFID reader; RFID robot; Robot-based 

Localization; Synthetic Aperture Radar localization; Tag indoor 

localization; UHF-RFID position measurement, UHF-RFID. 

I. INTRODUCTION 

N the last years, indoor positioning systems received great 

attention in several applications such as item localization in 

smart warehouses, worker/tool localization in smart factories, 

and people localization in large environments, e.g. hospitals, 

retirement homes, airports, and shopping malls. When 

positioning systems are considered, several issues have to be 

addressed: infrastructure complexity and cost, system 

scalability and robustness, operational life of devices, 

achievable accuracy and precision [1]. A large spectrum of 

technologies exist, which are based on vision-based systems 

[2], laser range finders [3], sonars [4], Wi-Fi [5], Bluetooth [6], 

Ultra-Wide Band [7], magnetic fields [8], encoders and/or 
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inertial sensors [9], and Radio Frequency Identification (RFID) 

[10]. A survey of the main features of each of the above-

mentioned technologies can be found in [1].  

In warehouses [11], retail scenarios [12] and libraries [13], 

a large number of items has to be managed; thus, passive UHF-

RFID technology represents a promising solution by virtue of 

its low cost and easiness of installation. It offers tangible 

benefits to both suppliers and retailers, maximizing consumer 

value and minimizing supply-chain inefficiencies [14]-[15]. 

Unlike the barcode technology, it does not require line-of-sight 

(LOS) condition and a precise alignment between reader 

antenna and tagged items. Moreover, unlike RFID technologies 

at lower frequencies, it guarantees a reading range of several 

meters, and the wide-beam reader antennas along with the anti-

collision protocol implemented in the EPC Global C1 G2 

standard can provide connectivity with multiple tags at the same 

time.  

Real-time inventory can be performed in several ways: with 

portable readers [16], through fixed readers installed on the 

ceiling [17], via mobile robot equipped with UHF-RFID reader 

[18]-[19], or with ad-hoc smart shelf integrating UHF-RFID 

reader antennas [20]-[21]. Besides the tag identification, the 

RFID technology can be used also for tag sorting [22]-[23], or 

tag localization [18].  

Among commercial solutions, some RFID manufacturers 

have developed systems employing phased-array antennas to 

create a narrow and steerable beam, by enabling simultaneous 

tag identification and localization [24]. One of them is the 

Impinj xArray [25] system able to detect and locate tags in 

large-scale RFID scenarios (e.g. retail, healthcare and 

manufacturing), with an average positioning error of about 1.5 

meters. Other commercial solutions rely on Unmanned Ground 

Vehicles (UGV) equipped with a UHF-RFID reader able to 

self-navigate inside the environment, as well as to provide the 

antenna motion and to acquire data from RFID tags in order to 

make the inventory, while possibly finding the position of 

different items. In particular, AdvanRobot by Keonn [26], 
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already employed in Walmart warehouses, Tory by MetraLabs 

[27], and Robi by Fetch Robotics [28] are worth mentioning. 

In this paper, the SAR-based localization method [29] is 

applied when the robot-mounted RFID reader antenna moves 

along multiple trajectories. The proper combination of the 

phase data collected over different independent trajectories is 

investigated for localization accuracy improvement. Besides, 

when consecutive tag position estimates are available due to 

consecutive robot inventory rounds, the criteria to determine the 

solution that minimizes the localization uncertainty is 

discussed. 

The paper is organized as follows. After the related work 

description in Section II, the SAR-based localization method 

exploiting multiple trajectories is presented in Section III. Then, 

the numerical analysis is described in Section IV, by comparing 

the performance of the SAR method with several multiple-

trajectory cases. Indeed, the experimental setup with a reader 

antenna carried out by a robotic wheeled walker is described in 

Section V, together with the localization performance for 

multiple tags of different types, in a real indoor environment. 

Finally, conclusions and future research directions are drawn in 

Section VI.  

II. RELATED WORKS 

Generally speaking, when realizing a UHF RFID-based 

positioning system, classic solutions exploit the amplitude of 

the signal backscattered by the targeted tag, which is measured 

through the Received Signal Strength Indicator (RSSI). Such a 

parameter is strongly dependent on the environment and it 

suffers from multipath propagation, tag type, tag orientation, 

tagged item material and so on. Consequently, the definition of 

a reliable path loss model is not an easy task, especially in 

indoor scenarios, and the expected localization uncertainty 

could be so large as some meters. As an alternative, scene-

analysis approaches can be adopted. In [12], the authors 

presented a Bayesian filter-based algorithm, called BFVP 

(Bayesian filter of variable RF transmission power). In an 

offline phase, the robot navigates inside the scenario to fully 

cover the target space and collect observations of RFID tags at 

variable RF power. The constructed detection profiles are then 

used during the online phase to locate the tags. This method 

exhibits a localization uncertainty of about 50 cm in a retail 

environment with strong multipath phenomena. To improve 

localization accuracy, the reference tags are typically employed 

with proper modifications of classical k-Nearest Neighbour (k-

NN) algorithms [29]-[31]. In [32] the authors propose a system 

with a moving reader antenna measuring the multipath profiles 

of the reference tags to enhance tag localization accuracy, 

according to the insight that nearby tags have similar multipath 

effects. The use of reference tags was also combined with 

machine-learning techniques such as the Support Vector 

Regression [33], Artificial Neural Networks [34] and the Naïve 

Bayes algorithm [35].  

To achieve a better localization accuracy, the phase-based 

methods can be employed [36]. They typically exploit the Phase 

Difference of Arrival (PDOA) of the tag backscattered signal, 

to mitigate the effects of the propagation channel. The Time 

Domain PDOA (TD-PDOA) method allows to estimate the 

relative radial speed between tags and antennas through phase 

measurements at different instants. This solution is robust in 

rich multipath scenarios, but a fine tag localization cannot be 

performed. The Frequency Domain PDOA (FD-PDO) method 

instead exploits the phase measurements at two or more 

frequencies to estimate the tag distance. It can be applied for 

both moving and stationary tags being similar to the Frequency 

Modulation (FM) continuous-wave (CW) radar [37]. However, 

such a technique suffers from the quite limited bandwidth of 

RFID systems, especially in Europe (ETSI band 865-868 

MHz). With the Spatial Domain PDOA (SD-PDOA) method, 

the Direction-of-Arrival (DoA) of the tag signal can be 

measured by employing two or more antennas. As a result, the 

tag position can be determined from multiple distance/angle 

estimates, by applying multilateration or triangulation [38].  

Among the SD-PDOA techniques, methods exist which are 

based on the Synthetic Aperture Radar (SAR) approach with 

multiple reader antennas [39], or with a moving reader antenna 

creating a virtual array [40]. Such a method exploits the relative 

motion of the reader antenna with respect to the tagged items, 

to locate them. The antenna can be moved through a handling 

system [41], a robotic arm [42], an Unmanned Ground Vehicle 

(UGV) [43]-[44], or an Unmanned Aerial Vehicle (UAV) [45]. 

The main requirement for the application of this method is the 

knowledge of the reader antenna trajectory. The lower the 

measurement uncertainty of a given trajectory is, the smaller the 

tag position measurement uncertainty becomes. The SAR-

approach is also employed in [46] for tag localization based on 

a multiple-input multiple-output system and ad-hoc hardware. 

In [47], the concept of multiple baseline synthetic array is 

applied to conventional SAR-based methods, to elaborate the 

phase samples collected progressively along the reader 

trajectory. In [48], the authors present a 3D localization system 

to estimate the height of tagged items, by exploiting an 

Interferometric SAR approach. To solve the phase ambiguity, a 

density-based spatial clustering method is applied. The method 

median error of this method is 24 cm, in an indoor office 

environment with six targeted tags. In [49], the authors propose 

a phase unwrapping approach together with a Non-Linear 

Optimization algorithm, named as Phase ReLock. The robot 

moves over a planar trajectory measured through a laser-based 

system, on a plane parallel to the plane the tag lies on. The 

experimental analysis is carried out by employing 80 tags in an 

area of 10 m × 2.5 m. 2D localization performance is 

comparable with the one achievable with conventional SAR-

based method, which is regarded as the accuracy benchmark in 

the literature. This method has been extended to 3D localization 

as well [50], by employing a non-straight robot path. In [44], 

the authors present a smart system called RF-Scanner, which is 

able to locate items placed in bookshelves and to discover 

lying-down books. A phase-based method based on a fitting 

hyperbola model can ensure a centimetre level uncertainty. 

To improve localization accuracy, multiple antennas can 

also be mounted on the robot [51]-[53]. In [52], two reader 

antennas aligned along the vertical direction are installed on the 

robot. The SAR-based method is applied separately to the phase 

samples collected by each antenna and the obtained matching 

function are then combined to get a 3D localization with a 

centimetre order error.  
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III. THE MULTIPLE-APERTURE SAR-BASED METHODOLOGY 

Fig. 1 depicts a typical indoor warehouse with a robot 

equipped with RFID hardware, and several items tagged with 

passive transponders (tags). In UHF-RFID systems, the reader 

transmitted power and the antenna gain are limited by 

international regulations. Thus, the detection range mainly 

depends on the tag chip sensitivity. In last-generation tag chips, 

passive tags can be detected at distance larger than 10 m, 

allowing the passive UHF-RFID technology to implement an 

effective real-time inventory in indoor scenarios. A wide-beam 

reader antenna is installed on the robot to detect many tags 

which can be distinguished through their own Electronic 

Product Code (EPC). 

The robot movement with respect to the static tags allows to 

improve the inventory performance by mitigating the adverse 

effects of the shadowing and multipath phenomena. Besides, 

such reader-tag relative motion allows to apply the SAR-based 

localization method proposed by the authors in [40] to estimate 

the position of every detected tag. The main requirement is the 

knowledge of the reader antenna trajectory, which can be 

measured through a vision-based system in an indoor scenario, 

as described in this paper. 

During robot inventory, the reader antenna detects each tag 

along one or more portions of its whole path, depending on 

several factors: the trajectory shape, the relative orientation 

between the antenna and the tag, the reader antenna Half Power 

Beam Width (HPBW), the obstacles in the indoor scenario. In 

this case, the SAR-based method can be applied to the phase 

samples acquired during multiple apertures provided that the 

sampling theorem requirement is satisfied [56]. Besides, during 

consecutive inventory rounds, several tag position estimates are 

available and this can be profitably used to improve the 

localization performance. 

 

 
Fig. 1.  Sketch of tagged items in an indoor warehouse, where a robot 

equipped with a UHF-RFID hardware can identify and localize each 

detected tag.  

 

 

A. The Multiple Aperture SAR-based Localization Method 

When the reader antenna on the robot moves among tags, the 

phase of the backscattered complex signal (briefly called as 

complex signal hereafter) depends on the relative distance 𝑟𝑛 

between the reader antenna and the tag position 𝐩𝐭𝐚𝐠 =

[𝑥𝑡𝑎𝑔, 𝑦𝑡𝑎𝑔 , 𝑧𝑡𝑎𝑔] as:  

𝜙𝑛(𝐩𝐭𝐚𝐠) = 4𝜋𝑟𝑛 𝜆⁄ + 𝜙0,     𝑛 = 1,… , 𝑁𝑟  (1) 

 

where 𝜆 is the free-space wavelength of the radiated field, 𝑁𝑟 is 

the number of available successful readings while 𝜙0 is the 

phase offset including the effect of cables and other reader 

components [36]. In particular, in our model 𝜙0 is assumed to 

be constant within the reader antenna main beam. Thus, the 

phase variations along the robot trajectory are related to the 

variations of the distance 𝑟𝑛: 

 

𝑟𝑛 = ‖𝐩𝐧 − 𝐩𝐭𝐚𝐠‖,     𝑛 = 1,… , 𝑁𝑟 (2) 

 

In (2), ‖∙‖ denotes the L2 norm of the distance vector between 

the unknown tag position 𝐩𝐭𝐚𝐠 and the reader antenna position 

𝐩𝐧 = [𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛] of the 𝑛-th reading along the robot path. The 

latter can be modelled as: 

 

𝐩𝐧 = 𝐩𝐑𝐧 + 𝚫𝐩𝐑−𝐀𝐏𝐂𝐧 (3) 

 

where, 𝐩𝐑𝐧 = [𝑥𝑅𝑛 , 𝑦𝑅𝑛 , 𝑧𝑅𝑛] is the instantaneous position of 

the robot rotation centre and 𝚫𝐩𝐑−𝐀𝐏𝐂𝐧 is the relative position 

of the RFID antenna phase centre with respect to the robot 

barycentre at the time of the 𝑛-th reading. 

We consider the variations of the complex signal phase with 

respect to the value assumed at an assigned reference time, 

namely the relative phase history of the complex signal. 

Therefore, the constant 𝜙0 is canceled. Let us assume the first 

available reading as our reference. Thus, from (1) it follows 

that: 

 

Δ𝜙𝑛 = 𝜙𝑛 − 𝜙1,     𝑛 = 1,… , 𝑁𝑟 (4) 

 

The resulting normalized phasor sequence can be written as: 

 

𝐲(𝐩𝐭𝐚𝐠) = [1,   𝑒
−𝑗(𝜙2−𝜙1), …,    𝑒−𝑗(𝜙𝑁𝑟−𝜙1)]

𝑇
 (5) 

 

being ’T’ the transpose operator. For a given path of the reader 

antenna, 𝐲(𝐩𝐭𝐚𝐠) varies as a function of the actual tag position. 

As already said, when the robot moves within the indoor 

scenario, the reader antenna can collect data from the tag during 

several trajectories, even not contiguous in time. The collected 

phase samples (1) can be jointly employed to build the 

normalized phasor sequence (5), provided that, the average 

spatial sampling satisfies the sampling theorem [56], namely 

the condition: 

 

∆=
1

𝑁𝑟 − 1
∑ ‖𝐩𝐧+𝟏 − 𝐩𝐧‖ ≤ 𝜆 [4𝑠𝑖𝑛(𝐻𝑃𝐵𝑊 2⁄ )]⁄

𝑁𝑟−1

𝑛=1

 (6) 

 

Above procedure works well as a result of the adopted phasor 

sequence, which allows to tackle the phase ambiguity problem. 

The lengths of the synthetic apertures along the three main 

directions can be defined as: 
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{
 
 

 
 𝐷𝑥 = max

𝑛=1,…,𝑁𝑟
{𝑥𝑛} − min

𝑛=1,…,𝑁𝑟
{𝑥𝑛}

𝐷𝑦 = max
𝑛=1,…,𝑁𝑟

{𝑦𝑛} − min
𝑛=1,…,𝑁𝑟

{𝑦𝑛}

𝐷𝑧 = max
𝑛=1,…,𝑁𝑟

{𝑧𝑛} − min
𝑛=1,…,𝑁𝑟

{𝑧𝑛}

 (7) 

While the total length of the synthetic aperture is: 

 

𝐷𝑡𝑜𝑡 = ∑‖𝐩𝐧+𝟏 − 𝐩𝐧‖

𝑁𝑟−1

𝑛=1

 (8) 

 

For a defined robot trajectory, composed by multiple not-

contiguous apertures, a set of nominal normalized phasor 

sequences can be computed analytically, for hypothesized 

values 𝐩𝐭𝐚𝐠
′ = [𝑥𝑡𝑎𝑔

′ , 𝑦𝑡𝑎𝑔
′ , 𝑧𝑡𝑎𝑔

′ ] of the tag spatial coordinate 

𝐩𝐭𝐚𝐠, based on (5), i.e. 

 

𝐚(𝐩𝐭𝐚𝐠
′ ) = [1,   𝑒−𝑗(𝜙2

′−𝜙1
′ ), …,    𝑒−𝑗(𝜙𝑁𝑟

′ −𝜙1
′ )]

𝑇

 (9) 

 

where 𝜙𝑛
′ = 𝜙𝑛(𝐩𝐭𝐚𝐠

′ ) is given by (1). The 𝐩𝐭𝐚𝐠
′  values belong 

to a grid of points whose step corresponds to the method 

resolution. 

The best match between (5) and (9) can be found through the 

normalized spatial-domain cross-correlation (matching 

function): 

 

𝐂(𝐩𝐭𝐚𝐠
′ ) =

|𝐚𝐇(𝐩𝐭𝐚𝐠
′ )𝐲(𝐩𝐭𝐚𝐠)|

‖𝐚𝐇(𝐩𝐭𝐚𝐠
′ )‖ ∙ ‖𝐲(𝐩𝐭𝐚𝐠)‖

 (10) 

 

with ‘H’ being the Hermitian operator. The cross correlation in 

(10) is calculated over the above-mentioned grid of 𝐩𝐭𝐚𝐠
′  values. 

As already stated in [45], the position of the primary peak 𝐶𝑚𝑎𝑥 

of (10), represents the most likely estimate of the tag spatial 

coordinates 𝐩𝐭𝐚𝐠 = [𝑥̂𝑡𝑎𝑔, 𝑦̂𝑡𝑎𝑔, 𝑧̂𝑡𝑎𝑔]:  

 

𝐩𝐭𝐚𝐠 = arg max
𝐩𝐭𝐚𝐠
′

𝐂(𝐩𝐭𝐚𝐠
′ ) 

(11) 

 

The ratio between the peak value 𝐶𝑚𝑎𝑥 and the secondary peak 

value 𝐶𝑠𝑝 is defined as Peak-to-Secondary-Peak-Level (PSPL): 

 

𝑷𝑺𝑷𝑳 =
𝐶𝑚𝑎𝑥
𝐶𝑠𝑝

 (10) 

 

The higher the peak value 𝐶𝑚𝑎𝑥, the greater the similarity 

between the tag phasor sequence and the nominal one. 

Moreover, the presence of a secondary peak 𝐩𝐬𝐩 =

[𝑥𝑠𝑝, 𝑦𝑠𝑝 , 𝑧𝑠𝑝] with a low associated value 𝐶𝑠𝑝 reduces the 

uncertainty in the primary peak determination. 

B. Consecutive estimations 

Several tag position estimates can be computed over time by 

processing phase data acquired during different set of multiple 

trajectories. This can be fruitfully employed to improve the 

localization performance. If 𝐩𝐭𝐚𝐠(𝒌) for 𝑘 ∈ {1, … , 𝑁𝑒} (𝑁𝑒 

being the number of available estimates) is the k-th available 

estimate obtained with a peak value of 𝐶𝑚𝑎𝑥(k) and a Peak-to-

Secondary-Peak-Level of 𝑃𝑆𝑃𝐿(k), different criteria can be 

adopted.  

The first one selects the solution with the highest value of the 

𝐶𝑚𝑎𝑥(k) parameter: 

 

𝐩𝐭𝐚𝐠−𝐛𝐞𝐬𝐭𝟏 = 𝐩𝐭𝐚𝐠|max{𝐶𝑚𝑎𝑥(𝑘)}
 (12) 

 

with 𝑘 ∈ {1, … , 𝑁𝑒}. 
The second one aims at selecting the solution with the highest 

value of the 𝑃𝑆𝑃𝐿(k) parameter: 

 

𝐩𝐭𝐚𝐠−𝐛𝐞𝐬𝐭𝟐 = 𝐩𝐭𝐚𝐠|max {𝑃𝑆𝑃𝐿(𝑘)}
 (13) 

 

The third approach is based on an average operation among 

consecutive position estimates: 

 

𝐩𝐭𝐚𝐠−𝐚𝐯𝐠 =
𝟏

𝑵𝒆
∑𝐩𝐭𝐚𝐠(𝒌)

𝑁𝑒

𝑘=1

 (14) 

 

We further consider the possibility to process the phase data 

collected by a tag during consecutive multiple trajectories 

altogether, provided that the spatial sampling condition (6) is 

met. Thus, this last criterion is also considered in the following 

numerical analysis to evaluate the best approach minimizing the 

localization uncertainty. 

IV. CHARACTERIZATION OF THE MEASUREMENT METHOD 

WITH MULTIPLE TRAJECTORIES 

A. Multiple trajectories 

A numerical analysis was carried out to characterize the 

SAR measurement method with multiple trajectories. We 

consider an RFID reader antenna moving along a planar (2D) 

trajectory, parallel to the xy plane, as illustrated in Fig. 1. We 

firstly investigate four different shapes of the 2D trajectories 

followed by the reader, as represented in Fig. 2: an L-shape path 

from point 𝐴 = [0, 0, 0.5] m, to point 𝐵 = [2, 0, 0.5] m, up to 

point 𝐶 = [2, 2, 0.5] m (Fig. 2a); a C-shape trajectory, from 

point 𝐴, to point 𝐵, to point 𝐶, up to point 𝐷 = [0, 2, 0.5] m 

(Fig. 2b); a double straight-line trajectory composed by two 

paths, the first one from point 𝐴, to point 𝐵 and the second one 

from point 𝐶 to point 𝐷 (Fig. 2b); a Cross-shape trajectory 

composed by two paths, the first from point 𝐴, to point 𝐵 and 

the second one from point 𝐸 = [0, −1, 0.5] m, to point 𝐹 =
[0, 1, 0.5] m (Fig. 2a). The considered trajectories have the 

same synthetic apertures along the x-direction (𝐷𝑥 = 2 m) and 

the y-direction (𝐷𝑦 = 2 m). However, they have a different 

total length: 𝐷𝑡𝑜𝑡−𝐿 = 4 m, 𝐷𝑡𝑜𝑡−𝐶 = 𝐷𝑡𝑜𝑡−𝐷𝑅 = 6 m and 

𝐷𝑡𝑜𝑡−𝐶𝑅𝑂𝑆𝑆 = 5.41 m. The average spatial sampling for the 

three trajectories are: ∆𝐿= 0.02 𝑚, ∆𝐶= 0.02 𝑚, ∆𝐷𝑅=
0.03 𝑚, and ∆𝐶𝑅𝑂𝑆𝑆= 0.027 𝑚, for the L-shape, the C-shape, 

the double straight lines and the Cross-shape trajectories, 

respectively. In all cases, the sampling theorem is satisfied [56].  
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(a) (b) 

Fig. 2.  The different types of trajectories considered in the simulations: (a) L-shape (circle markers) and Cross-shape (square markers) and (b) C-shape 

(circle markers) and double straight-line (square markers). 

 

  
(a) (b) 

  
(c) (d) 

Fig. 3.  Matching function and the corresponding estimated tag position by applying the SAR-based method for the different types of trajectories: (a) L-shape, 

(b) C-shape, (c) double straight-line, and (d) Cross-shape. 

 

In the numerical analysis, we assume a uniformly 

distributed error in the interval between -3 cm and 3 cm for the 

reader antenna positions. The operating frequency is set at 𝑓0 =
865.7 MHz. Then, the standard deviation of phase 

measurements is chosen equal to 𝜎𝜙 = 0.1 rad [54]. Through 

the numerical analysis of this section, the considered target 

region is a 6 m × 6 m grid with a step of 1 cm centred in 
[1, 1, 0] m. Without loss of generality, we suppose to know the 

tag z-coordinate (𝑧𝑡𝑎𝑔) and the analysis is carried out in terms 

of 2D localization performance. For the more general case of a 

fully 3D localization of items placed at arbitrary z-coordinates, 

the proposed localization method can still be applied by varying 

the hypothesized values of all three coordinates 

[𝑥𝑡𝑎𝑔
′ , 𝑦𝑡𝑎𝑔

′ , 𝑧𝑡𝑎𝑔
′ ], instead of two only [𝑥𝑡𝑎𝑔

′ , 𝑦𝑡𝑎𝑔
′ ]. Suitable 

optimization techniques such as the particle swarm 

optimization can be employed to reduce the computational 

burden [52], with respect to a standard full-space search 

method. Fig. 3 shows the matching function on the 𝑧 = 0 plane 

by applying the SAR-based localization method for the 

trajectories of Fig. 2, when the targeted tag is placed at 𝐩𝐭𝐚𝐠 =

 [2.38, −0.43, 0.00] m. For the first three trajectories the main 

lobe sizes (Table I) are quite similar, while they are slightly 

different for the Cross-shape trajectory. This confirms that the 

matching function shape depends on several factors such as the 

synthetic aperture lengths along different directions and the 

antenna-tag distance [55]. The corresponding primary and 

secondary peak values are reported in Table I along with the -

3 dB sizes (𝑊𝑥 and 𝑊𝑦) of the main lobe along the axes of the 

chosen reference frame. The L-shape and the C-shape 

trajectories ensure a clear peak detection, with a low value of 

the secondary peak. Indeed, the double straight-line trajectory 

exhibits a high secondary peak, which however does not 

influence the primary peak significantly and it shows similar 

localization performance of the C-shape trajectory due to the 

fact that they have the same total synthetic aperture (𝐷𝑡𝑜𝑡). 
Indeed, the Cross-shape trajectory provides the higher 𝑃𝑆𝑃𝐿 

value and, consequently, ensures a lower localization 

uncertainty. To better understand the influence of a high 

secondary peak which typically appears when multiple 

trajectories are considered, some Monte Carlo simulations are 
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carried out for different tag positions. Indeed, the shape of the 

matching function is strictly related to the reader antenna 

trajectory with respect to the tag position itself. In details, 

10000 tag positions are considered as randomly distributed over 

the 𝑧 = 0 plane, in a 6 m × 6 m area centred in [1, 1, 0] m, with 

𝑧𝑡𝑎𝑔 = 0 m. Firstly, we investigate the number of cases in 

which the matching function exhibits a high secondary peak, 

namely when the secondary peak is higher than 𝐶𝑚𝑎𝑥 √2⁄ . The 

results are shown in Fig. 4 as a function of the synthetic aperture 

length along the y-direction, 𝐷𝑦 , for the L-shape (circle blue 

markers), the C-shape (square red markers), the double straight-

line (triangle green markers) and the Cross-shape path (star 

black markers) trajectories. 

As the 𝐷𝑦  value increases, the number of appearances of the 

secondary peaks decreases for all the considered trajectories, 

except for the double straight-line one. This is due to the fact 

that even if the total synthetic aperture increases, the distance 

between the two trajectory portions increases as well.  

The histograms of the primary peak 𝐶𝑚𝑎𝑥 (Fig. 5a) and the 

Peak-to-Secondary-Peak-Level 𝑃𝑆𝑃𝐿 (Fig. 5b) are represented 

in Fig. 5 by considering the three trajectories for the case of 

𝐷𝑦 = 2 m, namely when they have the same synthetic apertures 

along both the x- and the y-directions. The histograms of the 

positioning errors  𝜖𝑥 = 𝑥̂𝑡𝑎𝑔 − 𝑥𝑡𝑎𝑔 and  𝜖𝑦 = 𝑦̂𝑡𝑎𝑔 − 𝑦𝑡𝑎𝑔 a 

along the x- and the y-axis, respectively, are depicted in Fig. 6.  

 

TABLE I.  PARAMETERS OF THE MATCHING FUNCTION IN FIG. 3 BY APPLYING 

THE SAR-BASED LOCALIZATION METHOD FOR DIFFERENT TRAJECTORIES. 

Trajectory L-shape C-shape Double 

straight-line 

Cross-shape 

𝐷𝑥 2 m 2 m 2 m 2 m 

𝐷𝑦 2 m 2 m 2 m 2 m 

𝐷𝑡𝑜𝑡 4 m 6 m 6 m 5.41 m 

∆ 2 cm 2 cm 3 cm 2.7 cm 

𝐶𝑚𝑎𝑥 0.81 0.81 0.83 0.81 

𝐶𝑠𝑝 0.68 0.67 0.79 0.55 

𝑃𝑆𝑃𝐿 1.19 1.21 1.05 1.47 

𝑊𝑥 16.0 cm 15.5 cm 18.0 cm 47.0 cm 

𝑊𝑦 16.0 cm 15.5 cm 15.0 cm 19.0 cm 

𝑥𝑡𝑎𝑔 2.53 m 2.36 m 2.40 m 2.38 

𝑦̂𝑡𝑎𝑔 -0.59 m -0.41 m -0.44 m -0.43 

𝑥𝑠𝑝 2.16 m 2.20 m 2.18 m 2.96 

𝑦𝑠𝑝 0.00 m -0.04 m -0.04 m -0.80 

 
Fig. 4.  Numbers of occurrence of secondary peaks (10000 random tag 

positions) versus the synthetic aperture 𝑫𝒚 for different trajectories. 

 

 

  
(a) (b) 

Fig. 5.  Histograms (a) of the primary peak 𝐶𝑚𝑎𝑥 and (b) of the Peak-to-Secondary-Peak-Level 𝑃𝑆𝑃𝐿 of the matching function for the L-shape trajectory 

(purple bars), the C-shape trajectory (pink bars), the double straight-line trajectory (light-pink bars) and the Cross-shape (white bars), when 𝐷𝑦 = 2 m. 
 

  
(a) (b) 

Fig. 6.  Histograms of the localization error (a) on the x-coordinate 𝜖𝑥 and (b) on the y-coordinate 𝜖𝑦 for the L-shape trajectory (purple bars), the C-shape 

trajectory (pink bars), the double straight-line trajectory (light-pink bars) and the Cross-shape (white bars), when 𝐷𝑦 = 2 m.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 7.  Mean value and probabilistically symmetric 95% coverage interval of the localization error on the x-coordinate 𝜖𝑥 (a) for the L-shape trajectory, (c) 

the C-shape trajectory, (e) the double straight-line trajectory, (g) for the Cross-shape trajectory and on the y-coordinate 𝜖𝑦 (b) for the L-shape trajectory, (d) 

the C-shape trajectory, (f) the double straight-line trajectory, (h) for the Cross-shape trajectory. 

 
 

Fig. 7 shows the mean values of the error distributions together 

with the probabilistically symmetric 95% coverage interval, by 

varying the 𝐷𝑦  synthetic aperture. 

The C-shape trajectory has the best distribution of the 𝑃𝑆𝑃𝐿 

parameter, namely the higher values, and this reflects on the 

localization error histograms which exhibits the highest 

frequency of small errors over both the x- and the y- 

coordinates. On the contrary, the Cross-shape trajectory 

exhibits the worst distribution of the 𝑃𝑆𝑃𝐿 parameter and 

consequently the highest localization error. This result suggests 

that the most significant parameter is the peak value of the 

matching function. Indeed, it is important to have a low 𝑃𝑆𝑃𝐿 

to improve the localization performance. In Fig. 7, it appears 

that the probabilistically symmetric 95% coverage interval 
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decreases if increasing the synthetic aperture 𝐷𝑦 , as expected. 

The C-shape and the double straight-line trajectories show 

nearly equal performance. In fact, the results are much better 

than with the other considered trajectories. The Cross-shape 

trajectory shows different performance from the L-shape 

trajectory even if they have the same synthetic apertures. This 

is mainly due to the different trajectory shape. 

The numerical analysis has been extended, by considering 

further multiple trajectories, with arbitrary shapes and different 

synthetic apertures, like those illustrated in Fig. 8. We refer to 

them as trajectory 𝑇1 (circle blue markers), trajectory 𝑇2 (square 

red markers) and trajectory 𝑇3 (triangle green markers). All of 

them are combinations of two trajectory portions with the 

reader antenna at a height of 𝑧𝑛 = 0.8 𝑚. The trajectories 

parameters are described in Table II. All of them meet the 

sampling condition (6). We also add the results of the multiple 

trajectory derived from the combination of trajectories 𝑇1, 𝑇2 

and 𝑇3. 

The histograms of both the primary peak 𝐶𝑚𝑎𝑥 (Fig. 9a) and the 

Peak-to-Secondary-Peak-Level 𝑃𝑆𝑃𝐿 (Fig. 9b) are represented 

in Fig. 9 for the trajectories of Fig. 8, still considering 10000 

random tag positions. The histograms of the localization error 

for the x- (Fig. 10a) and the y-coordinate (Fig. 10b) is 

represented in Fig. 10, while the corresponding the 

probabilistically symmetric 95% coverage intervals are shown 

in Fig. 11. The trajectory T1 includes the higher number of test 

cases with low 𝐶𝑚𝑎𝑥 values and the largest number of test cases 

with the 𝑃𝑆𝑃𝐿 parameter close to 1. Consequently, the 

corresponding localization error is the largest. The trajectory T2 

and the trajectory T3 exhibit similar performance in terms of 

𝐶𝑚𝑎𝑥, but T3 exhibits a better distribution of the 𝑃𝑆𝑃𝐿 

parameter, with higher values. Thus, the associated localization 

error is lower. From these simulations, it is apparent that when 

the trajectory shape is arbitrary and complex, the total trajectory 

length is not the main parameter to derive the localization 

performance, differently from the conventional SAR method 

with straight linear trajectory, where the trajectory length is the 

main parameter to determine the system performance [55]. 

Indeed, the trajectory 𝑇2 with 𝐷𝑡𝑜𝑡 = 3.91 m performs better 

than 𝑇1 with 𝐷𝑡𝑜𝑡 = 4.45 m.  

For comparison, we also consider the case in which all the 

trajectories 𝑇1, 𝑇2 and 𝑇3 are considered together. In this case, 

the advantage of the joint process is evident from the 

localization error distribution (yellow bar in Fig. 10). As a 

result, the central 95% range of the localization error reduces to 

6 cm and 8 cm for the x- and the y-coordinate, respectively. 

 
TABLE II.  PARAMETERS OF THE DIFFERENT TRAJECTORIES EMPLOYED IN THE 

NUMERICAL ANALYSIS. 

Trajectory 𝑇1 𝑇2 𝑇3 𝑇1𝑇2𝑇3 

𝑫𝒙 (m) 2.00 2.50 2.28 2.78 

𝑫𝒚 (m) 2.00 1.00 2.00 3.00 

𝑫𝒕𝒐𝒕 (m) 4.45 3.91 5.50 18.04 

∆ (cm) 5.9 5.1 5.7 7.2 

 

B. Combination of consecutive estimated tag positions 

As aforementioned, when consecutive tag position estimates 

are available, different criteria can be adopted to determine the 

lowest uncertainty estimates. We consider again the set of 

multiple trajectories of Fig. 8, and Monte Carlo simulations are 

carried out by considering 10000 random tag positions. Fig. 12 

represents the histograms of the localization errors along the x- 

(Fig. 12a) and the y-axis (Fig. 12b), respectively, by using the 

criteria described in Section II, while the corresponding mean 

values with the central 95% range are in Fig. 13. 

We add also the result of the processing of all phase data 

collected over all trajectories, i.e. 𝑇1, 𝑇2 and 𝑇3. 

 

 
Fig. 8.  Example of the set of multiple trajectories employed in the numerical 

analysis: trajectory 𝑻𝟏 (circle blue markers), trajectory 𝑻𝟐 (square red 

markers) and trajectory 𝑻𝟑 (triangle green markers). 

 

 

  
(a) (b) 

Fig. 9.  Histograms (a) of the primary peak 𝐶𝑚𝑎𝑥 and (b) of the Peak-to-Secondary-Peak-Level 𝑃𝑆𝑃𝐿 of the matching function the multiple trajectories of 

Fig. 8. 
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(a) (b) 

Fig. 10.  Histograms of the localization error (a) on the x-coordinate 𝜖𝑥 and (b) on the y-coordinate 𝜖𝑦 for the multiple trajectories of Fig. 8. 
 

  
(a) (b) 

Fig. 11.  Mean value and probabilistically symmetric 95% coverage interval of the localization error (a) on the x-coordinate 𝜖𝑥 and (b) on the y-coordinate 

𝜖𝑦 for the multiple trajectories of Fig. 8. 
 

  
(a) (b) 

Fig. 12.  Histograms of the localization error (a) on the x-coordinate 𝜀𝑥 and (b) on the y-coordinate 𝜀𝑦 for the different estimation criteria. 
 

  
(a) (b) 

Fig. 13 Mean value and probabilistically symmetric 95% coverage interval of the localization error (a) on the x-coordinate 𝜀𝑥 and (b) on the y-coordinate 𝜀𝑦 

for the different estimation criteria. 
 

Among the considered criteria, the average operation among 

consecutive estimated tag positions (14) minimizes the 

localization errors with respect to the criteria based on the best 

value of 𝐶𝑚𝑎𝑥 or 𝑃𝑆𝑃𝐿.  

 

However, the results obtained from the data collected over 

all trajectories outperform the other criteria. Obviously, the 

latter can be applied only if the sampling theorem is satisfied.  
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V. EXPERIMENTAL ANALYSIS  

A. Experimental Setup and Trajectory Measurements 

The experimental campaign to analyse the performance of 

the proposed localisation method were conducted in the 

premises of the University of Trento, by employing commercial 

RFID hardware and a robotic wheeled walker. 

The robot was equipped with the Impinj Speedway 

Revolution R420 UHF-RFID reader and the 

WANTENNAX019 antenna by C.A.E.N. RFID (Fig. 14). It is 

powered by a battery installed on the robot. The reader input 

power was set to PTX=27 dBm, in order to satisfy the limit on 

the Effective Isotropic Radiative Power (EIRP), since the 

antenna gain is G=8.5 dBc and the cable losses amount to 1.5 

dB. 6 × 9 commercial UHF RFID inlay tags were deployed over 

an area of 40 m2, as shown in Fig. 15. Different types of tags 

were used to check the method effectiveness regardless of the 

tag characteristics. Different tag orientations were also tested, 

since the reader antenna radiates a circularly polarized field. 

Tags on odd (even) rows are aligned along the x-direction (y-

direction). The tag main parameters are summarized in Table 

III.  

An OptiTrack motion capture system was used to measure 

the trajectory of the reader antenna with high accuracy (which 

is a basic requirement to test the accuracy of the proposed SAR-

based measurement method). OptiTrack system is equipped 

with 14 Prime13 smart cameras (Fig. 15) able to stream data to 

a central server with a declared latency of 4.2 ms and negligible 

jitter. The OptiTrack system is able to measure the position of 

ad-hoc markers in a known reference frame (as depicted in Fig. 

15). The declared positioning and orientation standard 

uncertainties of the vision system are below 1 mm and below 

0.1°, respectively, in a room of about 8 m × 8 m × 2 m [56]. 

The cameras frame rate was set to 120 Hz and 18 markers were 

placed on the robotic walker to reconstruct its rigid body 

posture. More precisely, six markers were placed on each 

handle, one marker was placed on each rear wheel and three 

markers were placed on the RFID antenna to keep track of its 

position and orientation, as shown in Fig. 14. This large number 

of markers enables an effective position tracking even when 

some of the markers are occluded. 

 

 
Fig. 14.  Robotic wheeled walker equipped with the Impinj Speedway 

Revolution R420 UHF-RFID reader, the UHF-RFID WANTENNAX019 
antenna by C.A.E.N. RFID and optical markers. 

 

 
Fig. 15.  Indoor scenario with 6 × 9 commercial UHF-RFID tags deployed 
in an area of 40 m2 and the OptiTrack motion capture system with 14 

Prime13 smart cameras. 
 

TABLE III 

MAIN PARAMETERS OF THE TAGS EMPLOYED IN THE EXPERIMENTAL SETUP. 

Tag Tag size Chip Chip read 

sensitivity 

Easy RFID Clepsidra 

 

70 × 50 mm2 MZ-6 -22.1 dBm 

Easy RFID Fashion 

 

69 × 14 mm2 MZ-6 -22.1 dBm 

Easy RFID Garbage 

 

95 × 10 mm2 NXP 

UCODE-7 

-21 dBm 

LAB ID UH3D40 

 

40 × 40 mm2 MZ-4 -19.5 dBm 

LAB ID UH331 

 

95 × 7.2 mm2 MZ-5 -20 dBm 

LABID UH106 

 

95 × 8 mm2 MZ-6 -22.1 dBm 

Smartrac Dogbone 

 

88 × 24 mm2 MZ-4 -19.5 dBm 

 

The data collected by the RFID and the OptiTrack systems 

are time-aligned to minimize the positioning estimation 

uncertainty due to possible lags between the two system. The 

reference vision system was also used to measure, with 

negligible uncertainty, the ground truth positions of the UHF-

RFID tags placed on the floor. This is essential to evaluate the 

performance of the proposed SAR-based localization method. 

For this reason, some markers were also placed on top of the 

RFID tags. An example of a robotic walker path along with the 

position of the tags is shown in Fig. 16. In particular, the walker 

moves freely in the area and the tag #90172 (green circular 

marker) placed at 𝐩𝐭𝐚𝐠 = [−1.77, −0.03] m is detected along 

different paths. We consider the trajectory #A formed by two 

nearby parallel portions (blue circular markers) and the 

trajectory #B composed by two crossed paths (red square 

markers). The multiple trajectory parameters are summarized in 

Table IV. 

B. Localization performance  

The sequence of phase data relative to tag #90172 is 

represented in Fig. 17, when the walker moves over the multi-

trajectory #A (circle markers) and the multi-trajectory #B 

(square markers), respectively. 
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Fig. 16.  Example of the reader antenna trajectory measured by the vision-

based system. The tag positions (cross markers) are shown as well. The two 
multiple trajectories along which the tag #90172 (green circular marker) is 

detected are reported with coloured markers. 

Fig. 17.  Measured phase sequence with respect to the reading index 𝒏, when 

the tag #90172 is detected over trajectory #A (circle markers) and trajectory 

#B (square markers) of Fig. 16. 

 

   
(a) (b) (c) 

Fig. 18.  Matching function and the corresponding estimated tag position by applying the SAR-based method for the different measured trajectories of Fig. 

16: (a) trajectory #A, (b) trajectory #B, and (c) trajectory #AB. 

 

  
(a) (b) 

Fig. 19.  Measured localization error (a) on the x-coordinate 𝜖𝑥 and (b) on the y-coordinate 𝜖𝑦 for the different estimation criteria. 
 

TABLE IV.  PARAMETERS OF THE MEASURED TRAJECTORIES DURING THE 

DETECTION OF TAG #90172 PLACED AT 𝐩𝐭𝐚𝐠 = [−𝟏. 𝟕𝟕,−𝟎. 𝟎𝟑] 𝐦. 

Trajectory #A #B #AB 

𝑁𝑟 79 160 239 

𝐷𝑥 (m) 1.16 1.11 2.03 

𝐷𝑦 (m) 0.15 2.27 2.27 

𝐷𝑡𝑜𝑡 (m) 3.38 4.17 9.43 

∆ (cm) 4.3 2.6 4.0 

𝐶𝑚𝑎𝑥 0.90 0.71 0.65 

𝐶𝑠𝑝 0.68 0.63 0.64 

𝑃𝑆𝑃𝐿 1.32 1.13 1.02 

𝒙̂𝒕𝒂𝒈 -1.91 -1.78 -1.94 

𝒚̂𝒕𝒂𝒈 0.03 0.01 0.19 

𝑥𝑠𝑝 -1.21 -1.57 -1.79 

𝑦𝑠𝑝 2.50 -0.13 -0.01 

 

Some unpredictable phase jumps are clearly visible as reported 

in the reader datasheet [54].  

The corresponding matching functions and its parameters are 

reported in Fig. 18 and in Table IV, respectively. Multi-

trajectory #B is estimated with a lower localization uncertainty 

than trajectory #A. Since two consecutive estimates are 

available, the best estimation criterion described in Section II 

was used. In this case, 𝐩𝐭𝐚𝐠−𝐛𝐞𝐬𝐭𝟏 = 𝐩𝐭𝐚𝐠−𝐛𝐞𝐬𝐭𝟐 =

[−1.91,  0.03] m, 𝐩𝐭𝐚𝐠−𝐚𝐯𝐠 = [−1.85,  0.02] m, while the result 

of the combination of trajectory #A and #B determines 

𝐩𝐭𝐚𝐠−𝐀𝐁 = [−1.94,  0.19] m.  

Unlike the simulation results, it seems that in this case the 

criterion based on the average between the two estimated 

position yields the best performance. However, an extensive 

measurement campaign has been carried out to determine the 

overall performance. The measured localization errors are 

represented in Fig. 19, for 33 test cases with three multiple 

trajectories having 𝐷𝑥 > 0.3 m and 𝐷𝑦 > 0.3 m. Three 

estimated positions are available for each tag and the different 

estimation criteria are compared. According to the simulated 
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analysis, the best choice is to combine the data collected along 

the three trajectories altogether (to compose the multiple 

trajectory 𝑇1𝑇2𝑇3). 

VI. CONCLUSION 

The application of the Synthetic Aperture Radar localization 

method for indoor positioning of UHF-RFID tags has been 

presented, when a robot equipped with reader antenna moves 

over multiple trajectories (which may not be contiguous in 

time). The phase data collected during multiple paths can be 

profitably employed to improve the localization accuracy, 

provided that the sampling theorem was satisfied. Performance 

is not only dependent on the trajectory length as in classical 

SAR methods with straight linear trajectories, but also on the 

trajectory shape with respect to the tag position.  

Besides, the availability of multiple tag position estimates 

during consecutive inventory rounds can be properly combined 

to reduce the localization uncertainty. Different estimation 

criteria were investigated through the paper: the best matching 

function peak, the best peak-to-secondary-peak level, the 

average of consecutive estimates and the combination of the 

phase data collected during all the available trajectories.  

The proposed localization method has been firstly 

investigated through a numerical analysis by considering 

different configurations of the multiple apertures and different 

sources of measurement uncertainty. Then, it has been validated 

with commercial RFID hardware and a robotic wheeled walker 

in an indoor scenario, by employing different types of tags. 

Both the numerical and the experimental analysis showed that 

the best way to reduce the localization uncertainty is to combine 

the data collected along all available trajectories, even if distant 

in time, provided that sampling theorem requirement was met. 

If this is not possible, it is convenient to use the average of 

consecutive tag position estimates. 
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